
Anzo® 5.3 Deployment Guide
Last Updated: 4/6/2023

Online documentation is available at docs.cambridgesemantics.com

© 2023 Cambridge Semantics, Inc.

https://docs.cambridgesemantics.com/

Table of Contents

Deployment Overview 5

Deploying the Shared File System 6

Deploying Anzo 8

Anzo Requirements 9

Installing Anzo 16

Securing an Anzo Environment 25

Installing the Anzo for Office Plugin 26

Upgrading Anzo 27

Uninstalling Anzo 30

Deploying a Static AnzoGraph Cluster 31

AnzoGraph Architecture 32

AnzoGraph Requirements 35

Sizing Guidelines for In-Memory Storage 42

Sizing Guidelines for Disk-Based Storage (Preview) 50

Installing AnzoGraph 52

Complete the Pre-Installation Configuration 53

Install AnzoGraph 56

Complete the Post-Installation Configuration 67

Securing an AnzoGraph Environment 79

Upgrading AnzoGraph 87

Uninstalling AnzoGraph 89

Deploying a Static Anzo Unstructured Cluster 90

Anzo Unstructured Overview 91

2

Anzo Unstructured Data Onboarding Process 97

Anzo Unstructured Requirements 99

Installing Anzo Unstructured 102

Complete the Pre-Installation Configuration 103

Deploy the Leader Node 105

Deploy the Worker Nodes 108

Configure and Start the Anzo DU Services 112

Configure the Connection to Anzo 117

Installing and Configuring Elasticsearch 120

Upgrading Anzo Unstructured 127

Configuring K8s for Dynamic Deployments 128

Kubernetes Concepts 129

Anzo K8s Requirements 131

Compute Resource Planning 134

Deploying the K8s Infrastructure 137

Amazon EKS Deployments 138

Setting Up a Workstation 138

Planning the Anzo and EKS Network Architecture 144

Creating and Assigning IAM Policies 147

Creating the EKS Cluster 151

Creating the Required Node Groups 163

Google Kubernetes Engine Deployments 178

Setting Up a Workstation 178

Planning the Anzo and GKE Network Architecture 184

Creating and Assigning IAM Roles 187

3

Creating the GKE Cluster 192

Creating the Required Node Pools 203

Azure Kubernetes Service Deployments 214

Setting Up a Workstation 214

Planning the Anzo and AKS Network Architecture 221

Creating and Assigning IAM Roles 224

Creating the AKS Cluster 229

Creating the Required Node Pools 243

Deploying the Anzo Java SDK 254

4

Deployment Overview

Once you create the shared file system and install Anzo, the AnzoGraph, Anzo Unstructured, and

Elasticsearch components can be deployed on "static" clusters, where the software is installed on pre-

configured hardware, VMs, or cloud instances, or they can be deployed dynamically in a Kubernetes (K8s)

cluster. When the K8s infrastructure is deployed, Anzo can launch the components on-demand and then

deprovision the resources when the components are not in use. This section includes hardware and software

requirements and instructions for installing Anzo and other platform components on static clusters or as

dynamic, K8s-based applications. The following list introduces the sections in this guide.

l Deploying the Shared File System: Provides guidelines to follow when creating the file storage system

that will be shared between components in the Anzo platform. Cambridge Semantics recommends that

you create a shared file system before you install Anzo. At the end of the Anzo installation, you specify

the location of the shared system and it is configured as the default File Store.

l Deploying Anzo: Provides hardware and software requirements, Anzo installation instructions, and tips

for securing Anzo environments.

l Deploying a Static AnzoGraph Cluster: Provides hardware and software requirements and installation

instructions for non-Kubernetes-based, static deployments of AnzoGraph. This section also includes

an overview of the system architecture and tips for securing AnzoGraph environments.

l Deploying a Static Anzo Unstructured Cluster: Provides hardware and software requirements and

installation instructions for non-Kubernetes-based, static deployments of Anzo Unstructured and

Elasticsearch.

l Configuring K8s for Dynamic Deployments: Introduces K8s concepts and lists the requirements and

instructions for integrating Anzo with Amazon Elastic Kubernetes Service (EKS), Google Kubernetes

Engine (GKE), and Azure Kubernetes Service (AKS) services for dynamic deployments of AnzoGraph,

Anzo Unstructured, and Elasticsearch.

l Deploying the Anzo Java SDK: Includes sample instructions for setting up a development environment

using the Anzo SDK and Eclipse integrated development environment (IDE).

Deployment Overview 5

Deploying the Shared File System

Anzo and all of its platform applications must be able to access files on a shared file system. Anzo,

AnzoGraph, Anzo Unstructured, Spark, and Elasticsearch servers need to share storage so that they can

read and/or write the source data ingestion files, RDF load files, ETL job files, Elasticsearch indexes, and

other supporting files.

While Anzo supports file connections to Network File Systems (NFS), Hadoop Distributed File Systems

(HDFS), File Transfer Protocol (FTP or FTPS) systems, Google Cloud Platform (GCP) storage, and Amazon

Simple Cloud Storage Service (S3), some object stores, like Amazon S3, are sufficient for long-term storage

but do not offer POSIX support. Other storage systems, such as FTP, often have poor file transfer

performance.

Note
For the best read and write performance, Cambridge Semantics strongly recommends that you

deploy an NFS and then mount it to each of the AnzoGraph, Anzo Unstructured, Elasticsearch, and

Spark servers that make up the Anzo platform.

Important
If you plan to set up Kubernetes (K8s) integration for dynamic deployments of Anzo components, an

NFS is required. Other file and object stores are not supported for K8s deployments at this time.

NFS Guidelines
This section describes the key recommendations to follow when creating an NFS for the Anzo platform:

l Use NFS Version 4 or later.

l Provision SSD disk types for the best performance.

l When determining the size of the NFS, consider your workload and use cases. There needs to be

enough storage space available for any source data files, ETL job files, generated RDF data files,

Elasticsearch indexes, and any other files that you plan to store on the NFS. In addition, consider that

cloud-based NFS servers often have better performance if you over-provision resources. When using

a cloud-based VM for your NFS, it can be beneficial to provision more CPU, disk space, and RAM than

required to store your artifacts.

l For integration between Anzo applications, the Anzo service account must have read and write access

to the NFS. In addition, it is important to set the Anzo account User ID (UID) and Group ID (GID) to

1000 so that the owner of files that are written to the shared file store is UID 1000. For more

Deploying the Shared File System 6

information about the user account requirements, see Anzo Service Account Requirements.

Note
If you are unable to map the Anzo service account UID and GID to 1000, you can modify

anonuid and anongid in the NFS server export table to map all requests to 1000. To do so,

add the following line to /etc/exports on the NFS server:

<mount_point> *(insecure,rw,sync,no_root_squash) x.x.x.x(rw,all_

squash,anonuid=1000,anongid=1000

For example:

/global/nfs/data *(insecure,rw,sync,no_root_squash) x.x.x.x(rw,all_

squash,anonuid=1000,anongid=1000)

Related Topics
Deploying Anzo

Connecting to a File Store in the Administration Guide

Deploying a Static AnzoGraph Cluster

Deploying a Static Anzo Unstructured Cluster

Configuring K8s for Dynamic Deployments

Deploying the Shared File System 7

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/connect-fs.htm

Deploying Anzo

The topics in this section provide details about the Anzo server requirements and give instructions for

installing, upgrading, and uninstalling the software.

Anzo Requirements 9

Installing Anzo 16

Securing an Anzo Environment 25

Installing the Anzo for Office Plugin 26

Upgrading Anzo 27

Uninstalling Anzo 30

Deploying Anzo 8

Anzo Requirements
This page provides important guidelines to follow when choosing the hardware and software for Anzo host

servers.

l Hardware Requirements

l Software Requirements

l Firewall Requirements

l File Storage Requirements

l Standalone Spark Server Requirements

Hardware Requirements

The following guidelines apply to individual Anzo servers within production and development environments.

Your Cambridge Semantics Customer Success manager can help you identify an overall Anzo and

AnzoGraph deployment configuration that is appropriate for your solution and use cases.

l Production Environments

l Development Environments

Production Environments

Component Minimum Recommended Description

RAM 64 GB 128+ GB The Anzo system data source is a disk-based

graph store (called a Journal or Volume). When

the system source is queried, Anzo swaps the

data from disk to memory on demand. Choosing

a host server with more RAM increases the

performance of system queries because the OS

can store the journal data in its file cache,

avoiding the need for Anzo to swap data from

disk to memory. In addition, RAM is required to

hold intermediate results for join queries.

Disk Space:
Anzo Install

100 GB 500+ GB The Anzo server installation disk needs to have

Anzo Requirements 9

Component Minimum Recommended Description

Path enough space to store the Anzo system data

source, Anzo log files, any plugins, and the

Anzo client. In addition, if the local Sparkler

compiler and Spark ETL engine are used on the

Anzo server, consider that the disk size also

needs to be sufficient for hosting all of the job-

related .jar files.

Disk Space:
Shared File
System

500 GB 1+ TB The shared file system stores all of the RDF

data and ETL files that are shared between

Anzo and all AnzoGraph, Anzo Unstructured,

Spark, and Elasticsearch servers. For more

information, see File Storage Requirements

below.

vCPU 16 32 Once you provision sufficient RAM,

performance depends on CPU capabilities.

Keep in mind that you are provisioning for both a

production database and a busy application

server. A greater number of cores and high

clock speed can make a dramatic difference in

performance when there are many concurrent

Anzo users.

Architecture 64-bit 64-bit Anzo is supported only on 64-bit architecture.

Development Environments

Component Minimum Recommended Description

RAM 32 GB 64+ GB These RAM guidelines assume that the

development environment is intended to host

smaller data volumes than the production

environment and support one or two Anzo users

Anzo Requirements 10

Component Minimum Recommended Description

at a time. For development environments with

large data volumes and multiple concurrent

users, increase the RAM amount.

Disk Space:
Anzo Install
Path

100 GB 500+ GB The Anzo server installation disk needs to have

enough space to store the Anzo system data

source, Anzo log files, any plugins, and the

Anzo client. In addition, if the local Sparkler

compiler and Spark ETL engine are used on the

Anzo server, consider that the disk size also

needs to be sufficient for hosting all of the job-

related .jar files.

Disk Space:
Shared File
System

500 GB 1+ TB Typically the development environment mounts

the same shared file system as the production

environment.

vCPU 8 16 Like the RAM guidelines, these vCPU

guidelines assume that the development

environment is intended to host smaller data

volumes than the production environment and

support one or two Anzo users at a time. For

development environments with large data

volumes and multiple concurrent users,

increase the number of vCPU.

Architecture 64-bit 64-bit Anzo is supported only on 64-bit architecture.

Software Requirements

This section lists the software requirements for Anzo servers and client workstations. It also includes

important service account information and lists the supported single sign-on providers.

Anzo Requirements 11

Note
Do not run any other software, including anti-virus software, on the same server as Anzo. Additional

software may be run in a development environment with the expectation of lowered Anzo

performance. Cambridge Semantics strongly recommends that you do not run additional software on

the Anzo server in a production environment.

Component Minimum Recommended Guidelines

Operating
System
(Anzo Server)

RHEL/CentOS 6 RHEL/CentOS 7.9

Microsoft Excel
(Client
Workstation)

Excel 2003 Excel 2007+ The Anzo for Office data integration

mapping tool plugin requires Microsoft

Excel.

Web Browser
(Client
Workstation)

Firefox 62+

Chrome 74+

Safari 12+

Chromium-Based

Chrome 90+ Use the latest versions of web browsers,

especially if you are using a Chromium-

based browser, as some older versions

will not work with the Anzo user interface

components.

Enterprise-
Level Anzo
Service User
Account

N/A N/A It is important to work with your IT

organization to create an Anzo service

user account at the enterprise level. The

service user account needs to be

associated with a central directory server

(LDAP) so that it is available across Anzo

environments and is managed in

accordance with the permissions policies

of your company. For more information,

see Anzo Service Account Requirements

below.

Anzo Requirements 12

Anzo Service Account Requirements

For consistent and appropriate access management across current and future Anzo environments, it is

important for the IT organization to create an enterprise-level, LDAP-managed Anzo service user account.

The service account should be used when installing and running Anzo and all of the components in the

platform, such as AnzoGraph, Spark, Elasticsearch, and Anzo Unstructured clusters. The service account

should not have root user privileges but does need the following access:

l The account must have read and write permissions for the Anzo component installation directories.

The default Anzo server installation directory is /opt/Anzo.

l The account must have read and write access to the shared file store, such as the NFS mount location,

where all Anzo components will read and write files during the data onboarding processes. For more

information about the shared file system requirements, see Deploying the Shared File System.

Important
Set the Anzo account User ID (UID) and Group ID (GID) to 1000. For integration between Anzo
applications, it is important that the owner of files that are written to the shared file store is UID

1000, especially if you are considering Kubernetes-based deployments of Anzo applications.

l The account must have a home directory on the Anzo and AnzoGraph host servers.

Supported Single Sign-On Providers

Anzo supports the following single sign-on (SSO) protocols:

l Basic SSO

l Facebook OAuth

l JSON Web Tokens (JWT)

l Kerberos

l OpenID Connect (OIDC)

l Security Assertion Markup Language (SAML)

l Spring Security OAuth2

Firewall Requirements

The table below lists the TCP ports to open on the Anzo host.

Anzo Requirements 13

Port Description Access Needed...

61616 Anzo port used by the software development kit (SDK) and

command line interface (CLI)

Between Anzo and

users.

61617 Anzo SSL port used by the SDK and CLI Between Anzo and

users.

8022 Anzo SSH service port Between Anzo and

users.

8945 Anzo Administration service port Between Anzo and

users.

8946 Anzo Administration service SSL port Between Anzo and

users.

80 Application HTTP port Between Anzo and

users.

443 Application HTTPS port. Between Anzo and

users.

3389 LDAP port Between Anzo and

the LDAP server.

9393

(optional)

Optional Java Management Extensions (JMX) port. Enable this port

if you want to connect to Anzo from a JMX client.

Between Anzo and

the JMX client.

9394

(optional)

Optional JMX SSL port. Enable this port if you want to make a

secure connection to Anzo from a JMX client.

Between Anzo and

the JMX client.

5700 The Anzo protocol (gRPC) port for secure communication between

AnzoGraph and Anzo

For more information about the communication between Anzo

and AnzoGraph, see Firewall Requirements in AnzoGraph

Between Anzo and

the AnzoGraph

leader server.

Anzo Requirements 14

Port Description Access Needed...

Server Requirements.

5600 AnzoGraph's SSL systemmanagement port Between Anzo and

the AnzoGraph

leader server.

File Storage Requirements

Anzo needs to have read and write access to a file storage system that can be shared between Anzo and all

AnzoGraph, Anzo Unstructured, ETL Engine, and Elasticsearch servers. The supported storage systems are

NFS, Hadoop Distributed File Systems (HDFS), File Transfer Protocol (FTP or FTPS) systems, Google

Cloud Platform (GCP) storage, and Amazon Simple Cloud Storage Service (S3). In almost all cases,

organizations create an NFS to mount to all of the servers in the Anzo environment. Mounted network file

systems offer the best support and performance for reading and writing files. For more details and guidance

on choosing the file system, see Deploying the Shared File System.

Standalone Spark Server Requirements

Anzo includes an embedded Spark ETL engine to integrate data from various sources. Depending on your

server configuration, the embedded engine might not be sufficient for ingesting very large amounts of data.

To support ingestion of large data sets, you can install standalone ingestion servers. The table below lists

the recommended configuration for standalone Spark servers.

Component Recommendation

Available RAM 100+ GB

Disk Space 200+ GB

vCPU 16+

Related Topics
Installing Anzo

Anzo Requirements 15

Installing Anzo
This topic provides instructions for installing Anzo. For information about server requirements, see Anzo

Requirements.

1. Make Sure the Anzo Service User Account is Created

2. (Optional) Create the Shared File System

3. Install and Configure Anzo

4. (Optional) Route the Anzo Ports to the Default HTTP/S Ports

5. Configure and Start the Anzo Service

Make Sure the Anzo Service User Account is Created

Important
It is important to work with your IT organization to ensure that an Anzo service user account is

created at the enterprise level. The user account needs to be associated with a central directory

server (LDAP) so that it is available for installing and running Anzo components across

environments. For more information, see Anzo Service Account Requirements.

If necessary, you can create a temporary user account on the Anzo host server. Note that creating the

account locally can cause issues when migrating Anzo or integrating with a central LDAP server. The service

account should meet the following requirements:

l The service account should not have root-user privileges.

l The account must have read and write permissions for the Anzo installation directory. The default

installation directory is /opt/Anzo.

l The account must have read and write access to the shared file store, such as the NFS mount location,

where Anzo will read and write files during the data onboarding processes.

Note
If your organization will use Anzo Unstructured with Elasticsearch to onboard unstructured

data, it is especially important to install and run Anzo as a non-root user. Elasticsearch cannot

be run by a root user, but it must have access to the data that Anzo writes on the shared file

store. When Anzo is run as root the data that it generates is owned by root and Elasticsearch

cannot access it.

Installing Anzo 16

(Optional) Create the Shared File System

At the end of the Anzo installation during the initial configuration of the server, you specify the location of the

shared file system. This shared data directory becomes the default File Store in Anzo. It is not required, but if

the shared storage system is not yet created, you may want to set it up before installing Anzo. For

information, see Deploying the Shared File System.

If the shared data directory does not exist at the time of initial configuration, you can still complete the

configuration. Anzo will create the directory that is specified in the Anzo Shared Data Directory setting. The

shared file system will need to be mounted in the specified location or configured as a new File Connection

before you can onboard data from files, run ETL pipelines, or export data from Graphmarts.

Install and Configure Anzo

Follow the instructions below to install Anzo. These instructions assume that you have copied the Anzo

installation script to the server.

Important Complete the steps below as the Anzo service user.

1. If necessary, run the following command to become the Anzo service user:

su <name>

Where <name> is the name of the service user. For example:

su anzo

2. If necessary, run the following command to make the Anzo installation script executable:

chmod +x <script_name>

3. Run the following command to start the installation wizard:

./<script_name>

The script unpacks the JRE and then waits for input before starting the installation.

4. Press Enter to start the installation.

Installing Anzo 17

5. Review the software license agreement. Press Enter to scroll through the terms. At the end of the
agreement, type 1 to accept the terms or type 2 to disagree and stop the installation.

The installer prompts you to specify the components to install:

Which components should be installed?

1: Server [*1]

2: Client [*2]

3: Spark [*3]

(To show the description of a component, please enter one of *1, *2, *3)

Please enter a comma-separated list of the selected values or [Enter] for

the default selection:

[1,2,3]

6. In a comma-separated list, specify the components to install. Item 1 is the Anzo server, item 2 is the

Anzo Admin command line client, and item 3 is the embedded Spark server and compiler as well as the

Sparkler compiler.

Note
If you exclude the Spark component, you will not be able to ingest data sources using ETL

pipelines as described in Ingesting Data Sources via ETL Pipelines in the User Guide. All data

onboarding must be done be done via Direct Data Loading (as described in Directly Loading

Data Sources via Graphmarts in the User Guide) or manually written Graph Data Interface

queries.

7. Specify the path and directory for the Anzo installation. Press Enter to accept the default installation
path or type an alternate path and then press Enter.

8. Indicate whether you want the installer to create symlinks. Press Enter for yes or type n and press
Enter for no.

9. If you chose to let the installer create symlinks, specify the directory to create the symlinks in. Press

Enter to accept the default path or type an alternate path and then press Enter.

10. Specify the maximum amount of memory (in MB) that the server can use and then press Enter. The
installation wizard lists the total RAM available. To meet the minimum memory requirement, the wizard

chooses 1/4 of the total memory as the default value. Cambridge Semantics recommends that you

allocate at least 1/2 of the total memory to Anzo.

The wizard installs the components that you selected and then asks if you want to start the Anzo

services.

Installing Anzo 18

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/ingest-etl.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/ingest-elt.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/ingest-elt.htm

11. Press Enter to start the Anzo services. When prompted, open a browser and go to the following URL to

open the license administration wizard.

http://<hostname>:8945/

Where <hostname> is the Anzo server DNS name or IP address. The License Key Information screen

appears. For example:

12. Paste your license key into the box and then click Next. If necessary, you can obtain the license key by
clicking Retrieve your license key and logging in to your Cambridge Semantics account.

13. The wizard displays your license details. Review the details and then click Next.

The wizard displays the System Configuration screen:

Installing Anzo 19

14. On the left side of the screen in the System Password and Verify System Password fields, specify
the password to use for the system administrator, sysadmin.

Important
Do not change the System User ID. It must be sysadmin. The sysadmin user account has
permission to access all features in the main Anzo application as well as administrative

functions in the Administration application. In addition, the sysadmin user has read and write

access to all of the artifacts (Data Sources, Models, Pipelines, etc.) that are created by all

Anzo users. For more information about the account, see System Administrator in the

Administration Guide.

15. On the right side of the screen under Advanced Configuration, configure the following settings as
needed:

l Storage Directory: This setting configures the location where system data, like the binary store

and system journal or volume, is stored. The default location is <install_

path>/Server/data. You can specify an alternate location by typing a new path and

directory.

l Anzo Shared Data Directory: This setting specifies the base location of the shared file storage
(as described in Deploying the Shared File System). The default value is /opt/Anzo/shared.

Installing Anzo 20

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/admin-default-roles.htm#system-admin

Change the default value to the correct location for your shared directory. For example,

/opt/anzoshare/data. If the specified location does not exist, Anzo will create it. Later you

can mount the directory to the specified location or configure another location as a new File

Connection (see Connecting to a File Store in the Administration Guide for information).

l HTTP Port: This setting specifies the HTTP port for Anzo. The default port is 80. Since non-root

users cannot access ports below 1000, however, the Anzo services, which will run as the Anzo

service user, will not be able to access port 80 when Anzo starts. Therefore, Cambridge
Semantics recommends that you change this value to 8080.

l HTTPS Port: This setting specifies the HTTPS port for Anzo. The default port is 443. For the

same reason stated above for HTTP Port, Cambridge Semantics recommends that you
change this value to 8443.

l Keystore Password: This setting specifies the custom password to use for the Anzo key and

trust stores. The password can be changed in the future. See Regenerate the Internal Server

Secret in the Administration Guide for information.

16. Click Finish. The wizard configures and restarts the server. The process may take several minutes.
Once the server is running, the browser displays the Anzo application login screen.

(Optional) Route the Anzo Ports to the Default HTTP/S Ports

If you do have a load balancer that reroutes traffic on the server and you want users to be able to access

Anzo over HTTP/S without having to specify a port (8080 or 8443) in the connection URL, you can configure

the firewall to forward HTTP requests to port 8080 and HTTPS requests to port 8443 automatically. This

section provides instructions for rerouting ports via the iptables or firewalld interfaces.

Note Root user privileges are required to complete this task.

To re-route ports using the iptables interface

Run the following commands to route the Anzo ports via the iptables interface:

iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 80 -j REDIRECT --to-port

8080

iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 443 -j REDIRECT --to-port

8443

iptables-save > /etc/sysconfig/iptables

Installing Anzo 21

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/connect-fs.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/admin-anzo-settings.htm#regenerate-secret
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/admin-anzo-settings.htm#regenerate-secret

To re-route ports using the firewalld interface

Run the following commands to route the Anzo ports via the firewalld interface:

firewall-cmd --permanent --add-forward-port=port=443:proto=tcp:toport=8443

firewall-cmd --permanent --add-forward-port=port=80:proto=tcp:toport=8080

firewall-cmd --reload

Configure and Start the Anzo Service

The last step in the configuration is to implement the Anzo systemd service. It is important to set up the

service so that the server starts automatically as the Anzo service user. In addition, the service is configured

to tune user resource limits (ulimits) for the Anzo process. Follow the instructions below to implement and

start the service.

Note Root user privileges are required to complete this task.

1. If Anzo is running, run the following command to stop the server:

./opt/Anzo/Server/AnzoServer -stop

2. Create a file called anzo-server.service in the /usr/lib/systemd/system directory. For example:

vi /usr/lib/systemd/system/anzo-server.service

3. Add the following contents to anzo-server.service. Placeholder values are shown in bold:

[Unit]

Description=Service for Anzo server.

After=syslog.target network.target local-fs.target remote-fs.target nss-

lookup.target

[Service]

Type=simple

RemainAfterExit=yes

LimitCPU=infinity

LimitNOFILE=65536

LimitAS=infinity

LimitNPROC=65536

Installing Anzo 22

LimitMEMLOCK=infinity

LimitLOCKS=infinity

LimitFSIZE=infinity

WorkingDirectory=/<install_path>

UMask=0007

ExecStart=/<install_path>/Server/AnzoServer start

ExecStop=/<install_path>/Server/AnzoServer stop

User=<service_user_name>

Group=<service_user_name>

[Install]

WantedBy=default.target

Where install_path is the Anzo installation path and directory and service_user_name is the name of
the Anzo service user. For example:

[Unit]

Description=Service for Anzo server.

After=syslog.target network.target local-fs.target remote-fs.target nss-

lookup.target

[Service]

Type=simple

RemainAfterExit=yes

LimitCPU=infinity

LimitNOFILE=65536

LimitAS=infinity

LimitNPROC=65536

LimitMEMLOCK=infinity

LimitLOCKS=infinity

LimitFSIZE=infinity

WorkingDirectory=/opt/Anzo

UMask=0007

ExecStart=/opt/Anzo/Server/AnzoServer start

ExecStop=/opt/Anzo/Server/AnzoServer stop

User=anzo

Group=anzo

Installing Anzo 23

[Install]

WantedBy=default.target

4. Save and close the file, and then run the following commands to start and enable the new service:

systemctl start anzo-server.service

systemctl enable anzo-server.service

The client displays a message such as the following:

Created symlink from /etc/systemd/system/default.target.wants/anzo-

server.service to

/usr/lib/systemd/system/anzo-server.service.

Once the service is enabled, Anzo should be running. Any time you start and stop Anzo, run the following

systemctl commands: sudo systemctl stop anzo-server and sudo systemctl start anzo-

server.

Related Topics
Securing an Anzo Environment

Installing the Anzo for Office Plugin

Installing Anzo 24

Securing an Anzo Environment
This topic lists the recommended procedures to follow to strengthen the security of Anzo environments.

l Set Up Firewall Rules

l Replace the Default Self-Signed Certificate with a Trusted Certificate

l Use Query Contexts to Store Sensitive Information for GDI Queries

Set Up Firewall Rules

In order to protect the environment from malicious systems and prevent man-in-the-middle attacks or leaking

of data source credentials, firewall rules should be configured for the Anzo network. Rules should allow

outbound connections only to trusted data sources and services. For information about the ports that need to

be opened for inbound and outbound connections to support normal operations, see Firewall Requirements

in Anzo Requirements.

Replace the Default Self-Signed Certificate with a Trusted Certificate

Anzo installations include a self-signed certificate that can be replaced with your own trusted file. For

instructions on replacing the default certificate, see Replacing the Anzo Certificate in the Administration

Guide.

Use Query Contexts to Store Sensitive Information for GDI Queries

When you connect to data sources with Graph Data Interface (GDI) queries, you may be required to include

sensitive connection and authorization information such as keys, tokens, and user credentials. When

configuring data layers or steps, Cambridge Semantics strongly recommends that you store all sensitive

connection and authorization values in a Query Context and then refer only to the context keys in GDI

queries. Values in Query Contexts are abstracted from the requests that are sent to the data source and

AnzoGraph. Any values that are specified directly in a query are transmitted as part of the request. For

details about Query Contexts, see Using Query Contexts in Queries in the User Guide.

Related Topics
Anzo Requirements

Anzo Server Administration in the Administration Guide

Securing an Anzo Environment 25

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/signed-certificate.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/context.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/anzo-server-admin.htm

Installing the Anzo for Office Plugin
After installing Anzo, you can access the installation package for the Anzo for Microsoft Office plugin. Anzo

for Office includes the data integration mapping tool which enables you to map relationships between

schemas and models as well as apply various transformations to the source data when you are using Spark

and Sparkler for ETL pipeline workflows.

To access the installations that are included with your license, go to the following URL:

http://<Anzo_server>/installs

Where <Anzo_server> is the Anzo server DNS name or IP address. Follow the instructions onscreen to

download and install the plugin.

Installing the Anzo for Office Plugin 26

Upgrading Anzo
Before you upgrade Anzo, Cambridge Semantics recommends that you make a backup copy of the current

Anzo installation in case you have issues and need to revert to the original version. There are three

commonly used methods for backing up Anzo:

l Some users choose to make a copy of the Anzo system volume or journal, <install_

path>/Server/data/journal/anzo.jnl. If you keep a copy of anzo.jnl, you can restore the

original Anzo version by reinstalling that release and then copying the backed up journal file into the

installation.

l Some users choose to copy or create a tarball of the entire Anzo installation directory, <install_

path>/Anzo. A backup of the directory can be large, however, and you might want to remove log files

to reduce the overall size of the directory before copying or compressing it. If you keep a copy of

<install_path>/Anzo, you can restore that version by uninstalling the new version and moving the

backed up directory to the original installation location.

l Some users choose to take a snapshot of the application disk.

Follow the instructions below to upgrade Anzo.

Important
Complete the steps below as the Anzo service user. When Anzo is initially installed, a server ID is

generated based on a number of system properties, including the user account that runs the

installation script. The Anzo server license is tied to that server ID. If Anzo is re-installed (for

instance, during an upgrade) by a different user account, a new server ID is generated and the

existing license will no longer be valid for the installation.

1. Stop the existing Anzo server if it is running. Then copy the new Anzo installation script to the server

and run the following command to make the script executable:

chmod +x <file_name>

2. Run the following command to start the installation wizard and perform the upgrade:

./<file_name>

The wizard unpacks the JRE and then waits for input before starting the upgrade.

Upgrading Anzo 27

3. Press Enter to start the upgrade. The wizard detects the existing installation and asks if you want to
update it.

4. Press Enter to update the existing installation.

5. Review the software license agreement. Press Enter to scroll through the terms. At the end of the
agreement, type 1 and press Enter to accept the terms or type 2 and press Enter to disagree and stop
the update.

The installer prompts you to specify the components to upgrade:

Which components should be installed?

1: Server [*1]

2: Client [*2]

3: Spark [*3]

(To show the description of a component, please enter one of *1, *2, *3)

Please enter a comma-separated list of the selected values or [Enter] for

the default selection:

[1,2,3]

6. In a comma-separated list, specify the components to upgrade. Item 1 is the Anzo server, item 2 is the

Anzo Admin command line client, and item 3 is the embedded Spark server and compiler as well as the

Sparkler compiler.

Note
If you exclude a component that is currently installed, that component will not be upgraded.

The existing component will not be removed from the server.

7. Specify the maximum amount of memory (in MB) that the server can use and then press Enter. The
wizard lists the amount of memory you have dedicated to the existing Anzo installation. You can type a

different value if necessary, and then press Enter. The wizard starts the upgrade and then asks if you
want to start the server automatically when the upgrade completes.

8. Press Enter to start Anzo when the upgrade completes. If you do not want to start the server, type n
and then press Enter. The setup wizard completes the upgrade process.

Note
During the upgrade, experimental features that were enabled in the previous version are reset to

disabled in the new version. For more information and instructions on re-enabling features, contact

your Cambridge Semantics Customer Success representative.

Upgrading Anzo 28

Related Topics
Installing Anzo

Updating the Server License in the Administration Guide

Upgrading Anzo 29

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/license.htm

Uninstalling Anzo
This topic provides instructions for uninstalling Anzo.

Important Complete the steps below as the Anzo service user.

1. Run the following command to begin the uninstall process:

./<install_path>/uninstall

2. Press Enter to confirm that you want to uninstall Anzo. The wizard asks if you want to clear the Anzo

installation directory and user and configuration files.

3. Press Enter if you want the wizard to remove the entire Anzo installation directory as well as all
configuration and user files. Type n and then press Enter if you do not want the wizard to remove the
installation directory.

The wizard uninstalls Anzo.

Uninstalling Anzo 30

Deploying a Static AnzoGraph Cluster

The topics in this section include the hardware and software requirements for AnzoGraph host servers,

provide guidelines for sizing a cluster, and give instructions for installing, upgrading, and uninstalling

AnzoGraph.

Tip
For instructions on setting up Kubernetes infrastructure so that AnzoGraph clusters can be launched

on-demand, see Configuring K8s for Dynamic Deployments.

AnzoGraph Architecture 32

AnzoGraph Requirements 35

Sizing Guidelines for In-Memory Storage 42

Sizing Guidelines for Disk-Based Storage (Preview) 50

Installing AnzoGraph 52

Securing an AnzoGraph Environment 79

Upgrading AnzoGraph 87

Uninstalling AnzoGraph 89

Deploying a Static AnzoGraph Cluster 31

AnzoGraph Architecture
AnzoGraph uses massively parallel processing (MPP) to perform analytic operations on graph data

conforming to RDF and RDF* standards. You can scale AnzoGraph to run in environments ranging from a

single server to multiple servers in a cluster, in either on-premises or cloud environments.

Though all servers in an AnzoGraph cluster store the system metadata and have the ability to perform leader

operations, one server acts as the leader for the cluster. All client applications should connect to this server.

In-Memory Data Storage Architecture

To provide the highest performance possible, AnzoGraph stores all graph data and performs all analytic

operations entirely in memory. At startup, AnzoGraph sets the number of shards (called "slices" in

AnzoGraph) per node to the number of cores on a single server. To utilize massively parallel processing of

queries, AnzoGraph distributes (as evenly as possible) the data into memory across all of the slices. When

data is loaded, AnzoGraph hashes on subjects to determine how the data is distributed. Distributing on

subject allows the database to avoid distributing data over the network under certain conditions. Every slice

contains several blocks that store the triples.

AnzoGraph Architecture 32

Note
When installed in a cluster, AnzoGraph requires that all servers provide the same equivalent

hardware and quality of service.

Leader and Query Processing

When an application sends a request, the leader node dedicates a thread to process the request. All other

threads remain ready for subsequent requests. The leader routes the query through parsing and planning.

The planner determines the steps that the query requires, for example, whether a hash join, merge join, or an

aggregation step is needed. The planner passes the final query plan to the code generator, which assembles

the groups of steps into segments. The code generator then packages all of the segments for the query into

a stream. The leader sends the stream to all of the nodes in the cluster and to its own slices. The nodes

process the stream in parallel; each node dedicates a thread to process each segment. The nodes then

return the results to the leader to send to the application.

AnzoGraph Architecture 33

Related Topics
AnzoGraph Requirements

Sizing Guidelines for In-Memory Storage

AnzoGraph Architecture 34

AnzoGraph Requirements
This topic lists the minimum requirements and recommendations to follow for setting up static AnzoGraph

host servers and cluster environments.

l Hardware Requirements

l Software Requirements

l Firewall Requirements

Hardware Requirements

The following guidelines apply to individual AnzoGraph servers. Your Cambridge Semantics Customer

Success manager can help you identify an overall AnzoGraph deployment configuration that is appropriate

for your solution and use cases.

Component Minimum Recommended Guidelines

RAM 16 GB (for

small-scale

testing only)

200+ GB AnzoGraph needs enough RAM to store data,

intermediate query results, and run the server

processes. Cambridge Semantics recommends

that you allocate 3 to 4 times as much RAM as

the planned data size. Do not overcommit RAM

on a VM or on the hypervisor/container host.

Tip
For more information about

determining the server and cluster size

that is ideal for hosting AnzoGraph,

see Sizing Guidelines for In-Memory

Storage.

Disk Space &
Type

20 GB HDD 200+ GB SSD AnzoGraph requires 10 GB for internal

requirements. The amount of additional disk

space required for any load file staging, data

persistence, or logs depends on the size of the

data to be loaded. For persistence, Cambridge

AnzoGraph Requirements 35

Component Minimum Recommended Guidelines

Semantics recommends that you have twice as

much disk space on the local AnzoGraph file

system as RAM on the server.

vCPU 2 32 Once you provision sufficient RAM and a high-

performing I/O subsystem, performance

depends on CPU capabilities. A greater number

of cores can make a dramatic difference in the

performance of file loads and concurrent

queries.

Note
Intel processors are preferred, but

AnzoGraph is supported on newer

Epyc AMD processors. AnzoGraph

does not run on older AMD processors.

Networking 10gbE 20+gbE Not applicable for single server installations.

Since AnzoGraph is high performance

computing (HPC) Massively Parallel Processing

(MPP) OLAP engine, inter-cluster

communications bandwidth dramatically affects

performance. AnzoGraph clusters require

optimal network bandwidth.

Important
All servers in a cluster must be in the

same network. Make sure that all

instances are in the same VLAN,

security group, or placement group.

In a switched network, make sure that all NICs

link to the same Top Of Rack or Full-Crossbar

Modular switch. If possible, enable SR-IOV

AnzoGraph Requirements 36

Component Minimum Recommended Guidelines

and other HW acceleration methods and

dedicated layer 2 networking that guarantees

bandwidth.

Shared File
System

N/A N/A The Anzo file store (shared file system) must be

accessible from each AnzoGraph server in the

cluster. For more information about the shared

file system, see Deploying the Shared File

System.

Clusters and Virtual Environments

AnzoGraph requires that all elements of the infrastructure provide the same quality of service (QoS). Do not

run AnzoGraph on the same server as any other software, including anti-virus software, except when in

single-server mode and with an expectation of lowered performance. Providing the same QoS is especially

important when using AnzoGraph in a clustered configuration. If any of the servers in the cluster perform

additional processing, the cluster becomes unbalanced and may perform poorly. A single poor performing

server degrades the other servers to the same performance level. All nodes require the same hardware
specification and configuration. Also use static IP addresses or make sure that DHCP leases are

persistent.

To ensure the maximum and most reliable QoS for CPU, memory, and network bandwidth, do not co-locate

other virtual machines or containers (such as Docker containers) on the same hypervisor or container host.

For hypervisor-managed VMs, configure the hypervisor to reserve the available memory for the AnzoGraph

server. For clusters, make sure there is enough physical RAM to support all of the AnzoGraph servers, and

reserve the memory via the hypervisor.

In addition, running memory compacting services such as Kernel Same-page Merging (KSM) impacts CPU

QoS significantly and does not benefit AnzoGraph. Live migrations also impact the performance of VMs

while they get migrated. While live migration can provide value for planned host maintenance, AnzoGraph

performance may be impacted if live migrations occur frequently. For more information about Kernel Same-

page Merging, see https://en.wikipedia.org/wiki/Kernel_same-page_merging.

AnzoGraph Requirements 37

https://en.wikipedia.org/wiki/Kernel_same-page_merging

Tip
Advanced configurations may benefit from CPU pinning on the hypervisor host and disabling CPU

hyper-threading. For more information about CPU pinning, see

https://en.wikipedia.org/wiki/Processor_affinity. For information about hyper-threading, see

https://en.wikipedia.org/wiki/Hyper-threading.

Cambridge Semantics can provide benchmarks to establish relative cluster performance metrics and

validate the environment.

Software Requirements

The table below lists the software requirements for AnzoGraph servers. Instructions for installing each of the

required software components are included in the AnzoGraph installation instructions. See Deploying a

Static AnzoGraph Cluster for more information.

Component Requirement Guidelines

Operating
System

RHEL 7.9,
CentOS 7.9

AnzoGraph is not supported on RHEL/CentOS 8.

GNU Compiler
Collection

Installed on all
host servers

Install the latest version of the GCC tools for your operating system.

GCC installation instructions are included in Complete the Pre-

Installation Configuration.

OpenJDK 11 Installed on all
host servers

AnzoGraph uses a Java client interface to access Data Sources for

data profiling, remote sources for data blending, and Elasticsearch

for Unstructured Pipelines. Java Development Kit version 11 is

required for using the Java client. OpenJDK installation instructions

are included in Complete the Pre-Installation Configuration.

Enterprise-
Level Anzo
Service User
Account

Created It is important to work with your IT organization to create an Anzo

service user account at the enterprise level. The service user

account needs to be associated with a central directory server

(LDAP) so that it is available across Anzo environments and is

managed in accordance with the permissions policies of your

company. For more information, see Anzo Service Account

AnzoGraph Requirements 38

https://en.wikipedia.org/wiki/Processor_affinity
https://en.wikipedia.org/wiki/Hyper-threading

Component Requirement Guidelines

Requirements.

Optional Software

Program Description

vim Editor for creating or changing files.

sudo Enables users to run programs with alternate security privileges.

net-tools Networking utilities.

psutil Python system and process utilities for retrieving information on running processes and

system usage.

tuned Linux system service to apply tuning.

wget Utility for downloading files over a network.

Google SDK For virtual servers on Google Cloud Engine (GCE). Command line tool to enable syncing of

data from Google storage. You can download the latest version from Google:

https://cloud.google.com/sdk/.

Firewall Requirements

AnzoGraph servers communicate via TCP/IP sockets. AnzoGraph communicates with Anzo via the secure,

encrypted, gRPC-based Anzo protocol. Since AnzoGraph is SPARQL-compliant, you also have the option to

use standard SPARQL HTTP/S protocol for communication.

Important
For AnzoGraph clusters, all servers in the cluster must be in the same network. Make sure that all

instances are in the same VLAN, security group, or placement group.

Open the TCP ports listed in the table below. This image shows a visual representation of the communication

ports:

AnzoGraph Requirements 39

https://cloud.google.com/sdk/

Port Description Access Needed...

5700 The Anzo protocol (gRPC) port for secure communication

between AnzoGraph and Anzo.

l Between Anzo

and the

AnzoGraph leader

server.

l Between all

AnzoGraph

servers in the

cluster.

l Available for

AnzoGraph on

single node

installations.

5600 AnzoGraph's SSL systemmanagement port. l Between Anzo

and the

AnzoGraph leader

server.

l Between all

AnzoGraph Requirements 40

Port Description Access Needed...

AnzoGraph

servers in the

cluster.

l Available for

AnzoGraph on

single node

installations.

9100 AnzoGraph's internal fabric communications port. l Between all

AnzoGraph

servers in a

cluster.

l Available for

AnzoGraph on

single node

installations.

7070

(optional)

Optional SPARQL service HTTP port to enable if you want to

give external applications access to AnzoGraph over HTTP.

l Between external

applications and

the AnzoGraph

leader server.

8256

(optional)

Optional SPARQL service HTTPS port to enable if you want to

give external applications SSL access to AnzoGraph and/or

use the command line interface, azgi.

l Between external

applications and

the AnzoGraph

leader server.

Related Topics
Sizing Guidelines for In-Memory Storage

Sizing Guidelines for Disk-Based Storage (Preview)

Installing AnzoGraph

AnzoGraph Requirements 41

Sizing Guidelines for In-Memory Storage
This topic provides guidance on determining the server and cluster size that is ideal for hosting AnzoGraph,

depending on the characteristics of your data.

l Memory Sizing Guidelines

l Analyzing Data Characteristics in Load Files

l Cluster Sizing Guidelines

Memory Sizing Guidelines

Since AnzoGraph is a high-performance, in-memory database, it is important to consider the amount of

memory needed to store the data that you plan to load. Estimating the amount of memory your workload

requires can help you decide what size server to use and whether to use multiple servers. The sections

below describe the key points to consider about memory usage and AnzoGraph.

l Data at rest should remain below 50% of the total memory

l AnzoGraph reserves 20% of the memory for the OS

l Memory usage can be high during loads

l Memory usage depends on data characteristics

Data at rest should remain below 50% of the total memory

The data loaded into memory should not consume more than 50% of the total available memory on the

instance or across a cluster. Ideally, the data at rest should use only 25%-30% of the available
memory because query processing and intermediate results can temporarily consume a very large amount
of RAM.

AnzoGraph reserves 20% of the memory for the OS

To avoid unexpected shutdowns by the Linux operating system, the default AnzoGraph configuration leaves

20% of memory available for the OS; AnzoGraph will not use more than 80% of the total available memory.

Account for this memory buffer in sizing calculations.

Memory usage can be high during loads

During the load streaming process, before duplicates are pruned and triples are moved to their final storage

blocks, memory usage temporarily increases and potentially doubles, particularly if the data includes many

string values.

Sizing Guidelines for In-Memory Storage 42

Memory usage depends on data characteristics

Memory usage varies significantly depending on the makeup of the data, such as the data types and sizes of

literal values, and the complexity of the queries that you run. Triple storage ranges anywhere from 12 bytes

per triple to 1 megabyte for a triple that stores pages of text from an unstructured document. For example:

l Triples with integer objects like the following example require about 16 bytes to store in memory.

<http://csi.com/resource/person1> <http://csi.com/resource/age> 50

l Triples made up of URIs like the following example require about 18 bytes to store in memory.

<http://csi.com/resource/person1> <http://csi.com/resource/friend>

<http://csi.com/resource/person100>

l Triples with user-defined data types (UDTs) like the following example also require about 18 bytes to

store in memory.

<http://csi.com/resource/person1> <http://csi.com/resource/height>

"5'8""^^height

l Triples with dateTime values like the following example require about 20 bytes to store in memory.

<http://www.wikidata.org/entity/Q65949130>

<http://www.wikidata.org/prop/direct/P585>

"1995-01-01T00:00:00Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

l Triples with long strings like the following example require about 700 bytes to store in memory.

<http://dbpedia.org/resource/Keanu_Reeves>

<http://dbpedia.org/ontology/abstract> "Keanu Charles Reeves

(/keɪˈɑːnuː/ kay-AH-noo; born September 2, 1964) is a Canadian actor,

producer, director and musician.

Reeves is best known for his acting career, beginning in 1985 and

spanning more than three decades.

He gained fame for his starring role performances in several blockbuster

films including comedies

from the Bill and Ted franchise (1989–1991), action thrillers Point Break

(1991) and Speed (1994),

and the science fiction-action trilogy The Matrix (1999–2003). He has

Sizing Guidelines for In-Memory Storage 43

also appeared in dramatic

films such as Dangerous Liaisons (1988), My Own Private Idaho (1991), and

Little Buddha (1993),

as well as the romantic horror Bram Stoker's Dracula (1992)."

The table below provides estimates for the number of triples that you can load and query with commonly

configured amounts of available RAM. The table also lists the number of triples that could be stored if a data

set comprised the example triples above.

Note
The examples below show the number of triples at rest and consider that the data should not

consume more than 50% of the available RAM.

RAM General Estimate Examples

16 GB Up to about 100

million triples

Considering that the data at rest should use less than 8 GB

RAM, a server with 16 GB total RAM could store:

l About 12 million 700-byte triples like the Keanu

Reeves example above.

l About 475 million 18-byte URI triples like the

example above.

32 GB Up to about 200

million triples

Considering that the data at rest should use less than 16 GB

RAM, a server with 32 GB total RAM could store:

l About 24 million 700-byte triples like the Keanu

Reeves example above.

l About 850 million 20-byte triples like the dateTime

example above.

64 GB Up to about 400

million triples

Considering that the data at rest should use less than 32 GB

RAM, a server with 64 GB total RAM could store:

l About 48 million 700-byte triples like the Keanu

Reeves example above.

l About 1.7 billion 20-byte triples.

Sizing Guidelines for In-Memory Storage 44

RAM General Estimate Examples

128 GB Up to about 800

million triples

Considering that the data at rest should use less than 64 GB

RAM, a server with 128 GB total RAM could store:

l About 96 million 700-byte triples like the Keanu

Reeves example above.

l About 3.4 billion 20-byte triples.

256 GB Up to about 1.5

billion triples

Considering that the data at rest should use less than 128

GB RAM, a server with 256 GB total RAM could store:

l About 192 million 700-byte triples like the Keanu

Reeves example above.

l About 6.8 billion 20-byte triples.

512 GB Up to about 3 billion

triples

Considering that the data at rest should use less than 256

GB RAM, a server with 512 GB total RAM could store:

l About 390 million 700-byte triples like the Keanu

Reeves example above.

l About 13 billion 20-byte triples.

Analyzing Data Characteristics in Load Files

AnzoGraph enables you to perform pre-load analysis on file-based linked data sets without actually loading

the data into memory. You can use this method to run statistical queries, such as counting the number of

triples or returning a list of the unique subjects and predicates. Performing a "dry run" of a data load enables

you to analyze data set characteristics to help with tasks such as memory sizing. Since the data remains on

disk, you can use this method to capture statistics about a large data set without having to deploy an

AnzoGraph cluster that has enough memory to store all of the data.

Important Considerations for Analyzing Load Files

l Since AnzoGraph scans the files on disk, queries run much slower than they do when run against data

in memory. Consider performance when deciding how many files to query at once and how complex to

make the queries.

Sizing Guidelines for In-Memory Storage 45

l Though the pre-load feature does not use memory for storing data, queries that you run against files do

consume memory. The server must have sufficient memory available to use for these intermediate

query results.

l Unlike loads into the database, pre-load analysis does not prune duplicate triples. Statistics returned

for load file queries may differ somewhat from the statistics returned after the data is loaded.

Analysis Query Syntax

Use the following query syntax to analyze load files :

SELECT <expression>

FROM EXTERNAL <URI>

[FROM EXTERNAL <URI>]

WHERE { <triple_patterns> }

Option Description

SELECT

<expression>

The SELECT clause specifies an expression that returns statistical results

such as a count of the total number of triples or the number of distinct

predicates. Queries that return values for a specific property may return an

error.

FROM EXTERNAL

<URI>

The URI in the FROM clause specifies the location of the load file or

directory of files. For example, this URI specifies a single file:

<file:/data/load/values.ttl>

This example specifies a directory of files:

<dir:/data/store/LoadDBNorthwind/rdf.ttl.gz>

For example, the following query analyzes the files in the rdf.ttl.gz directory for an FLDS. The query counts

the total number of triples in the files:

SELECT (count (*) as ?triples)

FROM EXTERNAL <dir:/nfs/data/store/LoadGHIB_f5886/rdf.ttl.gz>

WHERE { ?s ?p ?o . }

Sizing Guidelines for In-Memory Storage 46

triples

143704445

1 rows

Assessing Memory Requirements Based on File Analysis

Although the memory required to load and perform queries on specific data sets will vary based on the size

and type of data contained in a data set as well as the type of queries run, you can still obtain a reasonable

estimate for the amount of memory you will need to store data set by using the equation below:

total_triples x avg_triple_size + total_chars = size_estimate(bytes)

Follow the steps below to calculate the values to use in the equation:

1. Count the total number of triples in the files

2. Determine the average triple size

3. Count the number of characters for all strings

4. Calculate the size estimate

Count the total number of triples in the files

As shown in the example above, the following query counts the total number of triples in FLDS load files:

SELECT (count (*) as ?triples)

FROM EXTERNAL <dir:/nfs/data/store/LoadGHIB_f5886/rdf.ttl.gz>

WHERE { ?s ?p ?o . }

triples

143704445

1 rows

Determine the average triple size

The Memory usage depends on data characteristics section above shows some example triples and their

estimated size. If you are familiar with the data in the files, you may be able to determine the average size

based on the examples. Otherwise, Cambridge Semantics recommends using 30 bytes as the average triple

size.

Sizing Guidelines for In-Memory Storage 47

Count the number of characters for all strings

For ASCII characters, AnzoGraph uses about 1-byte of memory to store each character. Counting the

number of characters in the load files provides a good estimate of the number of bytes required to store the

strings in your data.

SELECT (SUM(IF(DATATYPE(?o)=<http://www.w3.org/2001/XMLSchema#string>,

(STRLEN(?o)),0)) as ?char_count)

FROM EXTERNAL <URI>

WHERE {?s ?p ?o}

For example, the following query returns the number of characters in the strings for the FLDS referenced

above:

SELECT (SUM(IF(DATATYPE(?o)=<http://www.w3.org/2001/XMLSchema#string>,

(STRLEN(?o)),0)) as ?char_count)

FROM EXTERNAL <dir:/nfs/data/store/LoadGHIB_f5886/rdf.ttl.gz>

WHERE {?s ?p ?o}

char_count

684348190

1 rows

Calculate the size estimate

Once you have counted the triples, determined the average triple size, and counted the characters, use the

formula below to estimate the amount of memory needed to store the data at rest:

total_triples x avg_triple_size + total_chars = size_estimate(bytes)

For example:

143,704,445 x 30 + 684,348,190 = 4,995,481,540 bytes

This example FLDS requires roughly 5 GB of memory to store the data.

Sizing Guidelines for In-Memory Storage 48

Cluster Sizing Guidelines

When your workload size requires using a cluster, do not create clusters with fewer than 4 nodes. When

using a single node, data gets redistributed in memory without using the network. If you add 1 or 2 more

nodes to create a 2- or 3-node cluster, data then gets distributed over the network. The CPU gain from the

additional 1 or 2 nodes does not outweigh the performance degradation from the network. Using at least 4

nodes significantly reduces the network degradation and provides a near-linear performance benefit when

compared to a single node.

Related Topics
AnzoGraph Requirements

Deploying a Static AnzoGraph Cluster

Sizing Guidelines for In-Memory Storage 49

Sizing Guidelines for Disk-Based Storage (Preview)
For fast performance and scalability, AnzoGraph stores all data in memory. If persistence is enabled, data is

saved to disk as a backup and so that graphs are automatically reloaded into memory when AnzoGraph is

restarted, but queries do not access the data on disk since all of the data is cached in memory. And

accessing data in memory is much faster than retrieving data from disk.

When deploying large memory-optimized servers for fast query performance is not feasible, however,

AnzoGraph can be configured to operate as a disk-based graph database. In this configuration (called

"Paged Data"), data is loaded to AnzoGraph, converted to AnzoGraph's internal storage format, and

persisted to disk without being retained in memory. Data is then paged into memory from disk as requested

for analytic operations. For details about database operations in paged data mode, see Enabling Paged Data

Mode in the Administration Guide.

Note
The Paged Data feature is available as a Preview release, which means the implementation has

recently been completed but is not yet thoroughly tested and could be unstable. The feature is

available for trial usage, but Cambridge Semantics recommends that you do not rely on Preview

features in production environments.

The table below lists the disk and memory sizing requirements and guidelines to follow if you are considering

enabling disk-based storage.

Hardware Requirements

Component Recommendation Guidelines

RAM 100+ GB l Though all graph data is stored on disk,

RAM is required to hold intermediate results

when performing computations and joins.

l Having more RAM available for paged data

caching can reduce the frequency with

which AnzoGraph swaps data from disk to

memory. More data can remain paged in

memory for access during query execution.

l The amount of data you can expect to be

able to store is about 3X the size of RAM.

Sizing Guidelines for Disk-Based Storage (Preview) 50

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/paged-data.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/paged-data.htm

Component Recommendation Guidelines

For example, with 200 GB of RAM, you can

load and query about 600 GB of data on

disk.

Disk Size 500+ GB The disk size should be at least 4X the size of the

data at rest. For example, loading 1 TB of data

requires a 4 TB disk to support paging operations.

Disk Type SSD The speed of the disk that hosts the persisted data

has an impact on query performance. For the best

performance, store the persistence directory on a

fast disk, such as SSD. You can relocate the default

persistence directory from the AnzoGraph file

system to a separate location. See Relocating

AnzoGraph Directories in the Administration Guide

for more information.

CPU 32 A greater number of multi-core CPU with a high

clock speed can make a dramatic difference in the

performance of paged data queries.

Note
Intel processors are preferred, but

AnzoGraph is supported on newer Epyc

AMD processors. Older AMD processors

are not supported.

Note For software and firewall requirements, see AnzoGraph Requirements.

Ultimately, queries perform significantly slower when data is stored on disk versus in memory. If fast

performance is a requirement, data should be stored in-memory, and configuring AnzoGraph for paged data

operations should not be considered.

Related Topics
AnzoGraph Requirements

Sizing Guidelines for Disk-Based Storage (Preview) 51

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/relocate-dirs.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/relocate-dirs.htm

Installing AnzoGraph
The topics in this section guide you through installing AnzoGraph on a single server or on multiple servers in

a cluster. If you are installing AnzoGraph for the first time on a new host server, make sure that you complete

each of the procedures below to perform the prerequisite configuration of the host servers, install the

AnzoGraph software, and then complete the post-installation configuration and start the AnzoGraph

services.

1. Complete the Pre-Installation Configuration

2. Install AnzoGraph

3. Complete the Post-Installation Configuration

Related Topics
Securing an AnzoGraph Environment

Installing AnzoGraph 52

Complete the Pre-Installation Configuration

Before deploying AnzoGraph, follow the instructions below to install the required software packages on each

AnzoGraph host server. In addition to listing the required and optional software dependencies, this topic also

includes important information about Linux proxy variables, ensuring that AnzoGraph is installed as the

appropriate user, and recording the cluster IP addresses that are needed during the install process.

Tip
For information about host server hardware and firewall requirements, see AnzoGraph

Requirements.

l Install GNU Compiler Collection (GCC)

l Install OpenJDK 11

l Review the Optional C++ Extension Dependencies

l Unset Linux Proxy Variables

l Use the Anzo Service User Account when Installing AnzoGraph

l Note the IP Addresses of the Cluster Servers

Install GNU Compiler Collection (GCC)

All AnzoGraph servers are required to include the latest version of the GCC tools for your operating system.

On all servers in the cluster, run the following command to install GCC:

sudo yum install gcc

Note
Specifically, AnzoGraph requires the glibc, glibc-devel, and gcc-c++ libraries. Typically, when you
install GCC by running yum install gcc, those libraries are included as part of the package. In

rare cases, depending on the host server configuration, installing GCC excludes certain libraries. If

AnzoGraph fails to start and you receive a "Compilation failed" message, it may indicate that some of

the required libraries are missing. To install the missing libraries, run the following command:

sudo yum install glibc glibc-devel gcc-c++

Complete the Pre-Installation Configuration 53

Install OpenJDK 11

AnzoGraph uses a Java client interface, called the Graph Data Interface (GDI), to access Data Sources

when you profile a source, ingest Data Sources via automated Graphmarts, or blend data into a Graphmart

via manually created queries. AnzoGraph also uses the GDI to communicate with Elasticsearch when Anzo

Unstructured Graphmarts are activated. Java Development Kit version 11 is required for using the GDI.

Follow the instructions below to install OpenJDK on all servers in the cluster.

1. Run the following command to install OpenJDK 11:

sudo yum install java-11-openjdk

Note
You do not need to set the $JAVA_HOME variable to use the JDK installation. AnzoGraph's

system management daemon (azgmgrd) requires JAVA_HOME, and it is set as part of the

post-installation configuration (Complete the Post-Installation Configuration).

2. If your organization uses Anzo Unstructured, test the connection between the AnzoGraph server and

Elasticsearch. Make sure that Elasticsearch is running and then run the following telnet command:

telnet <Elasticsearch_server_IP> <port>

By default, the port range for Elasticsearch requests (http.port) is 9200-9300. If port 9200 is not

available when Elasticsearch is started, Elasticsearch tries 9201 and so on until it finds an accessible

port. Specify the HTTP request port that Elasticsearch is using.

Review the Optional C++ Extension Dependencies

The AnzoGraph installation includes C++ packages that extend AnzoGraph's built-in analytics to offer

advanced Data Science functions as well as Apache Arrow integration. In addition, the C++ extensions are

used to perform Anzo's advanced Source, Dataset, and Graphmart data profile analytics. Installing the C++
extensions is optional but strongly recommended. If you choose to install the extensions, the following
additional C++ software package and support libraries are required to be installed.

Note
Instructions on installing the C++ dependencies after AnzoGraph is installed are provided in

Complete the Post-Installation Configuration.

l libarchive13

l libarmadillo10

Complete the Pre-Installation Configuration 54

l libboost_filesystem1_71_0

l libboost_iostreams1_71_0

l libboost_system1_71_0

l libgrpc++1

l libflatbuffers1

l libhdfs3

l libnfs13

l libserd-0-0

l libsmb2

l shadow-utils

Unset Linux Proxy Variables

Make sure that the Linux environment variables http_proxy and https_proxy are not set on the servers.
The Anzo gRPC protocol cannot make connections to the database when proxies are enabled.

Use the Anzo Service User Account when Installing AnzoGraph

Important
Because AnzoGraph offers features such as user-defined extensions, it is not secure software

certified and should not be installed or run as the root user. In addition, since AnzoGraph accesses

the data that Anzo writes on the shared File Store, it is important to install and run AnzoGraph with

the same service account that runs Anzo. For more information, see Anzo Service Account

Requirements.

Note the IP Addresses of the Cluster Servers

If you are installing AnzoGraph in a clustered setup, make note of the IP addresses for each of the servers in

the cluster. The installation wizard will prompt you to enter the IP addresses during the installation. In

addition, choose one server to be the leader server.

Once all of the prerequisites are in place, proceed to Install AnzoGraph for instructions on installing

AnzoGraph.

Complete the Pre-Installation Configuration 55

Install AnzoGraph

Follow the appropriate instructions below to install AnzoGraph on a single server or cluster.

Note
Before installing AnzoGraph, make sure that the prerequisites are configured. See Complete the

Pre-Installation Configuration for details.

l Installing AnzoGraph on a Single Server

l Installing AnzoGraph on a Cluster

Installing AnzoGraph on a Single Server

Follow the steps below to install AnzoGraph on a single server.

Important Complete the following steps as the Anzo service user.

1. If necessary, run the following command to become the Anzo service user:

su <name>

Where name is the name of the service user. For example:

su anzo

2. If necessary, run the following command to make the AnzoGraph installation script executable:

chmod +x <script_name>

For example:

chmod +x anzograph_linux_2_5_0_r202111201658.sh

3. Run the following command to start the installation wizard:

./<script_name>

The script displays a reminder about installing the prerequisite software as well as a note about the

optional C++ extensions.

Install AnzoGraph 56

4. Press Enter to proceed with the installation. The wizard displays the AnzoGraph license agreement:

Please read the following License Agreement. You must accept the terms of

this agreement before continuing with the installation.

ANZOGRAPH(R) DB

END USER LICENSE AGREEMENT

IMPORTANT: READ THIS AGREEMENT CAREFULLY BEFORE ACCESSING AND USING THE

SOFTWARE. . .

5. Review the license agreement. Press Enter to scroll through the terms. At the end of the agreement,
type 1 to accept the terms or type 2 to disagree and stop the installation.

After you accept the license agreement, the wizard prompts you to specify the AnzoGraph installation

location:

Where should AnzoGraph DB be installed?

[/opt/cambridgesemantics]

6. Press Enter to accept the default installation path, /opt/cambridgesemantics, or specify an alternate
path and directory for the AnzoGraph installation.

Note
Two subdirectories and an uninstall script will be created inside the directory that you specify
in this prompt. One subdirectory is named anzograph and includes the AnzoGraph install files.
The other is an examples directory that contains systemd service files, a tuned profile, and a
.repo file that can be used to install the optional C++ extension dependencies. Because an

anzograph directory will be created, you may not want to specify /opt/anzograph as the
install location because that will result in an /opt/anzograph/anzograph directory.

After you specify the installation path, the wizard prompts you to specify the installation type: single,

standalone server, leader server, or compute server:

Type of server being installed.

Server Installation Type

Standalone [1, Enter], Cluster Leader [2], Cluster Compute/Worker [3]

Install AnzoGraph 57

7. At the server installation type prompt, press Enter to accept the default option Standalone (1).

The next prompt asks you to create the username for the Admin user.

Setup the AnzoGraph Admin User.

AnzoGraph DB Admin user

[admin]

8. Specify the username to use for the Admin user. This username will be specified when the connection

between Anzo and AnzoGraph is created. Press Enter to set the username and display the next
prompt, which asks you to create the password for the Admin user.

9. Type the password to use for the Admin user. This password will also be specified when setting up the

AnzoGraph connection in Anzo.

Note
Some special characters, such as $ and *, are treated as parameters in bash. When typing the

password, avoid special characters. For more information, see Quoting in the Bash Reference

Manual.

The next prompt asks if the installation is for use with Anzo:

Is this AnzoGraph DB installation intended for use with Anzo?

Yes [y, Enter], No [n]

10. Press Enter for Yes. Answering yes configures AnzoGraph to use the settings that are optimal for
Anzo. Answering no would configure the settings that are optimal for AnzoGraph standalone use

without Anzo.

The next prompt asks about the optional C++ extensions. These extensions include the advanced

Data Science functions as well as Apache Arrow integration.

Server Configurations

Do you want to install C++ UDXs packaged with AnzoGraph DB?

Yes [y], No [n, Enter]

11. To skip the installation of the C++ extensions, press Enter. To install the extensions, type y and press
Enter. If you choose to install the extensions, additional dependencies must be installed after the
AnzoGraph installation is complete. (See Install the Optional C++ Extension Dependencies for

details.)

Install AnzoGraph 58

https://tiswww.case.edu/php/chet/bash/bashref.html#Quoting

Next, the wizard gives you the opportunity to configure a system setting. The setting and value will be

added to the configuration file, <install_path>/config/settings.conf:

Extra configuration settings for server

Optionally, specify additional configuration settings for the AnzoGraph

DB

server. See the System Settings Reference in the AnzoGraph DB Users Guide

for a description. The settings you enter here will be appended to the

default settings.conf file:

WARNING: Additional settings should be added after consultation with

Cambridge Semantics to address specific user needs.

[]

12. If Cambridge Semantics Support provided a custom setting to use for your configuration, type the

supplied setting=value and then press Enter.

Tip
The AnzoGraph CLI, azgi, makes an SSL connection to AnzoGraph on the SPARQL HTTPS
port. SSL protocol is disabled by default, however. If you want to be able to use azgi, you can

enable SSL protocol by specifying the following value in this prompt: enable_ssl_

protocol=true. Note that enabling SSL protocol also makes the HTTPS port available to

external applications. You may want to check that firewall rules are in place to block external

access before enabling SSL protocol. For azgi usage information, see Using the AnzoGraph

CLI in the Administration Guide.

The wizard extracts the AnzoGraph files and completes the installation.

13. Now that AnzoGraph is installed, proceed to Complete the Post-Installation Configuration to complete

the initial configuration, set up AnzoGraph services, and start the database.

Installing AnzoGraph on a Cluster

Follow the steps below to install AnzoGraph on multiple servers in a cluster. There are two steps in the

process:

1. Install AnzoGraph on the Compute Servers

2. Install AnzoGraph on the Leader Server

Install AnzoGraph on the Compute Servers

Follow the instructions below to install AnzoGraph on each compute server.

Install AnzoGraph 59

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/anzograph-cli.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/anzograph-cli.htm

Important Complete the following steps as the Anzo service user.

1. If necessary, run the following command to become the Anzo service user:

su <name>

Where name is the name of the service user. For example:

su anzo

2. If necessary, run the following command to make the AnzoGraph installation script executable:

chmod +x <script_name>

For example:

chmod +x anzograph_linux_2_5_0_r202111201658.sh

3. Run the following command to start the installation wizard:

./<script_name>

The script displays a reminder about installing the prerequisite software as well as a note about the

optional C++ extensions.

4. Press Enter to proceed with the installation. The wizard displays the AnzoGraph license agreement:

Please read the following License Agreement. You must accept the terms of

this agreement before continuing with the installation.

ANZOGRAPH(R) DB

END USER LICENSE AGREEMENT

IMPORTANT: READ THIS AGREEMENT CAREFULLY BEFORE ACCESSING AND USING THE

SOFTWARE. . .

5. Review the license agreement. Press Enter to scroll through the terms. At the end of the agreement,
type 1 to accept the terms or type 2 to disagree and stop the installation.

Install AnzoGraph 60

After you accept the license agreement, the wizard prompts you to specify the AnzoGraph installation

location:

Where should AnzoGraph DB be installed?

[/opt/cambridgesemantics]

6. Press Enter to accept the default installation path, /opt/cambridgesemantics, or specify an alternate
path and directory for the AnzoGraph installation. The installation path must be the same on all
servers in the cluster.

Note
Two subdirectories and an uninstall script will be created inside the directory that you specify
in this prompt. One subdirectory is named anzograph and includes the AnzoGraph install files.
The other is an examples directory that contains systemd service files, a tuned profile, and a
.repo file that can be used to install the optional C++ extension dependencies. Because an

anzograph directory will be created, you may not want to specify /opt/anzograph as the
install location because that will result in an /opt/anzograph/anzograph directory.

After you specify the installation path, the wizard prompts you to specify the installation type: single,

standalone server, leader server, or compute server:

Type of server being installed.

Server Installation Type

Standalone [1, Enter], Cluster Leader [2], Cluster Compute/Worker [3]

7. At the server installation type prompt, type 3 (Cluster Compute/Worker) and press Enter.

Next, the wizard prompts you to specify the IP addresses for each of the servers in the cluster:

Ip Address of nodes in cluster.

Comma separated list of Cluster Nodes' IP Addresses. Leader node address

is

always first. Order must be the same on all nodes in cluster.

8. Type a comma-separated list of the IP addresses for each server in the cluster. Type the leader server

IP address first, followed by each compute IP address. For example, on a cluster with 4 servers where

192.168.2.1 is the leader server:

192.168.2.1,192.168.2.2,192.168.2.3,192.168.2.4

Install AnzoGraph 61

Important
Make sure that you enter this value exactly the same, with IP addresses in the same order,

during the installation on each server.

9. After typing the list of IP addresses, press Enter. The wizard extracts the AnzoGraph files and
completes the installation.

Repeat the steps above to install AnzoGraph on each compute server. Then proceed to Install AnzoGraph

on the Leader Server below.

Install AnzoGraph on the Leader Server

Follow the instructions below to install AnzoGraph on the leader server.

Important Complete the steps below as the Anzo service user.

1. If necessary, run the following command to become the Anzo service user:

su <name>

Where name is the name of the service user. For example:

su anzo

2. If necessary, run the following command to make the AnzoGraph installation script executable:

chmod +x <script_name>

For example:

chmod +x anzograph_linux_2_5_0_r202111201658.sh

3. Run the following command to start the installation wizard:

./<script_name>

The script displays a reminder about installing the prerequisite software as well as a note about the

optional C++ extensions.

Install AnzoGraph 62

4. Press Enter to proceed with the installation. The wizard displays the AnzoGraph license agreement:

Please read the following License Agreement. You must accept the terms of

this agreement before continuing with the installation.

ANZOGRAPH(R) DB

END USER LICENSE AGREEMENT

IMPORTANT: READ THIS AGREEMENT CAREFULLY BEFORE ACCESSING AND USING THE

SOFTWARE. . .

5. Review the license agreement. Press Enter to scroll through the terms. At the end of the agreement,
type 1 to accept the terms or type 2 to disagree and stop the installation.

After you accept the license agreement, the wizard prompts you to specify the AnzoGraph installation

location:

Where should AnzoGraph DB be installed?

[/opt/cambridgesemantics]

6. Press Enter to accept the default installation path, /opt/cambridgesemantics, or specify an alternate
path and directory for the AnzoGraph installation. The installation path must be the same on all
servers in the cluster.

Note
Two subdirectories and an uninstall script will be created inside the directory that you specify
in this prompt. One subdirectory is named anzograph and includes the AnzoGraph install files.
The other is an examples directory that contains systemd service files, a tuned profile, and a
.repo file that can be used to install the optional C++ extension dependencies. Because an

anzograph directory will be created, you may not want to specify /opt/anzograph as the
install location because that will result in an /opt/anzograph/anzograph directory.

After you specify the installation path, the wizard prompts you to specify the installation type: single,

standalone server, leader server, or compute server:

Type of server being installed.

Server Installation Type

Standalone [1, Enter], Cluster Leader [2], Cluster Compute/Worker [3]

Install AnzoGraph 63

7. At the server installation type prompt, type 2 (Cluster Leader) and press Enter.

The next prompt asks you to create the username for the Admin user:

Setup the AnzoGraph Admin User.

AnzoGraph DB Admin user

[admin]

8. Specify the username to use for the Admin user. This username will be specified when the connection

between Anzo and AnzoGraph is created. Press Enter to set the username and display the next
prompt, which asks you to create the password for the Admin user.

9. Type the password to use for the Admin user. This password will also be specified when setting up the

AnzoGraph connection in Anzo.

Note
Some special characters, such as $ and *, are treated as parameters in bash. When typing the

password, avoid special characters. For more information, see Quoting in the Bash Reference

Manual.

The next prompt asks if the installation is for use with Anzo:

Is this AnzoGraph DB installation intended for use with Anzo?

Yes [y, Enter], No [n]

10. Press Enter for Yes. Answering yes configures AnzoGraph to use the settings that are optimal for
Anzo. Answering no would configure the settings that are optimal for AnzoGraph standalone use

without Anzo.

The next prompt asks about the optional C++ extensions. These extensions include the advanced

Data Science functions as well as Apache Arrow integration.

Server Configurations

Do you want to install C++ UDXs packaged with AnzoGraph DB?

Yes [y], No [n, Enter]

11. To skip the installation of the C++ extensions, press Enter. To install the extensions, type y and press
Enter. If you choose to install the extensions, additional dependencies must be installed after the
AnzoGraph installation is complete. (See Install the Optional C++ Extension Dependencies for

details.)

Install AnzoGraph 64

https://tiswww.case.edu/php/chet/bash/bashref.html#Quoting

Next, the wizard prompts you to specify the IP addresses for each of the servers in the cluster:

Ip Address of nodes in cluster.

Comma separated list of Cluster Nodes' IP Addresses. Leader node address

is

always first. Order must be the same on all nodes in cluster.

12. Type a comma-separated list of the IP addresses for each server in the cluster. Type the leader server

IP address first, followed by each compute IP address. For example, on a cluster with 4 servers where

192.168.2.1 is the leader server:

192.168.2.1,192.168.2.2,192.168.2.3,192.168.2.4

Important
Make sure that you enter this value exactly the same, with IP addresses in the same order, as

the compute servers.

13. After typing the list of IP addresses, press Enter.

Next, the wizard gives you the opportunity to configure a system setting. The setting and value will be

added to the configuration file, <install_path>/config/settings.conf:

Extra configuration settings for server

Optionally, specify additional configuration settings for the AnzoGraph

DB

server. See the System Settings Reference in the AnzoGraph DB Users Guide

for a description. The settings you enter here will be appended to the

default settings.conf file:

WARNING: Additional settings should be added after consultation with

Cambridge Semantics to address specific user needs.

[]

14. If Cambridge Semantics Support provided a custom setting to use for your configuration, type the

supplied setting=value and then press Enter.

Tip
The AnzoGraph CLI, azgi, makes an SSL connection to AnzoGraph on the SPARQL HTTPS
port. SSL protocol is disabled by default, however. If you want to be able to use azgi, you can

enable SSL protocol by specifying the following value in this prompt: enable_ssl_

Install AnzoGraph 65

protocol=true. Note that enabling SSL protocol also makes the HTTPS port available to

external applications. You may want to check that firewall rules are in place to block external

access before enabling SSL protocol. For azgi usage information, see Using the AnzoGraph

CLI in the Administration Guide.

The wizard extracts the AnzoGraph files and completes the installation.

15. Now that AnzoGraph is installed, proceed to Complete the Post-Installation Configuration to complete

the initial configuration, set up AnzoGraph services, and start the database.

Related Topics
Complete the Post-Installation Configuration

Complete the Pre-Installation Configuration

Install AnzoGraph 66

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/anzograph-cli.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/anzograph-cli.htm

Complete the Post-Installation Configuration

Once AnzoGraph is installed, there are additional configuration tasks to complete to ensure that AnzoGraph

is optimized to support all of the Anzo functionality and your workloads. Follow the instructions in the steps

below to complete the post-installation configuration.

Note
The first two steps are optional. If you have custom database data sources that you plan to use with

the AnzoGraph Graph Data Interface (GDI), follow the instructions in Step 1. If you installed the

optional C++ extensions, follow the instructions in Step 2. Steps 3 and 4 are required for all

AnzoGraph environments.

1. Deploy Optional Drivers for Accessing Custom Database Sources

2. Install the Optional C++ Extension Dependencies

3. Optimize the Linux Kernel Configuration for AnzoGraph

4. Configure and Start the AnzoGraph Services

Deploy Optional Drivers for Accessing Custom Database Sources

AnzoGraph uses the Graph Data Interface (GDI) Java plugin to connect directly to data sources when you

profile a source, ingest data sources via the direct data load workflow, or blend data into a graphmart via

manually created queries. The GDI plugin is included in the AnzoGraph installation. Also included in the

installation are JDBC drivers for the following databases:

l Databricks

l H2

l IBM DB2

l Microsoft SQL Server

l MariaDB

l Oracle

l PostgreSQL

l SAP Sybase (jTDS)

l Snowflake

Complete the Post-Installation Configuration 67

To extend the GDI to access custom databases, custom JDBC drivers can also be deployed to AnzoGraph.

To add a JDBC driver, copy it to the <install_path>/lib/udx directory on the leader server. Once the
database is started, the leader broadcasts any new .jar files to the compute servers.

Tip
The <install_path>/lib/udx directory on the leader node is a user-managed directory rather

than an AnzoGraph-managed directory like <install_path>/bin or <install_

path>/internal. Users can place JDBC drivers and Java or C++ extensions in the lib/udx

directory any time. Each time the database is started, AnzoGraph scans that directory, saves a copy

of its contents to the <install_path>/internal/extensions directory, and then broadcasts

the internal/extensions contents from the leader node to the compute nodes. Each restart

clears internal/extensions and AnzoGraph rescans lib/udx to reload

internal/extensions with the latest plugins.

Install the Optional C++ Extension Dependencies

Note Root user privileges are required to complete this task.

If you chose to install the optional C++ packages that extend AnzoGraph's built-in analytics, additional

dependencies are required to be installed on all servers in the cluster. The installer provides a .repo file to
aid you in configuring the yum repository and installing the following required software packages:

l libarchive13

l libarmadillo10

l libboost_filesystem1_71_0

l libboost_iostreams1_71_0

l libboost_system1_71_0

l libgrpc++1

l libflatbuffers1

l libhdfs3

l libnfs13

l libserd-0-0

l libsmb2

l shadow-utils

Complete the Post-Installation Configuration 68

This section includes instructions for using the included .repo file to install the C++ dependencies with or

without internet access:

l Installing the RPMs via the Internet

l Installing the RPMs via the Supplied TAR File

Installing the RPMs via the Internet

Follow the steps below if the AnzoGraph servers have external internet access.

1. Copy the csi-obs-cambridgesemantics-udxcontrib.repo file from the <install_

path>/examples/yum.repos.d directory to the /etc/yum.repos.d directory. For example, the

following command copies the file from the default installation path to /etc/yum.repos.d:

sudo cp /opt/cambridgesemantics/examples/yum.repos.d/csi-obs-

cambridgesemantics-udxcontrib.repo /etc/yum.repos.d

2. Next, run the following command to enable the repository and install the required packages:

sudo yum install --enablerepo=csi-obs-cambridgesemantics-udxcontrib

libarchive13 libarmadillo10 libboost_filesystem1_71_0 libboost_

iostreams1_71_0 libboost_system1_71_0 libgrpc++1 libflatbuffers1 libhdfs3

libnfs13 libserd-0-0 libsmb2 shadow-utils

3. Repeat these steps on all servers in the cluster.

Installing the RPMs via the Supplied TAR File

Follow the steps below if the AnzoGraph servers do not have external internet access.

1. From a computer that does have internet access, download the dependency tarball, csi-obs-
cambridgesemantics-udxcontrib.centos7.tar.xz, from the following Cambridge Semantics Google

Cloud Storage location: https://storage.googleapis.com/csi-anzograph/udx/csi-os-

contrib/centos7/2022-06/202206221106/csi-obs-cambridgesemantics-udxcontrib.centos7.tar.xz.

You can run the following cURL command to download the tarball:

curl -OL https://storage.googleapis.com/csi-anzograph/udx/csi-os-

contrib/centos7/2022-06/202206221106/csi-obs-cambridgesemantics-

udxcontrib.centos7.tar.xz(.sha512)

Complete the Post-Installation Configuration 69

https://storage.googleapis.com/csi-anzograph/udx/csi-os-contrib/centos7/2022-06/202206221106/csi-obs-cambridgesemantics-udxcontrib.centos7.tar.xz
https://storage.googleapis.com/csi-anzograph/udx/csi-os-contrib/centos7/2022-06/202206221106/csi-obs-cambridgesemantics-udxcontrib.centos7.tar.xz

2. Also from the computer that has internet access, download the repomd.xml.key from the following

Cambridge Semantics Google Cloud Storage location: https://storage.googleapis.com/csi-rpmmd-

pd/CambridgeSemantics:/UDXContrib/CentOS-7_SP5/repodata/repomd.xml.key.

You can run the following cURL command to download the file:

curl -OL https://storage.googleapis.com/csi-rpmmd-

pd/CambridgeSemantics:/UDXContrib/CentOS-7_SP5/repodata/repomd.xml.key

3. On each of the AnzoGraph servers, create a directory called /tmp/repo.

4. Copy csi-obs-cambridgesemantics-udxcontrib.centos7.tar.xz to the /tmp/repo directory on
each server.

5. Then run the following command to unpack the tarball in the /tmp/repo directory:

tar -xvf csi-obs*.tar.xz

The files are unpacked into subdirectories under /tmp/repo/dl/centos7/csi-obs-

cambridgesemantics-udxcontrib.

6. Next, copy the repomd.xml.key file to the /tmp/repo/dl/centos7/csi-obs-
cambridgesemantics-udxcontrib directory on each of the AnzoGraph servers.

7. Now, open the csi-obs-cambridgesemantics-udxcontrib.repo file in the <install_
path>/examples/yum.repos.d directory. The contents of the file are shown below:

[csi-obs-cambridgesemantics-udxcontrib]

name=Contrib directory for CambridgeSemantics AnzoGraph UDX dependencies

baseurl=https://storage.googleapis.com/csi-rpmmd-

pd/CambridgeSemantics:/UDXContrib/CentOS-7_SP5

gpgkey=https://storage.googleapis.com/csi-rpmmd-

pd/CambridgeSemantics:/UDXContrib/CentOS-7_SP5/repodata/repomd.xml.key

gpgcheck=1

enabled=1

8. Edit the csi-obs-cambridgesemantics-udxcontrib.repo file contents to replace the baseurl and
gpgkey values so that they point to the repo files that you unpacked in the /tmp/repo directory. In
addition, change the gpgcheck and enabled values from 1 to 0. The contents of the updated file are
shown below:

Complete the Post-Installation Configuration 70

https://storage.googleapis.com/csi-rpmmd-pd/CambridgeSemantics:/UDXContrib/CentOS-7_SP5/repodata/repomd.xml.key
https://storage.googleapis.com/csi-rpmmd-pd/CambridgeSemantics:/UDXContrib/CentOS-7_SP5/repodata/repomd.xml.key

[csi-obs-cambridgesemantics-udxcontrib]

name=Contrib directory for CambridgeSemantics AnzoGraph UDX dependencies

baseurl=file:///tmp/repo/dl/centos7/csi-obs-cambridgesemantics-udxcontrib

gpgkey=file:///tmp/repo/dl/centos7/csi-obs-cambridgesemantics-

udxcontrib/repomd.xml.key

gpgcheck=0

enabled=0

9. Save and close the file.

10. Copy csi-obs-cambridgesemantics-udxcontrib.repo from <install_

path>/examples/yum.repos.d to the /etc/yum.repos.d directory. For example, the following

command copies the file from the default installation path to /etc/yum.repos.d:

sudo cp /opt/cambridgesemantics/examples/yum.repos.d/csi-obs-

cambridgesemantics-udxcontrib.repo /etc/yum.repos.d

11. Next, run the following command to enable the repository and install the required packages:

sudo yum install --enablerepo=csi-obs-cambridgesemantics-udxcontrib

libarchive13 libarmadillo10 libboost_filesystem1_71_0 libboost_

iostreams1_71_0 libboost_system1_71_0 libgrpc++1 libflatbuffers1 libhdfs3

libnfs13 libserd-0-0 libsmb2 shadow-utils

12. Repeat the steps above as needed to install the dependencies on all servers in the cluster.

Optimize the Linux Kernel Configuration for AnzoGraph

Note Root user privileges are required to complete this task.

To streamline the configuration of the operating system for peak AnzoGraph performance, the installer

includes a tuned AnzoGraph profile that you can activate. Tuned is a daemon program that uses the udev
device monitor to statically and dynamically tune operating system settings based on the specified profile.

Tip
For more information about Tuned, see Tuned in the Red Hat Performance Tuning Guide.

It is strongly recommended that you activate the AnzoGraph tuned profile to ensure that AnzoGraph is

optimized to support your Anzo workloads. The profile, called azg, is in the <install_
path>/examples/tuned-profile directory and consists of two files: tuned.conf and additional-

tuneables.sh. For details about the files, see Tuned AnzoGraph Profile Reference below.

Complete the Post-Installation Configuration 71

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/chap-red_hat_enterprise_linux-performance_tuning_guide-tuned

Activating the Tuned Profile

To activate the azg profile, follow the steps below. Complete these steps on all servers in the cluster:

1. Copy the azg directory from <install_path>/examples/tuned-profile to the /etc/tuned

directory. For example, the following command copies azg from the default installation path to

/etc/tuned:

sudo cp -r /opt/cambridgesemantics/examples/azg /etc/tuned

2. Next, run the following command to activate the azg profile:

sudo tuned-adm profile azg

The host servers are now configured to use the tuned profile that is optimal for AnzoGraph.

Tip
To disable tuned profiles, you can run the following command:

sudo tuned-adm off

After running the command, no tuned profiles will be active.

Tuned AnzoGraph Profile Reference

This section describes the tuned AnzoGraph profile files and the kernel configuration changes that they

apply.

tuned.conf

The tuned.conf file optimizes network throughput performance by increasing the number of kernel network

buffers and tuning the values for the following Linux kernel configuration settings:

l vm.dirty_ratio: This setting specifies the percentage of system memory that can be occupied by

"dirty" data before flushing the cache to disk. Dirty data are pages in memory that have been updated

and do not match what is stored on disk. The AnzoGraph tuned profile reduces vm.dirty_ratio to 2%
to increase the frequency with which the system cache is flushed.

l vm.swappiness: This setting controls the tendency of the kernel to move processes out of physical
memory and onto the swap disk. A value of 0 means the kernel avoids swapping processes out of
physical memory for as long as possible. A value of 100 tells the kernel to aggressively swap
processes out of physical memory to the swap disk. The AnzoGraph tuned profile sets

vm.swappiness to 30.

Complete the Post-Installation Configuration 72

l vm.max_map_count: This setting sets the limit on the maximum number of memory map areas a

process can use. Since AnzoGraph is memory intensive, it may reach the default maximum map count

of 65535 and be shut down by the operating system. The tuned profile increases vm.max_map_count
to 2097152.

l transparent_hugepages: This setting controls whether Transparent Huge Pages (THP) is enabled or
disabled system-wide. When THP is enabled system-wide, it can dramatically degrade AnzoGraph

performance. So the AnzoGraph tuned profile disables THP by setting transparent_hugepages to
never.

additional-tunables.sh

The additional-tuneables.sh script is called by tuned.conf and configures the following settings so that they

are optimal for AnzoGraph:

l overcommit_memory: This setting controls whether obvious overcommits of the address space are
allowed. The profile sets overcommit_memory to 0 (the default value for the kernel), which ensures
that very large overcommits are not allowed but some overcommits can be used to reduce swap

usage.

l overcommit_ratio: This setting controls the percentage of memory that is allowed to be used for
overcommits. The tuned profile sets overcommit_ratio to 50% (the default value for the kernel).

l transparent_hugepage/defrag: Though the AnzoGraph tuned profile disables Transparent Huge
Pages (THP) system-wide, this setting controls whether huge pages can still be enabled on a per

process basis (inside MADV_HUGEPAGE madvise regions). The profile sets transparent_
hugepage/defrag tomadvise so that the kernel only assigns huge pages to individual process
memory regions that are specified with the madvise() system call.

l tcp_timestamps: This setting controls whether TCP timestamps are enabled or disabled. The profile

sets tcp_timestamps to 0, which disables TCP timestamps in order to reduce performance spikes

related to timestamp generation.

Configure and Start the AnzoGraph Services

Note Root user privileges are required to complete this task.

The last step in the post-installation configuration is to implement the AnzoGraph systemd services and start

the database. It is important to set up AnzoGraph services to run as the Anzo service user so that

AnzoGraph can access the data that other platform components write to the shared file system. In addition,

the services are configured to tune user resource limits (ulimits) for the AnzoGraph process as well as set

JAVA_HOME so that AnzoGraph can find the OpenJDK installation.

Complete the Post-Installation Configuration 73

The service files are included in the <install_path>/examples/systemd-services directory. Follow

the instructions below to configure and start the AnzoGraph services.

1. Configure the AnzoGraph System Management Service

2. Configure the AnzoGraph Database Service on the Leader Server (and Single-Server Installations)

Configure the AnzoGraph System Management Service

The AnzoGraph system management daemon, azgmgrd, is a very lightweight program that runs on all

AnzoGraph servers and manages AnzoGraph communication between the system manager and the

database as well as between the nodes in a cluster. Follow the steps below to configure and start the service

that runs the azgmgrd process.

1. Open the azgmgrd.service file in the <install_path>/examples/systemd-services directory.
The contents of the file are shown below.

Note
The following contents are from an installation that used the default installation path,

/opt/cambridgesematics. The contents of your file may differ. Also, note the

User=anzograph value shown in bold below. The value needs to be edited to replace
anzograph with the Anzo service user name.

[Unit]

Description=AnzoGraph communication service

depends on NetworkManager-wait-online.service enabled

Wants=network-online.target

After=network-online.target

[Service]

Type=forking

The PID file is optional, but recommended in the manpage

"so that systemd can identify the main process of the daemon"

#PIDFile=/var/run/azgmgrd.pid

WorkingDirectory=/opt/cambridgesemantics/anzograph

StandardOutput=syslog

StandardError=syslog

LimitCPU=infinity

LimitNOFILE=4096

LimitAS=infinity

Complete the Post-Installation Configuration 74

LimitNPROC=infinity

LimitMEMLOCK=infinity

LimitLOCKS=infinity

LimitFSIZE=infinity

User=anzograph

UMask=007

Environment=PATH=$PATH:/opt/cambridgesemantics/anzograph/bin:/opt/cambrid

gesemantics/anzograph/tools/bin

Environment=JAVA_HOME=/usr/lib/jvm/jre-11-openjdk

Environment=UDX_LOGS=/opt/cambridgesemantics/anzograph/internal/logs

Environment=HYPER_

PATH=/opt/cambridgesemantics/anzograph/vendor/com.tableau/hyper/lib/hyper

ExecStart=/opt/cambridgesemantics/anzograph/bin/azgmgrd

/opt/cambridgesemantics/anzograph

CPUAccounting=false

MemoryAccounting=false

[Install]

WantedBy=multi-user.target

Alias=sbxmgrd.service

2. In the following line of the file, replace anzograph with the name of the Anzo service user.

User=anzograph

For example, if the name of the service user is anzo, the line is changed to the following value:

User=anzo

3. Save and close the file.

4. Copy azgmgrd.service from the <install_path>/examples/systemd-services directory to

the /usr/lib/systemd/system directory. For example, the following command copies

azgmgrd.service from the default installation path to /usr/lib/systemd/system:

sudo cp /opt/cambridgesemantics/examples/systemd-services/azgmgrd.service

/usr/lib/systemd/system

Complete the Post-Installation Configuration 75

5. Run the following commands to start and enable the service:

sudo systemctl start azgmgrd.service

sudo systemctl enable azgmgrd.service

6. Repeat this process on all servers in the cluster.

The azgmgrd deamon must be running to start the database, but it typically does not need to be restarted

unless you are upgrading AnzoGraph or the host servers are rebooted. It does not need to be stopped and

started each time the database is restarted.

Configure the AnzoGraph Database Service on the Leader Server (and Single-Server Install-
ations)

The AnzoGraph service runs the database process. This service is configured to run after the system

management daemon (azgmgrd) is started. Starting the database is done only on the leader server. The

leader connects to the system managers on the compute servers and starts the database across the cluster.

1. Open the anzograph.service file in the <install_path>/examples/systemd-services
directory. The contents of the file are shown below.

Note
The following contents are from an installation that used the default installation path,

/opt/cambridgesematics. The contents of your file may differ. Also, note the

User=anzograph value shown in bold below. The value needs to be edited to replace
anzograph with the Anzo service user name.

[Unit]

Description=AnzoGraph database service

After=azgmgrd.service

Wants=azgmgrd.service

[Service]

Type=oneshot

The PID file is optional, but recommended in the manpage

"so that systemd can identify the main process of the daemon"

#PIDFile=/var/run/azg.pid

WorkingDirectory=/opt/cambridgesemantics/anzograph

Complete the Post-Installation Configuration 76

StandardOutput=syslog

StandardError=syslog

User=anzograph

UMask=027

RemainAfterExit=yes

Environment=PATH=$PATH:/opt/cambridgesemantics/anzograph/bin:/opt/cambrid

gesemantics/anzograph/tools/bin

ExecStart=/opt/cambridgesemantics/anzograph/bin/azgctl -start

ExecStop=/opt/cambridgesemantics/anzograph/bin/azgctl -stop

[Install]

WantedBy=multi-user.target

Alias=gqe.service

2. In the following line of the file, replace anzograph with the name of the Anzo service user.

User=anzograph

For example, if the name of the service user is anzo, the line is changed to the following value:

User=anzo

3. Save and close the file.

4. Copy anzograph.service from the <install_path>/examples/systemd-services directory to

the /usr/lib/systemd/system directory. For example, the following command copies

anzograph.service from the default installation path to /usr/lib/systemd/system:

sudo cp /opt/cambridgesemantics/examples/systemd-

services/anzograph.service /usr/lib/systemd/system

5. Run the following commands to start and enable the new service:

sudo systemctl start anzograph.service

sudo systemctl enable anzograph.service

Once the services are in place and enabled, AnzoGraph should be running. Any time you start and stop the

database, run the following systemctl commands on the leader node:

Complete the Post-Installation Configuration 77

sudo systemctl stop anzograph

sudo systemctl start anzograph

You do not need to stop and start azgmgrd.

For instructions on configuring the connection to AnzoGraph in the Anzo application, see Connecting to

AnzoGraph in the Administration Guide.

Tip
See Securing an AnzoGraph Environment for recommendations to follow for securing AnzoGraph

environments.

Related Topics
Securing an AnzoGraph Environment

Complete the Post-Installation Configuration 78

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/admin-connect-anzograph.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/admin-connect-anzograph.htm

Securing an AnzoGraph Environment
This topic lists the recommended procedures to follow to strengthen the security of AnzoGraph

environments.

l Set Up Firewall Rules

l Replace the Default Self-Signed Certificates with Trusted Certificates

l Enable System Manager Authentication

l Change the System Manager Password

l Configure File Access Policies

Set Up Firewall Rules

In order to protect the environment from malicious systems and prevent man-in-the-middle attacks or leaking

of data source credentials, firewall rules should be configured for the AnzoGraph cluster network. Rules

should allow outbound connections only to trusted data sources and services. For information about the

ports that need to be opened for inbound and outbound connections to support normal operations, see

Firewall Requirements.

Replace the Default Self-Signed Certificates with Trusted Certificates

AnzoGraph installations include self-signed certificates, serv.crt and ca.crt, and private and public

keys, serv.key serv.pub.key, in the <install_path>/config and <install_path>/etc

directories. The certificates and keys are required for encrypted communication over gRPC protocol. You

can follow the steps below to replace the default certificates and keys with your own trusted files.

Important
Your certificates must meet the following requirements:

l All servers in the cluster must use the same certificates and keys.

l The DNS in the certificates must be localhost.

l Your certificates and keys must use the same file names as the default files that you are

replacing.

l The public key should be generated from the new private key.

Securing an AnzoGraph Environment 79

Note
The private and public keys are used to encrypt and decrypt the system manager password. If you

replace the keys and have enabled (or plan to enable) system manager authentication (as described

in Enable System Manager Authentication below), you must also generate a new azgmgrd password

and re-authenticate azgmgrd as described in Change the System Manager Password.

1. On the leader server, run the following commands to stop the database and the system manager,

azgmgrd:

sudo systemctl stop anzograph

sudo systemctl stop azgmgrd

2. On the leader server, open the <install_path>/config/settings.conf file for editing.

3. Uncomment the use_custom_ssl_files=false line and change the value to true.

4. Save and close settings.conf.

5. On each server in the cluster, replace the serv.crt, ca.crt, serv.key, and serv.pub.key files

in the <install_path>/config directory with your files. Make sure that the new files have the

same file names as the default files.

Important
Anzo also needs to trust the new certificates. Make sure you have Trust All TLS Certificates
enabled on the AnzoGraph connection or make sure Anzo's trust store has either the

certificate for the CA that signed the certificate or the certificate itself. See Adding a Certificate

to the Anzo Trust Store in the Administration Guide for instructions.

6. Remove the serv.crt, ca.crt, serv.key, and serv.pub.key files from the <install_

path>/etc directory.

7. If system manager authentication is enabled or you plan to enable it (as described in Enable System

Manager Authentication below), do not restart AnzoGraph at this time. Proceed to Change the System

Manager Password and complete that task before starting AnzoGraph.

If system manager authentication is not enabled and you do not plan to enable it, you can restart

AnzoGraph with the following commands. Run the first command on all servers in the cluster. Then run

the second command on the leader server:

Securing an AnzoGraph Environment 80

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/trust-store.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/trust-store.htm

sudo systemctl start azgmgrd

sudo systemctl start anzograph

Enable System Manager Authentication

By default, communication is encrypted but not authenticated between the system managers (azgmgrd) in a

cluster and between the system managers and the database (when azgctl commands like azgctl -

start or azgctl -xray are run). If you want to enable authentication in addition to encryption, follow the

steps below.

1. If AnzoGraph is running, run the following commands on the leader server to stop the database and

the system manager, azgmgrd:

sudo systemctl stop anzograph

sudo systemctl stop azgmgrd

2. On the leader server, open the <install_path>/config/settings.conf file for editing.

3. Uncomment the azgmgrd_client_auth=false line and change the value to true.

Note
When azgmgrd client authentication is enabled, the username and password that azgmgrd

uses is the “AnzoGraph DB Admin user” and “AnzoGraph DB Admin password” that was

created when AnzoGraph was installed. If you want to change the password, you can follow

the instructions in Change the System Manager Password. It is not possible to change the

username.

4. Save and close settings.conf.

5. In order to authenticate the system manager with the database process, AnzoGraph needs to be

started and stopped once using the azgctl system management commands. Follow the steps below

to start AnzoGraph, authenticate azgmgrd, and then stop AnzoGraph:

a. Run the following command to start the system management daemon, azgmgrd. On a cluster,

run this command on each of the servers in the cluster:

./<install_path>/bin/azgmgrd

Securing an AnzoGraph Environment 81

For example:

./opt/cambridgesemantics/anzograph/bin/azgmgrd

b. On the leader server, run the following command to start the database and display the prompts

for the azgmgrd credentials:

./<install_path>/bin/azgctl -start

For example:

./opt/cambridgesemantics/anzograph/bin/azgctl -start

You are prompted to enter the azgmgrd user name:

Starting AnzoGraph...

Enter user name:

c. At the prompt, specify the name for the user that you created during the AnzoGraph installation.

If you accepted the default value when prompted, it is admin. After typing the user name, press
Enter to continue. You are prompted to specify the password for azgmgrd:

Enter password:

d. Specify the password that you created during the installation and press Enter. The database
resumes startup:

Starting AnzoGraph...

e. Once startup is complete, the authentication must be completed by stopping the database and

system management daemon. Run the following two commands to stop the database and

daemon:

./<install_path>/bin/azgctl -stop

./<install_path>/bin/azgctl -stopdaemon

For example:

./opt/cambridgesemantics/anzograph/bin/azgctl -stop

Securing an AnzoGraph Environment 82

./opt/cambridgesemantics/anzograph/bin/azgctl -stopdaemon

6. You can now restart the AnzoGraph services. Run the first command on all servers in the cluster. Then

run the second command on the leader server:

sudo systemctl start azgmgrd

sudo systemctl start anzograph

Change the System Manager Password

When system manager (azgmgrd) client authentication is enabled, the username and password that the

manager uses is the “AnzoGraph DB Admin user” and “AnzoGraph DB Admin password” that was created

when AnzoGraph was installed. If you want to change the password that azgmgrd uses, follow the

instructions below. It is not possible to change the azgmgrd username.

1. If AnzoGraph is running, run the following commands on the leader server to stop the database and

azgmgrd:

sudo systemctl stop anzograph

sudo systemctl stop azgmgrd

2. On the leader server, run the following command to create a new password and return an encrypted

string:

./<install_path>/bin/azgpasswd -e <new_password>

For example:

./opt/cambridgesemantics/anzograph/bin/azgpasswd -e 123

Note
Some special characters, such as $ and *, are treated as parameters in bash. When typing the

password, avoid special characters. For more information, see Quoting in the Bash Reference

Manual.

The command returns a string such as the one below (shortened for readability):

Securing an AnzoGraph Environment 83

https://tiswww.case.edu/php/chet/bash/bashref.html#Quoting

encrypt:Rs47UhKIbOYASqeO0EM/bSizVXsL9wCorE22XZWpaTEuhdfcR/av+H+eE1gFeCxbg

yFETA49paaVsvEzGLb

jXTUkJCPOTLfk8yIbQROElL5jsUBM0qsaoGbO8Q1guTO//gfp3eKoNy6N8GyEdqjFW3cQEVQq

9kjRrxQn6PGizzTKz4+1

/QbP2CTJAnktQFm7Wlwf0kXdooJNyanZ7UTzuDoMEoSa3typWi6xblEpSY9QuZ6T6XtCsb8S7

6duPuaLDemtpI4I+0uI=

3. Copy the encrypted string that was returned. Include the encrypt: text at the start of the value.

4. Open the <install_path>/config/settings.conf file for editing.

5. Locate the azgmgrd_password setting and replace the existing value with the string that you copied.

Include the encrypt: in the value. For example:

azgmgrd_

password=Rs47UhKIbOYASqeO0EM/bSizVXsL9wCorE22XZWpaTEuhdfcR/av+H+eE1gFeCxb

gyFETA49

paaVsvEzGLbjXTUkJCPOTLfk8yIbQROElL5jsUBM0qsaoGbO8Q1guTO//gfp3eKoNy6N8GyEd

qjFW3cQEVQq9kjRrxQn

6PGizzTKz4+1/QbP2CTJAnktQFm7Wlwf0kXdooJNyanZ7UTzuDoMEoSa3typWi6xblEpSY9Qu

Z6T6XtCsb8S76duPuaL

DemtpI4I+0uI=

6. Save and close settings.conf.

7. The system manager needs to be re-authenticated with the new password. To authenticate,

AnzoGraph needs to be started and stopped once using the azgctl system management commands.

Follow the steps below to start AnzoGraph, authenticate azgmgrd, and then stop AnzoGraph:

a. Run the following command to start the system management daemon, azgmgrd. On a cluster,

run this command on each of the servers in the cluster:

./<install_path>/bin/azgmgrd

For example:

./opt/cambridgesemantics/anzograph/bin/azgmgrd

Securing an AnzoGraph Environment 84

b. On the leader server, run the following command to start the database and display the prompts

for the azgmgrd credentials:

./<install_path>/bin/azgctl -start

For example:

./opt/cambridgesemantics/anzograph/bin/azgctl -start

You are prompted to enter the azgmgrd user name:

Starting AnzoGraph...

Enter user name:

c. At the prompt, specify the name for the user that you created during the AnzoGraph installation.

If you accepted the default value when prompted, it is admin. After typing the user name, press
Enter to continue. You are prompted to specify the password for azgmgrd:

Enter password:

d. Specify the password that you created in Step 2 and press Enter. The database resumes
startup:

Starting AnzoGraph...

e. Once startup is complete, the authentication must be completed by stopping the database and

system management daemon. Run the following two commands to stop the database and

daemon:

./<install_path>/bin/azgctl -stop

./<install_path>/bin/azgctl -stopdaemon

For example:

./opt/cambridgesemantics/anzograph/bin/azgctl -stop

./opt/cambridgesemantics/anzograph/bin/azgctl -stopdaemon

Securing an AnzoGraph Environment 85

8. You can now restart the AnzoGraph services. Run the first command on all servers in the cluster. Then

run the second command on the leader server:

sudo systemctl start azgmgrd

sudo systemctl start anzograph

Configure File Access Policies

AnzoGraph Version 2.5.6 and later offers configuration options for ensuring that only certain files or

directories on the server are accessible during the execution of a query. These configuration settings specify

patterns that are used to determine whether a directory or file is accessible. When AnzoGraph receives a

request that includes a path to a file or directory, it checks that path against the allowed and denied access

patterns. If the specified file or directory matches one of the allowed access patterns and it is not matched to

a deny pattern, the query is executed. If the specified path is matched to a denied pattern or is not matched

to any of the allowed patterns, the query is aborted and AnzoGraph returns an access denied error message.

For details and configuration instructions, see Managing AnzoGraph File Access Policies in the

Administration Guide.

Related Topics
AnzoGraph Requirements

AnzoGraph Server Administration in the Administration Guide

Securing an AnzoGraph Environment 86

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/file-access-policy.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/anzograph-admin.htm

Upgrading AnzoGraph
A key area of growth in AnzoGraph is the development and support of custom, user-managed extensions,

such as the Graph Data Interface for virtualization and Elasticsearch support. Most AnzoGraph releases

include revisions to the API and prepackaged extensions. Because of the frequency of AnzoGraph updates

and because the extensions directory (<install_path>/lib/udx) is user-managed rather than

AnzoGraph- or installer-controlled, you must uninstall the existing version of AnzoGraph and then install the

new version. In-place upgrades are not supported.

Since AnzoGraph is stateless when used with Anzo and Anzo manages all of your data, removing the

existing installation does not impact Anzo or your Graphmarts. Follow the instructions below to back up any

custom files and remove the installation directory before deploying a new version.

Important Complete the steps below as the Anzo service user.

1. First, run the following commands to stop the database and the system management daemon. On a

cluster, run these commands on the leader node:

sudo systemctl stop anzograph

sudo systemctl stop azgmgrd

2. Next, if you have custom files, such as certificates in <install_path>/config or JDBC drivers in

the <install_path>/lib/udx directory, make a backup copy of those files. Make sure that you

choose a backup location that is outside of the AnzoGraph installation path. After installing the new

version of AnzoGraph, you can place the custom files back into the appropriate directories.

Note
If you have modified the settings file, <install_path>/config/settings.conf,

Cambridge Semantics, Inc. recommends that you make a backup copy of the file on the leader

server so that you can refer to it when configuring the new deployment. As a best practice,

however, do not overwrite settings.conf in the new version of AnzoGraph with the backup

copy from the previous version. Instead, Cambridge Semantics recommends that you apply all

changes to the new file. Since new releases may add or remove settings or change the default

value of certain settings, it is important to use the version of the file that was installed with the

release.

Upgrading AnzoGraph 87

3. Remove the AnzoGraph installation directory from the file system. You can remove the software by

deleting the installation directory or by running the <install_path>/uninstall script and

following the prompts to remove the directory. On a cluster, uninstall AnzoGraph on all nodes.

Once AnzoGraph has been uninstalled, follow the instructions in Install AnzoGraph to install the new

release.

Related Topics
Uninstalling AnzoGraph

Install AnzoGraph

Upgrading AnzoGraph 88

Uninstalling AnzoGraph
This topic provides instructions for uninstalling AnzoGraph. On clusters, complete steps 2 through 4 below

on each server in the cluster.

Important Complete the steps below as the Anzo service user.

1. First, make sure the database and system management daemon processes are stopped. Run the

following commands to stop the services. On a cluster, run these commands on the leader server:

sudo systemctl stop anzograph

sudo systemctl stop azgmgrd

2. Next, if you have custom files, such as JDBC drivers or user-defined extensions in the <install_

path>/lib/udx directory, make a backup copy of those files on the leader node. Make sure that you

choose a backup location that is outside of the AnzoGraph installation path.

If you install a new version of AnzoGraph, you can place the custom files back into the appropriate

directory on the leader node.

3. Run the following command to begin the uninstall process:

./<install_path>/uninstall

The script asks if you want to proceed:

Do you want to proceed with AnzoGraph DB installation?

OK [o, Enter], Cancel [c]

4. Press Enter to confirm that you want to uninstall AnzoGraph.

The wizard asks if you want to clear the installation directory and user and configuration files:

Are you sure you want to completely remove AnzoGraph DB and all of its

components?

Yes [y, Enter], No [n]

5. Cambridge Semantics recommends that you remove all installation and configuration files. Press

Enter to remove the entire installation directory as well as all configuration and user files.

The wizard uninstalls AnzoGraph.

Uninstalling AnzoGraph 89

Deploying a Static Anzo Unstructured Cluster

If your organization plans to onboard unstructured data to Anzo, additional infrastructure is required for

running unstructured pipelines. This section provides instructions for deploying a static Anzo Unstructured

(AU) cluster. The topics include an overview of the AU infrastructure, details about the requirements and

recommendations, and instructions for installing the software components with the AU installer.

Tip
For instructions on setting up the Kubernetes infrastructure so that AU clusters can be launched on-

demand, see Configuring K8s for Dynamic Deployments.

Anzo Unstructured Overview 91

Anzo Unstructured Data Onboarding Process 97

Anzo Unstructured Requirements 99

Installing Anzo Unstructured 102

Installing and Configuring Elasticsearch 120

Upgrading Anzo Unstructured 127

Deploying a Static Anzo Unstructured Cluster 90

Anzo Unstructured Overview
One of Anzo’s differentiators as a leading enterprise knowledge graph and data integration platform is its

treatment of unstructured data as a first-class citizen in the knowledge graph. Anzo onboards unstructured

data—sources that contain text, such as PDFs, text messages, or text snippets embedded in structured

data—directly into the knowledge graph using configurable, scalable unstructured data pipelines. These

pipelines generate a graph model for the unstructured text and extracted metadata, and they create

connections in the graph between these elements and related entities so that the data can be fully integrated

into the knowledge graph. In addition, the pipelines build an Elasticsearch index that can be used for highly

performant, fully-integrated search queries that look across both free-text and semantic relationships within

the knowledge graph.

The following sections provide an overview of the key features of Anzo’s unstructured data integration

capabilities.

l Support for a Variety of Sources

l Text Processing and Annotation

l Text Indexing and Searching

l Scalability and Progress Tracking

Support for a Variety of Sources

Anzo’s onboarding pipelines can process unstructured text from a large variety of data sources and formats.

Configurable crawlers determine what unstructured text a given onboarding pipeline will process. The
crawlers can locate and extract text from files of a variety of formats, including PDFs, emails, HTML files, and

Microsoft Word documents.

Anzo’s unstructured onboarding pipelines can also be configured to crawl the knowledge graph itself for

unstructured content to index and annotate—whether the graph contains free-text directly or references to

locations of documents. When combined with Anzo’s data virtualization capabilities, this presents a flexible

and powerful framework to rapidly process unstructured data and bring it into a knowledge graph from

practically any source or repository in a modern data ecosystem. Anzo’s data virtualization capabilities allow

users to pull directly into the graph up-to-date structured file metadata from document repositories or

unstructured text data stored in external systems. The resulting graph can then be seamlessly passed on as

an input to unstructured processing pipelines.

Anzo Unstructured Overview 91

Text Processing and Annotation

As a baseline, unstructured pipelines in Anzo extract basic metadata about each document that they

process, such as file location, file size, title, author, etc., and store this metadata within the knowledge graph

according to a standardized graph model. The pipelines generate HTML versions of the document that can

be rendered in a browser, and references to the document’s original binary are maintained in the graph. With

this, unstructured content and its associated metadata can be connected and queried alongside any other

information stored in the knowledge graph.

Beyond this baseline processing capability, Anzo enables more advanced annotation of unstructured text.

Built-in, configurable annotators allow Anzo’s unstructured pipelines to pull out facts or references in the text

as annotations. Anzo adds the unstructured text data as well as these extracted annotations to the

knowledge graph, where they are described by a graph model (ontology) that is dynamically generated by

the onboarding pipeline. Additionally, the unstructured pipelines align the annotation spans to the source text

and include highlights of the annotated text in the rendered HTML version of the document. Once in the

knowledge graph, the unstructured annotation data can easily be discovered, explored, and connected

alongside basic document data as well as any other enterprise data in the graph.

The image below shows an HTML rendering of a document and its highlighted annotations in an Anzo Hi-

Res Analytics dashboard:

Anzo’s built-in annotators offer annotation capabilities based on pattern matching and taxonomies or

dictionaries of terms that already exist in the knowledge graph. Anzo’s unstructured pipelines also offer a

flexible and agnostic extension framework to support integration with external NLP engines that can provide

domain-specific or ML-driven text processing capabilities (for example, Amazon Sagemaker, spaCy NER,

Anzo Unstructured Overview 92

Amazon Comprehend, etc.). With simple configurations, Anzo’s pipelines provide unstructured plaintext to

these external components, and then bring their output back into the knowledge graph, dynamically

generating a graph model and connecting the extracted annotations to the document metadata and related

entities. This can serve not only as an effective way to integrate state-of-the-art NLP insights alongside

related data in a knowledge graph, but also as a flexible and transparent paradigm for validation and

analysis of ML-driven NLP development.

Text Indexing and Searching

Natively, Anzo’s unstructured pipelines create an Elasticsearch index of all unstructured files onboarded to

Anzo. These indexes contain references to URIs of related entities in the knowledge graph so that the

indexed data be joined directly against the rich and highly connected knowledge graph. When coupled with

AnzoGraph’s native Elasticsearch SPARQL extension, this allows a truly state-of-the-art integration. Users

can leverage AnzoGraph’s MPP engine and seamlessly execute queries that combine scalable, performant

free-text search alongside complex, semantic queries against the graph. Both elements of the query are

computed in a highly parallelized manner, resulting in unmatched query performance. This integration can

serve as a strong and flexible foundation for advanced, complex modern search applications.

The diagram below shows an overview of Anzo Unstructured’s Elasticsearch integration during pipeline

processing:

Anzo Unstructured Overview 93

The following diagram shows an overview of Anzo Unstructured’s Elasticsearch integration during querying

and analysis:

Anzo Unstructured Overview 94

Scalability and Progress Tracking

Anzo’s unstructured pipelines run using a highly distributed and performant microservice cluster built using

Akka. Worker nodes, which perform text processing in parallel, can be scaled out and up to increase the

processing throughput of the pipeline. With this parallelization and scalability, Anzo’s pipelines are capable

of processing tens of thousands of unstructured documents per minute. The pipeline processing services

can be deployed alongside Anzo on standard hardware or cloud instances, or they can be spun up

dynamically using Anzo’s native Kubernetes integration (see Configuring K8s for Dynamic Deployments for

more information).

To track the progress of unstructured data pipelines, Anzo offers a user interface that reports fine-grained

status information about each document and its processing status, as well as any issues encountered in

processing. The user interface also shows global statistics about a given pipeline run, including overall

Anzo Unstructured Overview 95

https://akka.io/

processing throughput, percentage complete, time elapsed, etc. This reporting module gives system

administrators a centralized view of processing progress and an easy way to oversee the pipeline as it

operates.

The image below shows Anzo’s reporting interface on unstructured pipeline progress:

For more information about unstructured pipeline processing and the resulting artifacts, see Anzo

Unstructured Data Onboarding Process.

Related Topics
Anzo Unstructured Data Onboarding Process

Anzo Unstructured Requirements

Installing Anzo Unstructured

Installing and Configuring Elasticsearch

Anzo Unstructured Overview 96

Anzo Unstructured Data Onboarding Process
Anzo onboards unstructured data through pipelines that run in a distributed environment where a cluster of

Worker nodes process the incoming documents and generate output artifacts for Anzo. This topic provides

an overview of the Anzo Unstructured (AU) pipeline process and infrastructure.

The diagram below provides a high level overview of the Anzo platform architecture with integration of AU

and Elasticsearch. The description below the diagram describes the unstructured data onboarding process

and resulting artifacts.

When an unstructured pipeline is run, an Anzo crawler service streams data to a pipeline service. The

pipeline service reads the stream of files and constructs the appropriate request payloads—one request per

document to process. Anzo sends the requests to the AU leader instance, and the leader queues the

requests and distributes them to the AU worker server instances to process in parallel. When each worker

instance processes a document, it creates a temporary output artifact on the shared file system. The artifact

includes:

l An RDF file that describes the text annotations and general metadata about the processed document.

l A binary store artifact for Anzo.

l A JSON artifact that contains a reference to the extracted text of the document. Elasticsearch uses this

artifact to generate the document index.

Anzo Unstructured Data Onboarding Process 97

When the AU workers have processed all of the documents, Anzo completes the following post-processing

steps:

l Consolidate the RDF artifacts from the workers and create a file-based linked data set (FLDS) for

loading to AnzoGraph.

l Read the JSON artifacts and instruct the Elasticsearch server to build an index with the text extracted

from the documents. A snaphsot of the index is saved on the file system with the FLDS. Any time a

graphmart that includes that FLDS is loaded to an AnzoGraph instance, Anzo loads the corresponding

snapshot into the Elasticsearch server that is associated with the AnzoGraph connection.

When the post-processing is finished, the pipeline service finalizes the FLDS metadata to store in its catalog.

The new unstructured data set becomes available in the Dataset catalog, and it can be added to a

Graphmart and loaded to AnzoGraph for use in Hi-Res Analytics dashboards.

Related Topics
Anzo Unstructured Overview

Anzo Unstructured Requirements

Installing Anzo Unstructured

Installing and Configuring Elasticsearch

Upgrading Anzo Unstructured

Anzo Unstructured Data Onboarding Process 98

Anzo Unstructured Requirements
The Anzo Unstructured (AU) infrastructure is highly customizable and scalable. The number, size, and

configuration of the servers in the environment depends on your unstructured data size, pipeline workload,

and performance expectations. This topic provides guidance on determining the infrastructure to deploy as

well as the requirements for each of the AU components. For an introduction to the AU architecture and

pipeline process, see Anzo Unstructured Data Onboarding Process.

AU requires two programs that are installed separately from Anzo:

l An Anzo Unstructured cluster for processing the incoming data. See Anzo Unstructured Cluster

Requirements and Recommendations.

l Elasticsearch for indexing and searching unstructured document contents. See Elasticsearch

Requirements and Recommendations.

Anzo Unstructured Cluster Requirements and Recommendations

An Anzo Unstructured (AU) cluster consists of one Leader instance and one or more Worker instances.

Cambridge Semantics provides an installation script for installing the AU software. In an AU cluster:

l The Leader instance is a lightweight program and is typically installed on the Anzo host server.

l TheWorker instances require significant resources to process the unstructured documents and are
typically installed on dedicated servers.

Consider the size of your unstructured data workload when deploying Worker host servers. Each Worker

instance can have multiple server instances to process documents. The table below lists the requirements

for Anzo Unstructured Worker servers:

Component Requirement

Operating
System

RHEL/CentOS 7.9

Cambridge Semantics recommends that you tune the ulimits for your Linux

distribution to increase the limits for certain resources. See Configure User Resource

Limits for more information.

CPU 8+ CPU

The more CPU you provision, the more parallelism and higher throughput you can

Anzo Unstructured Requirements 99

Component Requirement

achieve. AU processes N documents in parallel, where N is the total number of

Worker cores in the cluster (minus 1-2 CPU per node for management processes).

Since the nature of unstructured documents varies greatly from case to case and the

number of annotations per document can vary significantly, Cambridge Semantics

recommends that you start with at least 16 CPU per Worker node. If you are deploying

servers in a cloud environment, choose compute optimized machines that can be

scaled to add CPU if needed.

RAM 16+ GB

Unless you plan to process excessively large or complex documents, such as

documents with many graphics, you do not need to provision a significant amount of

RAM. Typical installations deploy about 2 GB RAM per CPU.

Disk Space 10+ GB

File System The Anzo file store (shared file system) must be accessible from each AU server in the

cluster. For more information about the shared file system, see Deploying the Shared File

System.

Note
Do not run any other software, including anti-virus software, on the Anzo Unstructured Worker

servers. Additional programs running on the Worker nodes may severely impact the performance of

Unstructured Pipelines.

For instructions on installing Anzo Unstructured, see Installing Anzo Unstructured.

Elasticsearch Requirements and Recommendations

Anzo Unstructured uses the Elasticsearch engine to build an index after an unstructured pipeline runs and

for running searches on unstructured data that is onboarded to Anzo. When choosing an Elasticsearch host

server, consider the following information:

l Generating the index is a lightweight operation compared to document search operations. If you have

a light unstructured data workload and do not perform text searches on large amounts of data,

installing an Elasticsearch engine on the Anzo host server might be sufficient.

Anzo Unstructured Requirements 100

l If you onboard a large number of unstructured documents and plan to perform text searches across a

large amount of data, Cambridge Semantics recommends that you install Elasticsearch on a dedicated

server.

The table below list the Elasticsearch server requirements:

Component Requirement

Elasticsearch
Version

Versions 7.10.2 – 7.17.3 are supported.

Java Elasticsearch requires Java 11 or later. The software includes an embedded JDK.

CPU 8+ cores

RAM 64+ GB

Disk Space 100+ GB

Ports By default, the port range for Elasticsearch requests (http.port) is 9200-9300. If port
9200 is not available when Elasticsearch is started, Elasticsearch tries 9201 and so on

until it finds an accessible port. The Anzo server and the AnzoGraph leader server need

to be able to access Elasticsearch on the HTTP request port that Elasticsearch uses.

File System The Anzo file store (shared file system) must be accessible from each Elasticsearch

server. For more information about the shared file system, see Deploying the Shared

File System.

For instructions on installing Elasticsearch, see Installing and Configuring Elasticsearch.

Related Topics
Installing Anzo Unstructured

Installing and Configuring Elasticsearch

Anzo Unstructured Requirements 101

Installing Anzo Unstructured
This topic provides instructions for deploying an Anzo Distributed Unstructured cluster.

Tip See Anzo Unstructured Requirements for details about server requirements.

1. Complete the Pre-Installation Configuration

2. Deploy the Leader Node

3. Deploy the Worker Nodes

4. Configure and Start the Anzo DU Services

5. Configure the Connection to Anzo

Installing Anzo Unstructured 102

Complete the Pre-Installation Configuration

l Configure User Resource Limits

l Use the Anzo Service User Account when Installing AU

Configure User Resource Limits

Before installing Anzo Unstructured, Cambridge Semantics recommends that you tune the user resource

limits (ulimits) for your Linux distribution to increase the limits for the following resources. Tune ulimits on all

AU host servers in the cluster:

l Increase the limit for the following resources to at least 65535:
o open files (nofile)
o max user processes (nproc)

l Increase the limit for the following resources to infinity:
o address space (as)
o CPU time (cpu)
o file locks (locks)
o file size (fsize)
o max memory size (memlock)

To view the current ulimits, run ulimit -a. To permanently change ulimits, modify the

/etc/security/limits.conf file. For information, see How to set ulimit values in the RHEL support

documentation.

Note
Typically, as part of post-installation configuration, a systemd service is set up to start and stop the

Leader and Worker processes. When systemd starts a process, however, it uses the limits that are

defined in the systemd service rather than the limits in /etc/security/limits.conf. In addition

to changing the ulimits in limits.conf, it is important to set the limits in the Leader and Worker

services. The service file contents shown in Configure and Start the Anzo DU Services includes the

recommended ulimit settings.

Complete the Pre-Installation Configuration 103

https://access.redhat.com/solutions/61334

Use the Anzo Service User Account when Installing AU

Important
Since the Anzo Unstructured cluster will access the shared file store, it is important to install and run

the software with the same service account that runs Anzo. For more information, see Anzo Service

Account Requirements.

Complete the Pre-Installation Configuration 104

Deploy the Leader Node

Follow the instructions below to deploy the Anzo Distributed Unstructured (DU) leader node.

1. Make sure that the leader host server has access to the Anzo shared file system and meets the

requirements in Anzo Unstructured Cluster Requirements and Recommendations.

2. Copy the Anzo DU installation script to the leader server and then run the following command to make

the script executable:

chmod +x <script_name>

3. If necessary, run the following command to become the Anzo service user:

su <name>

Where <name> is the name of the service user. For example:

su anzo

4. Run the following command to start the installation wizard:

./<script_name>

The script unpacks the JRE and then waits for input before starting the installation.

5. Press Enter to start the installation. The software license agreement is presented.

6. Review the software license agreement. Press Enter to scroll through the terms. At the end of the
agreement, type 1 to accept the terms or type 2 to disagree and stop the installation.

When the agreement is accepted, the installer prompts you to specify the components to install:

Which components should be installed?

1: Leader [*1]

2: Worker [*2]

(To show the description of a component, please enter one of *1, *2)

Please enter a comma-separated list of the selected values or [Enter] for

the default selection:

[1,2]

Deploy the Leader Node 105

7. At the components prompt, type 1 (Leader) and then press Enter.

The installer prompts you to specify the installation path:

Where should the Anzo Unstructured be installed?

[/opt/AnzoDU]

8. Specify the path and directory to install Anzo DU. Press Enter to accept the default installation path or
type an alternate path and then press Enter.

Next, the installer prompts for the hostname of this leader instance. It defaults to the IP address of the

server:

Set the hostname for this node.

Enter the HostName/Address for this node.

Hostname/Address

[10.100.0.11]

9. Press Enter to accept the default value. If necessary, type a different IP address, and then press

Enter.

The installer then prompts for any additional leader node hostnames. Typically there is one leader

node and this value is specified as the same IP address as the previous step.

Configure leader hostnames

Please enter the hostnames or addresses for the leader nodes. Each entry

comma separated.

[10.100.0.11]

10. If you set up additional leader nodes for redundancy, enter a comma separated list of the IP addresses

for the alternate nodes. Otherwise, accept the default value and press Enter.

Next, the installer prompts you to specify the maximum amount of memory that this leader instance

can use. The installer lists the total RAM available and chooses 1/2 of the total memory as the default

value.

Choose the maximum memory that the node can use

Please enter the maximum amount of RAM memory that the node may use.

The minimum amount currently supported is 1024 MB. 29995 MB is available.

Maximum Memory in MB

[14998]

Deploy the Leader Node 106

11. Specify the maximum amount of memory (in MB) that this leader instance can use. Press Enter to
accept the default value or specify an alternate value and then press Enter.

12. The installation of the Anzo DU leader software begins and is configured according to the values that

you specified. Proceed to Deploy the Worker Nodes to install the Worker instances.

Deploy the Leader Node 107

Deploy the Worker Nodes

Follow the instructions below to deploy the Anzo Distributed Unstructured (DU) worker nodes.

1. Make sure that the worker host servers have access to the Anzo shared file system and meet the

requirements in Anzo Unstructured Cluster Requirements and Recommendations.

2. Copy the Anzo DU installation script to each of the worker servers and then run the following command

to make the script executable:

chmod +x <script_name>

3. If necessary, run the following command to become the Anzo service user:

su <name>

Where <name> is the name of the service user. For example:

su anzo

4. Run the following command to start the installation wizard:

./<script_name>

The script unpacks the JRE and then waits for input before starting the installation.

5. Press Enter to start the installation. The software license agreement is presented.

6. Review the software license agreement. Press Enter to scroll through the terms. At the end of the
agreement, type 1 to accept the terms or type 2 to disagree and stop the installation.

When the agreement is accepted, the installer prompts you to specify the components to install:

Which components should be installed?

1: Leader [*1]

2: Worker [*2]

(To show the description of a component, please enter one of *1, *2)

Please enter a comma-separated list of the selected values or [Enter] for

the default selection:

[1,2]

Deploy the Worker Nodes 108

7. At the components prompt, type 2 (Worker) and then press Enter.

The installer prompts you to specify the installation path:

Where should the Anzo Unstructured be installed?

[/opt/AnzoDU]

8. Specify the path and directory to install Anzo DU. Press Enter to accept the default installation path or
type an alternate path and then press Enter.

Next, the installer prompts for the hostname of this worker instance. It defaults to the IP address of the

server:

Set the hostname for this node.

Enter the HostName/Address for this node.

Hostname/Address

[10.100.0.12]

9. Press Enter to accept the default value. If necessary, type a different IP address, and then press

Enter.

The installer then prompts you to specify the maximum number of service instances for this worker

node. Each service instance processes one unstructured document at a time. The default value is 4

instances.

Choose the maximum number of service instances and worker port

Please enter the maximum number of service instances to use.

The minimum amount currently supported is 1.

Maximum Service Instances

[4]

10. Press Enter to accept the default number of maximum service instances or specify another value and

then press Enter.

The installer now prompts you to specify the port to use for this worker. The default port is 2552.

Worker Port

[2552]

11. Specify the port to use for this worker. Press Enter to accept the default value or type a different port
and then press Enter.

Deploy the Worker Nodes 109

Next, the installer prompts you to specify the hostname(s) of the leader node(s).

Configure leader hostnames

Please enter the hostnames or addresses for the leader nodes. Each entry

comma separated.

[]

12. Specify the IP address for the leader instance that you deployed in Deploy the Leader Node above. If

you deployed multiple leader nodes, specify each leader's IP address in a comma separated list.

The installer now prompts you to specify the maximum amount of memory that this worker instance

can use. The installer lists the total RAM available and chooses 1/2 of the total memory as the default

value.

Choose the maximum memory that the node can use

Please enter the maximum amount of RAM memory that the node may use.

The minimum amount currently supported is 1024 MB. 29995 MB is available.

Maximum Memory in MB

[14998]

13. Specify the maximum amount of memory (in MB) that this worker instance can use. Press Enter to
accept the default value or specify an alternate value and then press Enter.

The installation of the Anzo DU worker software begins and is configured according to the values that

you specified.

14. Repeat the steps above for each worker instance in the cluster.

Once the leader and all of the worker nodes are installed, proceed to Configure and Start the Anzo

DU Services.

Note
If you upgraded the Anzo Unstructured software, make sure that you restart the leader and worker

applications.

In addition, restart the Anzo Server Akka Cluster Integration and Anzo Unstructured
Distributed services. To restart these services:

1. In the Administration application, expand the Servers menu and click Advanced
Configuration.

Deploy the Worker Nodes 110

2. On the Advanced Configuration screen, click the I understand and accept the risk button to
view the Anzo bundles.

3. In the Search field at the top of the screen, start typing the name of the service that you want to
restart. When the service appears in the list onscreen, click the service name to view the

details.

4. At the top of the screen, click Stop Bundle. Then click Start Bundle when the start option
becomes available.

Deploy the Worker Nodes 111

Configure and Start the Anzo DU Services

Once the Anzo Unstructured (AU) cluster is installed, Cambridge Semantics recommends that you set up

leader and worker services to ensure that AU runs as the Anzo service user and can access the data that

other platform components write to the shared file system. Follow the instructions below to configure the

services.

Note Root user privileges are required to complete these tasks.

1. Configure and Start the Leader Service

2. Configure and Start the Worker Service

Configure and Start the Leader Service

Follow the instructions below to create and start the leader service.

1. On the leader server, create a file called anzo-du-leader.service in the
/usr/lib/systemd/system directory. For example:

vi /usr/lib/systemd/system/anzo-du-leader.service

2. Add the following contents to anzo-du-leader.service. Placeholder values are shown in bold:

[Unit]

Description=Service for Distributed Unstructured Leader

After=syslog.target network.target local-fs.target remote-fs.target nss-

lookup.target

[Service]

Type=forking

RemainAfterExit=yes

LimitCPU=infinity

LimitNOFILE=65536

LimitAS=infinity

LimitNPROC=65536

LimitMEMLOCK=infinity

LimitLOCKS=infinity

LimitFSIZE=infinity

ExecStart=/install_path/leader start

Configure and Start the Anzo DU Services 112

ExecStop=/install_path/leader stop

User=service_user_name

Group=service_user_name

[Install]

WantedBy=default.target

Where install_path is the Anzo DU installation path and directory and service_user_name is the
name of the Anzo service user. For example:

[Unit]

Description=Service for Distributed Unstructured Leader

After=syslog.target network.target local-fs.target remote-fs.target nss-

lookup.target

[Service]

Type=forking

RemainAfterExit=yes

LimitCPU=infinity

LimitNOFILE=65536

LimitAS=infinity

LimitNPROC=65536

LimitMEMLOCK=infinity

LimitLOCKS=infinity

LimitFSIZE=infinity

ExecStart=/opt/AnzoDU/leader start

ExecStop=/opt/AnzoDU/leader stop

User=anzo

Group=anzo

[Install]

WantedBy=default.target

3. Save and close the file, and then run the following commands to start and enable the new service:

systemctl start anzo-du-leader.service

systemctl enable anzo-du-leader.service

Configure and Start the Anzo DU Services 113

Once the service is enabled, the leader should be running. Any time you start and stop the leader, run the

following systemctl commands: sudo systemctl stop anzo-du-leader and sudo systemctl

start anzo-du-leader.

Configure and Start the Worker Service

Follow the instructions below to create and start the worker service. Complete the steps below on each

worker node in the cluster.

1. Create a file called anzo-du-worker.service in the /usr/lib/systemd/system directory. For
example:

vi /usr/lib/systemd/system/anzo-du-worker.service

2. Add the following contents to anzo-du-worker.service. Placeholder values are shown in bold:

[Unit]

Description=Service for Distributed Unstructured Worker

After=syslog.target network.target local-fs.target remote-fs.target nss-

lookup.target

[Service]

Type=forking

RemainAfterExit=yes

LimitCPU=infinity

LimitNOFILE=65536

LimitAS=infinity

LimitNPROC=65536

LimitMEMLOCK=infinity

LimitLOCKS=infinity

LimitFSIZE=infinity

ExecStart=/install_path/worker start

ExecStop=/install_path/worker stop

User=service_user_name

Group=service_user_name

[Install]

WantedBy=default.target

Configure and Start the Anzo DU Services 114

Where install_path is the Anzo DU installation path and directory and service_user_name is the
name of the Anzo service user. For example:

[Unit]

Description=Service for Distributed Unstructured Worker

After=syslog.target network.target local-fs.target remote-fs.target nss-

lookup.target

[Service]

Type=forking

RemainAfterExit=yes

LimitCPU=infinity

LimitNOFILE=65536

LimitAS=infinity

LimitNPROC=65536

LimitMEMLOCK=infinity

LimitLOCKS=infinity

LimitFSIZE=infinity

ExecStart=/opt/AnzoDU/worker start

ExecStop=/opt/AnzoDU/worker stop

User=anzo

Group=anzo

[Install]

WantedBy=default.target

3. Save and close the file, and then run the following commands to start and enable the new service:

systemctl start anzo-du-worker.service

systemctl enable anzo-du-worker.service

4. Repeat the steps above for each worker server.

Once the service is enabled, the worker should be running. Any time you start and stop a worker, run the

following systemctl commands: sudo systemctl stop anzo-du-worker and sudo systemctl

start anzo-du-worker.

Configure and Start the Anzo DU Services 115

Important
Any time the AU leader instance is restarted, the Anzo Server Akka Cluster Integration and Anzo
Unstructured Distributed services must be restarted in Anzo. To restart a service:

1. In the Administration application, expand the Servers menu and click Advanced
Configuration.

2. On the Advanced Configuration screen, click the I understand and accept the risk button to
view the Anzo bundles.

3. In the Search field at the top of the screen, start typing the name of the service that you want to
restart. When the service appears in the list onscreen, click the service name to view the

details.

4. At the top of the screen, click Stop Bundle. Then click Start Bundle when the start option
becomes available.

Configure and Start the Anzo DU Services 116

Configure the Connection to Anzo

After deploying and starting an Anzo Unstructured cluster, there is one more step needed to complete the

configuration of the connection from Anzo to the DU cluster. Follow the instructions below to configure the

connection.

1. In the Administration application, expand the Connections menu and click Unstructured Clusters.
The Unstructured Clusters screen lists the available clusters. For example, the image below shows the

locally connected cluster that was just installed. Note that the Status is Disconnected:

2. Click the name of the new cluster to open the Configuration screen. For example:

Configure the Connection to Anzo 117

3. Click the Edit button to open the Edit Cluster Configuration dialog box.

4. On the Edit Cluster Configuration dialog box, complete the Client and Leader Host Name fields. You

do not need to specify the Leader Port as Anzo automatically populates the port once the connection is

established.

l Client Host Name: Specify the hostname or IP address of the Anzo server.

l Leader Host Name: Specify the hostname or IP address of the leader server. This is the value

specified in Step 8 in Deploy the Leader Node above.

5. Click Save to save the connection configuration. Anzo connects to the cluster, adds the Leader Port
value, and returns to the Configuration screen. For example:

Configure the Connection to Anzo 118

The new Anzo Unstructured cluster is now connected to Anzo and ready to process unstructured pipelines. If

you return to the Unstructured Clusters screen, the Status of the cluster is now Connected and the number
of Akka Nodes is displayed. For example:

For information about onboarding unstructured data, see Onboarding Unstructured Data in the User Guide.

Related Topics
Installing and Configuring Elasticsearch

Configure the Connection to Anzo 119

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/onboard-unstructured.htm

Installing and Configuring Elasticsearch
This topic provides instructions for deploying Elasticsearch for use in the Anzo platform.

Important
Elasticsearch cannot be run as the root user and must have read and write access to the Anzo file

store. Therefore, it is important to install and run Elasticsearch as the Anzo service user, otherwise

unstructured pipelines will fail due to permissions errors. For more information, see Anzo Service

Account Requirements.

1. Make sure that the Elasticsearch host server has access to the Anzo shared file system and meets the

requirements in Elasticsearch Requirements and Recommendations.

2. Become the Anzo service user before proceeding. If necessary, create the user on the server. For

more information, see Make Sure the Anzo Service User Account is Created.

3. Download a supported Elasticsearch version from the Elasticsearch Past Releases website. Docker

images are also available from the Docker @ Elastic website.

Note Anzo supports Elasticsearch Versions 7.10.2 – 7.17.3.

4. Follow the appropriate version of the Elasticsearch Guide to install and configure the software.

5. As part of the Elasticsearch configuration, Elastic recommends that you modify the following Linux

kernel configuration settings:

l vm.swappiness: Controls the tendency of the kernel to move processes out of physical memory
and onto the swap disk. Elastic recommends that you set this value to 1.

l vm.max_map_count: Sets the limit on the maximum number of memory map areas a process

can use. Elastic recommends that you set this value to 262144.

You have two options for configuring the values:

1. You can update the /etc/sysctl.conf file to include the following contents:

For more information, see sysctl.conf(5) and sysctl.d(5).

vm.swappiness = 1

vm.max_map_count = 262144

Installing and Configuring Elasticsearch 120

https://www.elastic.co/downloads/past-releases#elasticsearch
https://www.docker.elastic.co/
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/index.html

Important
With this method, you must reboot the system to apply the configuration changes after

sysctl.conf is updated.

2. You can run the following sysctl commands to configure the settings:

sysctl -e vm.swappiness=1

sysctl -e vm.max_map_count=262144

6. Next, configure Elasticsearch to save snapshots to the Anzo shared file system.

l For a mounted file system, such as NFS, uncomment the Path setting, path.repo (or path.data
in some versions), in <elasticsearch_install_path>/config/elasticsearch.yml

and specify the path and directory for the mounted file system:

path.repo: /<path>/<directory>

For example:

path.repo: /opt/anzoshare

l For S3, see S3 Repository Plugin in the Elasticsearch documentation for information about

installing the S3 repository plugin. Then see Client Settings for instructions on configuring the S3

client.

l For HDFS, see Hadoop HDFS Repository Plugin in the Elasticsearch documentation for

information about installing the HDFS repository plugin. Then see Hadoop Security for

information about configuring Kerberos authentication.

7. Configure the amount of memory that Elasticsearch can use. By default, Elasticsearch is configured to

use a maximum heap size of 1 GB. Cambridge Semantics recommends that you increase the amount

to 50% of the memory that is available on the server. To change the configuration, open the

<elasticsearch_install_path>/config/jvm.options file in an editor. At the top of the file,

modify the Xms and Xmx values to replace the 1 with the new value. For example:

Xms represents the initial size of total heap space

Xmx represents the maximum size of total heap space

Installing and Configuring Elasticsearch 121

https://www.elastic.co/guide/en/elasticsearch/plugins/current/repository-s3.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/repository-s3-client.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/repository-hdfs.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/repository-hdfs-security.html

-Xms15g

-Xmx15g

8. If you want to secure the Elasticsearch instance, follow the instructions in Configuring security in

Elasticsearch in the Elasticsearch documentation.

Important
If you set up SSL authentication with a trusted certificate, make sure that you add the

certificate to the Anzo trust store. For instructions, see See Adding a Certificate to the Anzo

Trust Store in the Administration Guide.

9. When the configuration is complete, see Configuring an Elasticsearch Service below for instructions

on configuring Elasticsearch to start automatically as the Anzo user.

Configuring an Elasticsearch Service

Cambridge Semantics recommends that you configure an Elasticsearch service for starting Elasticsearch

automatically as the Anzo service user. Follow the instructions below to implement the service.

Note Root user privileges are required to complete this task.

1. Create a file called elasticsearch.service in the /usr/lib/systemd/system directory. For

example:

vi /usr/lib/systemd/system/elasticsearch.service

2. Add the following contents to elasticsearch.service. The text below includes placeholder

<elasticsearch_install_path>, <anzo_service_user>, and <anzo_service_group> values. Replace
the placeholders with the appropriate values for your Elasticsearch installation location as well as the

user and group name for your Anzo service user account.

[Unit]

Description=Elasticsearch

Documentation=https://www.elastic.co

Wants=network-online.target

After=network-online.target

[Service]

Installing and Configuring Elasticsearch 122

https://www.elastic.co/guide/en/elasticsearch/reference/current/configuring-security.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/configuring-security.html
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/trust-store.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/trust-store.htm

Type=forking

RuntimeDirectory=elasticsearch

Use the following setting to specify an alternate Java JVM if not using

the

embedded JVM in elasticsearch/jdk.

Environment=ES_JAVA_HOME=<java_install_path>

Environment=ES_HOME=<elasticsearch_install_path>

Environment=ES_PATH_CONF=<elasticsearch_install_path>/config

User=<anzo_service_user>

Group=<anzo_service_group>

ExecStart=<elasticsearch_install_path>/bin/elasticsearch --daemonize

Specifies the maximum file descriptor number that can be opened by this

process

LimitNOFILE=65535

Specifies the maximum number of processes

LimitNPROC=4096

Specifies the maximum size of virtual memory

LimitAS=infinity

Specifies the maximum file size

LimitFSIZE=infinity

Max Locked Memory

LimitMEMLOCK=infinity

Disable timeout logic and wait until process is stopped

TimeoutStopSec=0

SIGTERM signal is used to stop the Java process

KillSignal=SIGTERM

Send the signal only to the JVM rather than its control group

KillMode=process

Installing and Configuring Elasticsearch 123

Java process is never killed

SendSIGKILL=no

When a JVM receives a SIGTERM signal it exits with code 143

SuccessExitStatus=143

Allow a slow startup before the systemd notifier module kicks in to

extend the timeout

TimeoutStartSec=75

[Install]

WantedBy=multi-user.target

The following example shows a completed elasticsearch.service file:

[Unit]

Description=Elasticsearch

Documentation=https://www.elastic.co

Wants=network-online.target

After=network-online.target

[Service]

Type=forking

RuntimeDirectory=elasticsearch

Use the following setting to specify an alternate Java JVM if not using

the

embedded JVM in elasticsearch/jdk.

Environment=ES_JAVA_HOME=<java_install_path>

Environment=ES_HOME=/opt/elasticsearch

Environment=ES_PATH_CONF=/opt/elasticsearch/config

User=anzo

Group=anzo

ExecStart=/opt/elasticsearch/bin/elasticsearch --daemonize

Specifies the maximum file descriptor number that can be opened by this

process

Installing and Configuring Elasticsearch 124

LimitNOFILE=65535

Specifies the maximum number of processes

LimitNPROC=4096

Specifies the maximum size of virtual memory

LimitAS=infinity

Specifies the maximum file size

LimitFSIZE=infinity

Max Locked Memory

LimitMEMLOCK=infinity

Disable timeout logic and wait until process is stopped

TimeoutStopSec=0

SIGTERM signal is used to stop the Java process

KillSignal=SIGTERM

Send the signal only to the JVM rather than its control group

KillMode=process

Java process is never killed

SendSIGKILL=no

When a JVM receives a SIGTERM signal it exits with code 143

SuccessExitStatus=143

Allow a slow startup before the systemd notifier module kicks in to

extend the timeout

TimeoutStartSec=75

[Install]

WantedBy=multi-user.target

3. Save and close the file, and then run the following commands to start and enable the new service:

systemctl enable elasticsearch.service

Installing and Configuring Elasticsearch 125

systemctl status elasticsearch.service

systemctl start elasticsearch.service

Once the service is in place, Elasticsearch should be stopped and started via systemctl. For example,

systemctl stop elasticsearch and systemctl start elasticsearch.

Once this Elasticsearch instance is configured and running, follow the instructions in Connecting to

Elasticsearch in the Administration Guide to connect Anzo to this instance.

Related Topics
Anzo Unstructured Requirements

Installing Anzo Unstructured

Installing and Configuring Elasticsearch 126

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/admin-connect-elasticsearch.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/admin-connect-elasticsearch.htm

Upgrading Anzo Unstructured
The steps to upgrade the Anzo Unstructured (AU) software are the same as the installation instructions in

Installing Anzo Unstructured. When you update the existing installation, each prompt defaults to the value

that is specified for the current deployment. You can press Enter through the prompts to retain the existing
settings. The last step in the process, however, asks if you want to overwrite files in the <AnzoDU_

install_path>/etc directory that have been modified. Cambridge Semantics recommends that you

choose ya (Yes To All) to overwrite all files in that directory so that important options from the version you

are upgrading to are deployed to your environment. If you have customized files in the etc directory, create a

backup copy of the directory before starting the upgrade so that you can refer to the backup files when

customizing the new version.

Important
When upgrading the AU software, the Leader and Worker applications must be upgraded at the

same time using the same installer so that the software versions are identical across the cluster. You

cannot upgrade the Worker nodes without upgrading the Leader and vice versa.

After the upgrade, make sure that you restart the Leader and Worker applications as well as the

following Anzo services:

l Anzo Server Akka Cluster Integration

l Anzo Unstructured Distributed

Related Topics
Installing Anzo Unstructured

Installing and Configuring Elasticsearch

Upgrading Anzo Unstructured 127

Configuring K8s for Dynamic Deployments

Anzo integrates with Amazon Elastic Kubernetes Service (EKS), Google Kubernetes Engine (GKE), and

Azure Kubernetes Service (AKS) services to offer Kubernetes-based, dynamic deployments of AnzoGraph,

Anzo Unstructured with Anzo Agent, Spark, and Elasticsearch.

The Kubernetes (K8s) integration automates the provisioning and deprovisioning of the resources and

applications that support onboarding and accessing data in Anzo. In a K8s-based environment, Anzo users

can activate pre-configured environments on-demand without needing specific technical, cloud platform, or

infrastructure deployment skills. In addition, right-sized clusters are automatically created and deleted,

avoiding the need to keep instances running indefinitely and reducing the overall cost of maintaining the

applications.

The topics in this section provide an overview of K8s concepts, general requirements for integrating K8s with

Anzo, and guidance on choosing the compute instances that are ideal for hosting the Anzo applications. This

section also includes instructions on deploying and configuring all of the K8s infrastructure for each of the

supported cloud service providers.

Kubernetes Concepts 129

Anzo K8s Requirements 131

Compute Resource Planning 134

Deploying the K8s Infrastructure 137

Configuring K8s for Dynamic Deployments 128

Kubernetes Concepts
To set up the Kubernetes (K8s) infrastructure needed to integrate with Anzo, you use scripts that are

supplied by Cambridge Semantics and the API for your preferred cloud service provider (CSP) to deploy a

K8s cluster. The cluster includes a K8s API server, which manages all communication for the cluster.

In the cluster, you create a number of node pools or node groups. A node pool or node group is a group of
nodes within a cluster that all have the same configuration. Different node pools are designed based on

machine types and specific properties to be set on each node. The nodes are tuned to host a particular type
of pod. A pod is an instance of an application, i.e., a container of images. The diagram below shows a high

level view of a K8s cluster:

For example, an AnzoGraph node pool contains the type of nodes that are suitable for running pods with

AnzoGraph images.

Node pools can be configured so that they are static or autoscaling. In static node pools, the nodes are
deployed in the K8s cluster and remain provisioned even if they do not run an application. If a node pool is

configured with an autoscaler, nodes are not deployed unless resources are requested. When the resources

are no longer in use, the autoscaler deprovisions the nodes.

For more information about node pools and other requirements, see Anzo K8s Requirements.

Related Topics

Kubernetes Concepts 129

Anzo K8s Requirements

Compute Resource Planning

Deploying the K8s Infrastructure

Kubernetes Concepts 130

Anzo K8s Requirements
This section gives an overview of the general infrastructure requirements for Anzo K8s integration.

Additional software, network infrastructure, and permission-related requirements are included in the

deployment instructions for each of the cloud service providers.

l Supported Kubernetes Versions

l File Storage Requirements

l Node Pool Requirements

l Container Registry Requirements

Supported Kubernetes Versions

The table below shows the supported Kubernetes (K8s) versions by Cloud Service Provider (CSP):

CSP K8s v1.21 K8s v1.22 K8s v1.23 K8s v1.24

Amazon EKS

Google GKE

Azure AKS

File Storage Requirements

A network file system (NFS) is required for shared file storage between Anzo and the dynamic applications.

You are required to create the file system. However, Anzo automatically mounts the NFS to the nodes when

AnzoGraph, Anzo Unstructured, Spark, or Elasticsearch pods are deployed. See Deploying the Shared File

System for more information.

Node Pool Requirements

There are three types of node pools or node groups that you are required to configure for integration with

Anzo. In addition to the scripts for creating and configuring the K8s cluster, Cambridge Semantics supplies

configuration files to use as templates for defining the policies for each type of node pool. The node pools

can be configured as static or autoscaling.

Anzo K8s Requirements 131

Operator Node Pool

An Operator node pool is tuned to run operator pods. Operator pods manage the application pods and

control the K8s resources of the applications that are deployed in the node pools. There is one operator

for each application: AnzoGraph, Elasticsearch, Anzo Agent and Anzo Unstructured, and Spark. Anzo

deploys and manages the operator pods. With the help of the operators, Anzo orchestrates the

provisioning and deprovisioning of the application nodes and pods. Since the operators in the Operator

node pool are required to be active at all times, operator pods are designed to be very small and use very

few resources. They can be deployed on standard, small-sized cloud instances.

AnzoGraph Node Pool

An AnzoGraph node pool is tuned to run AnzoGraph pods. AnzoGraph node pools are typically

configured to auto-scale so that nodes are not deployed unless a user requests an AnzoGraph

environment for loading a graphmart or running queries against the data in a graphmart.

Dynamic Node Pool

The Dynamic node pool is tuned to run Elasticsearch, Spark, Anzo Agent, and Anzo Unstructured (AU)

pods. Dynamic node pools are also typically configured to auto-scale so that nodes are not deployed

unless a user requests an environment for running a structured or unstructured pipeline.

The diagram below shows the K8s cluster architecture with the required node pools.

Anzo K8s Requirements 132

Note
For Amazon EKS deployments, there is a fourth type of required node group. The additional type,

called a Common node group, is tuned to run K8s service pods, such as Cluster Autoscalers and

Load Balancers.

For guidance on choosing the instance types and sizes for the nodes in the required node pools, see

Compute Resource Planning.

Container Registry Requirements

You are not required to set up an internal container registry for Anzo and K8s integration. However, if your

K8s cluster will not have outbound internet access for retrieving container images from the Cambridge

Semantics repository, you will need to create a container registry through your Cloud Service Provider.

Related Topics
Kubernetes Concepts

Compute Resource Planning

Deploying the K8s Infrastructure

Anzo K8s Requirements 133

Compute Resource Planning
This section provides guidance on choosing the instance types for the nodes in your node pools.

l Operator Nodes

l AnzoGraph Nodes

l Dynamic Nodes

Operator Nodes

The operator pods are very small. Each operator requires 0.5 CPU. The table below lists the recommended

instance types and sizes for a single operator. If you plan to co-locate operators on a single instance,

increase CPU accordingly. For example, an instance with 4 CPU can run up to 7 operators (3.5 CPU for

operator pods and 0.5 CPU for the auxiliary service).

CSP Suggested Instance
Type vCPU RAM Disk

AWS m5.large 2 8 GiB 50 GB

GCP n1-standard-1 1 3.75 GiB 50 GB

Azure Standard_DS2_v2 2 7 GiB 50 GB

Note
For Amazon EKS deployments, the Suggested Instance Type for Operator nodes is also

recommended for nodes in the Common node group. The Common group runs K8s service pods,

such as Cluster Autoscalers and Load Balancers, which are very small and require few resources.

AnzoGraph Nodes

Since AnzoGraph is a high-performance, in-memory database, RAM is generally the most critical resource to

consider when determining the overall size and number of nodes to use for AnzoGraph environments.

Consider the size of the data that you plan to load and then multiply that size by 3 or 4 to determine the total

memory requirement. Query processing and intermediate results can temporarily consume a very large

amount of memory. For more information about AnzoGraph sizing guidelines, see Sizing Guidelines for In-

Memory Storage.

Compute Resource Planning 134

Also, unlike Anzo Unstructured, for example, where leader and worker pods can be colocated on the same

node, Cambridge Semantics recommends that only one AnzoGraph pod is run per node. The table below

shows a range of cloud instances to choose from that are ideal for running AnzoGraph pods.

CSP Suggested Instance Range vCPU
Range

RAM
Range Disk

AWS m5.4xlarge – m5.16xlarge 8 – 64 32 GiB –

256 GiB

100 GB

GCP n1-standard-8 – n1-standard-64 8 – 64 30 GiB –

240 GiB

100 GB

Azure DSv2 and DSv3 series 8 – 64 28 GiB –

256 GiB

100 GB

Dynamic Nodes

Nodes in the Dynamic node pool need to be sized to run Anzo Agent pods. An Anzo Agent is a scaled down

version of the Anzo server that coordinates the sending of documents to the Anzo Unstructured (AU) worker

nodes. Anzo Agent pods require more resources than AU leader and worker, Elasticsearch, and Spark pods.

Each unstructured pipeline deploys a single Anzo Agent pod, and the pod needs to have enough resources

to coordinate the pipeline. Anzo Agent pods are typically deployed as one pod per node, while the AU

worker, Elasticsearch, and Spark nodes run multiple pods per node. The table below lists the recommended

instance types and sizes for running the Anzo Agent pods. The recommended instances are also sufficient

for running multiple AU, Elasticsearch, and Spark pods.

CSP Suggested Instance
Type vCPU RAM Disk

AWS m5.2xlarge 8 32 GiB 100 GB

GCP n1-standard-8 8 30 GiB 100 GB

Azure Standard_D8s_v3 8 32 GiB 100 GB

For instructions on setting up the K8s infrastructure, see Deploying the K8s Infrastructure.

Compute Resource Planning 135

Related Topics
Kubernetes Concepts

Anzo K8s Requirements

Deploying the K8s Infrastructure

Compute Resource Planning 136

Deploying the K8s Infrastructure
To get started on setting up the K8s infrastructure to support dynamic deployments of Anzo components, see

the deployment instructions for your cloud service provider:

l For Amazon Web Services, see Amazon EKS Deployments.

l For Google Cloud Platform, see Google Kubernetes Engine Deployments.

l For Microsoft Azure Cloud, see Azure Kubernetes Service Deployments.

Related Topics
Kubernetes Concepts

Anzo K8s Requirements

Compute Resource Planning

Deploying the K8s Infrastructure 137

Amazon EKS Deployments

The topics in this section guide you through the process of deploying all of the Amazon Elastic Kubernetes

Service (EKS) infrastructure that is required to support dynamic deployments of Anzo components. The

topics provide instructions for setting up a workstation to use for deploying the K8s infrastructure, performing

the prerequisite tasks before deploying the EKS cluster, creating the EKS cluster, and creating the required

node groups.

Setting Up a Workstation 138

Planning the Anzo and EKS Network Architecture 144

Creating and Assigning IAM Policies 147

Creating the EKS Cluster 151

Creating the Required Node Groups 163

Setting Up a Workstation

This topic provides the requirements and instructions to follow for configuring a workstation to use for

creating and managing the EKS infrastructure. The workstation needs to be able to connect to the AWS API.

It also needs to have the required AWS and Kubernetes (K8s) software packages as well as the deployment

scripts and configuration files supplied by Cambridge Semantics. This workstation will be used to connect to

the AWS API and provision the K8s cluster and node groups.

Note
You can use the Anzo server as the workstation if the network routing and security policies permit

the Anzo server to access the AWS and K8s APIs. When deciding whether to use the Anzo server as

the K8s workstation, consider whether Anzo may be migrated to a different server or VPC in the

future.

l Review the Requirements and Install the Software

l Download the Cluster Creation Scripts and Configuration Files

Review the Requirements and Install the Software

Component Requirement

Operating System The operating system for the workstation must be RHEL/CentOS 7.8
or later.

Amazon EKS Deployments 138

Component Requirement

Networking The workstation should be in the same VPC as the EKS cluster. If it is

not in the same VPC, make sure that it is on a network that is routable

from the cluster's VPC.

Software l AWS-CLI Version 2 is recommended. Version 1.16.156 or
later is supported. For instructions, see Install AWS-CLI below.

l EKSCTL Version 0.40.0 or later is required. For instructions,
see Install EKSCTL below.

l Kubectl Versions 1.21 – 1.24 are supported. Cambridge
Semantics recommends that you use the same kubectl version

as the EKS cluster version. For instructions, see Install Kubectl

below.

CSI EKSCTL
Package

Cambridge Semantics provides eksctl scripts and configuration files to
use for provisioning the EKS cluster and node groups. Download the

files to the workstation. See Download the Cluster Creation Scripts and

Configuration Files for more information about the eksctl package.

Install AWS-CLI

AWS CLI is the AWS command line interface. Version 2 is recommended. Follow the instructions below to

install the latest aws-cli version 2 package. For more information, see Installing, Updating, and Uninstalling

the AWS CLI Version 2 on Linux in the AWS CLI documentation.

1. Run the following command to download the latest aws-cli package to the current directory:

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o

"awscliv2.zip"

2. Run the following command to unzip the package:

unzip awscliv2.zip

3. Then run the following command to run the install program. By default, the files are all installed to

Setting Up a Workstation 139

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html

/usr/local/aws-cli, and a symbolic link is created in /usr/local/bin.

sudo ./aws/install

Install EKSCTL

EKSCTL is the AWS EKS command line interface. Version 0.40.0 or later is required. Follow the instructions

below to download the eksctl package and place it in the /usr/local/bin directory. For more information,

see Installing eksctl in the Amazon EKS documentation.

1. Run the following command to download the eksctl package to the /tmp directory:

curl --silent --location

"https://github.com/weaveworks/eksctl/releases/download/<tag>/eksctl_

$(uname -s)_amd64.tar.gz" | tar xz -C /tmp

Where <tag> is the release that you want to download. For example:

curl --silent --location

"https://github.com/weaveworks/eksctl/releases/download/0.40.0/eksctl_

$(uname -s)_amd64.tar.gz" | tar xz -C /tmp

2. Then run the following command to move eksctl to the /usr/local/bin directory:

sudo mv /tmp/eksctl /usr/local/bin

Install Kubectl

Follow the instructions below to install kubectl on your workstation. Cambridge Semantics recommends that

you install the same version of kubectl as the K8s cluster API. For more information, see Install and Set Up

kubectl on Linux in the Kubernetes documentation.

1. Run the following cURL command to download the kubectl binary:

curl -LO https://dl.k8s.io/release/<version>/bin/linux/amd64/kubectl

Where <version> is the version of kubectl to install. For example, the following command downloads

version 1.19.12:

curl -LO https://dl.k8s.io/release/v1.19.12/bin/linux/amd64/kubectl

Setting Up a Workstation 140

https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

2. Run the following command to make the binary executable:

chmod +x ./kubectl

3. Run the following command to move the binary to your PATH:

sudo mv ./kubectl /usr/local/bin/kubectl

4. To confirm that the binary is installed and that you can run kubectl commands, run the following

command to display the client version:

kubectl version --client

The command returns the following type of information. For example:

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.12",

GitCommit:"f3abc15296f3a3f54e4ee42e830c61047b13895f",

GitTreeState:"clean", BuildDate:"2021-06-16T13:21:12Z",

GoVersion:"go1.13.15", Compiler:"gc", Platform:"linux/amd64"}

Download the Cluster Creation Scripts and Configuration Files

The Cambridge Semantics GitHub repository, k8s-genesis (https://github.com/cambridgesemantics/k8s-

genesis.git), includes all of the files that are needed to manage the configuration, creation, and deletion of

the EKS cluster and node groups.

You can clone the repository to any location on the workstation or download the k8s-genesis package as a

ZIP file, copy the file to the workstation, and extract the contents. The k8s-genesis directory includes three

subdirectories (one for each supported Cloud Service Provider), the license information, and a readme file:

k8s-genesis

├── aws

├── azure

├── gcp

├── LICENSE

└── README.md

Setting Up a Workstation 141

https://github.com/cambridgesemantics/k8s-genesis

Navigate to /aws/k8s/eksctl. The eksctl directory contains all of the EKS cluster and node group

configuration files. You can remove all other directories from the workstation. The eksctl files and

subdirectories are shown below:

eksctl

├── aws_cli_common.sh

├── common.sh

├── conf.d

│ ├── iam_serviceaccounts.yaml

│ ├── k8s_cluster.conf

│ ├── nodepool_anzograph.yaml

│ ├── nodepool_common.yaml

│ ├── nodepool_dynamic.yaml

│ ├── nodepool_operator.yaml

│ └── nodepool.yaml

├── create_k8s.sh

├── create_nodepools.sh

├── delete_k8s.sh

├── delete_nodepools.sh

├── README.md

├── reference

│ ├── ca_autodiscover-patch-file.yaml

│ ├── ca_autodiscover.yaml

│ ├── cluster-autoscaler-policy.json

│ ├── nodepool_anzograph_tuner.yaml

│ ├── nodepool_dynamic_tuner.yaml

│ ├── versions

│ └── warm_ip_target.yaml

└── sample_use_cases

├── 1_existing_vpc_private_cluster

│ └── k8s_cluster.conf

├── 2_new_vpc_public_cluster

│ └── k8s_cluster.conf

└── 3_nat_ha_private_cluster

└── k8s_cluster.conf

The following list gives an overview of the files. Subsequent topics describe the files in more detail.

l The aws-cli-common.sh and common.sh scripts are used by the create*.sh and delete*.sh scripts
during EKS cluster and node group creation and deletion.

Setting Up a Workstation 142

l The conf.d directory contains the configuration files that supply the specifications to follow when

creating the EKS cluster and node groups.
o iam_serviceaccounts.yaml: Supplies optional IAM roles for Service Account specifications for

use as part of cluster creation if you would like to assign permissions for the applications that run

on EKS.
o k8s_cluster.conf: Supplies the specifications for the EKS cluster.
o nodepool_anzograph.yaml: Supplies the specifications for the AnzoGraph node group.
o nodepool_common.yaml: Supplies the specifications for the Common node group.
o nodepool_dynamic.yaml: Supplies the specifications for the Dynamic node group.
o nodepool_operator.yaml: Supplies the specifications for the Operator node group.
o nodepool.yaml: This file is supplied as a reference. It contains the superset of node group
parameters and includes comments that provide additional information.

l The create_k8s.sh script is used to deploy the EKS cluster.

l The create_nodepools.sh script is used to deploy node groups in the EKS cluster.

l The delete_k8s.sh script is used to delete the EKS cluster.

l The delete_nodepools.sh script is used to remove node groups from the EKS cluster.

l The reference directory contains crucial files that are referenced by the cluster and node group
creation scripts. The files in the directory should not be edited, and the reference directory must exist
on the workstation at the same level as the create*.sh and delete*.sh scripts.

l The sample_use_cases directory contains sample EKS cluster configuration files that you can refer to

or use as a template for configuring your EKS cluster depending on your use case:
o The k8s_cluster.conf file in the 1_existing_vpc_private_cluster directory is a sample file for a
use case where you want to deploy the EKS cluster in an existing VPC that does not have public

internet access.
o The k8s_cluster.conf file in the 2_new_vpc_public_cluster directory is a sample file for a use
case where you want to deploy the EKS cluster into a new VPC with public internet access that is

restricted to specific IP ranges.
o The k8s_cluster.conf file in the 3_nat_ha_private_cluster directory is a sample file for a use
case where you want to create a private EKS cluster in an existing VPC and deploy highly

available NAT gateways.

Setting Up a Workstation 143

Once the workstation is configured, see Planning the Anzo and EKS Network Architecture to review

information about the network architecture that the eksctl scripts create. And see Creating and Assigning

IAM Policies for instructions on creating the IAM policies that are needed for assigning permissions to create

and use the EKS cluster.

Related Topics
Planning the Anzo and EKS Network Architecture

Creating and Assigning IAM Policies

Creating the EKS Cluster

Creating the Required Node Groups

Planning the Anzo and EKS Network Architecture

This topic describes the network architecture that supports the Anzo and EKS integration.

Note
When you deploy the K8s infrastructure, Cambridge Semantics strongly recommends that you

create the EKS cluster in the same VPC as Anzo. If you create the cluster in a new VPC, you must

configure the new VPC to be routable from the Anzo VPC.

The diagram below shows the typical network components that are employed when an EKS cluster is

integrated with Anzo. Most of the network resources shown in the diagram are automatically deployed (and

the appropriate routing is configured) according to the values that you supply in the cluster and node group

.conf files in the eksctl package on the workstation.

Planning the Anzo and EKS Network Architecture 144

In the diagram, there are two components that you deploy before configuring and creating the K8s

resources:

l Anzo: Since the Anzo server is typically deployed before the K8s components, you specify the Anzo
VPC ID when creating the EKS cluster, ensuring that Anzo and all of the EKS cluster components are

in the same network and can talk to each other. Also, make sure that Anzo has access to the AWS and

EKS APIs.

l NFS: You are required to create a network file system (NFS). However, Anzo automatically mounts the

NFS to the nodes when AnzoGraph, Anzo Unstructured, Spark, and Elasticsearch pods are deployed

so that all of the applications can share files. See Deploying the Shared File System for more

information. The NFS does not need to have its own subnet but it can.

The rest of the components in the diagram are automatically provisioned, depending on your specifications,

when the EKS cluster and node groups are created. The eksctl scripts can be used to create NAT gateways

and subnets for outbound internet access, such as for pulling container images from the Cambridge

Semantics repository. In addition, the scripts create a subnet for the K8s services and node groups and

configure the routing so that Anzo can communicate with the K8s services and the services can talk to the

pods that are deployed in the node groups.

Planning the Anzo and EKS Network Architecture 145

Tip
When considering the network requirements of your organization and planning how to integrate the

new K8s infrastructure in accordance with those requirements, it may help to consider the following

types of use cases. Cambridge Semantics supplies sample cluster configuration files in the

eksctl/sample_use_cases directory that are tailored for each of these use cases:

l Deploy a private EKS cluster in an existing VPC (i.e., the same VPC as Anzo)

In this use case, the EKS cluster is deployed in a private subnet in your existing VPC. And a

new (or existing, if you have one) NAT gateway is used to enable access to external services

that are outside of the VPC. The control plane security group is configured to allow access only

from certain CIDRs, and communication through VPN can be enabled to allow a virtual private

gateway to automatically propagate routes to the route tables.

l Deploy a public EKS cluster in a new VPC

In this use case, a new VPC is created with the specified CIDR. A new NAT gateway is

deployed to provide outbound connectivity for the cluster nodes. Public and private subnets

are also created, and public access is restricted to specific IP ranges. The new VPC will need

to be configured so that it is routable from Anzo.

l Deploy a private, highly available EKS cluster in an existing VPC

In this use case (like the first case listed above) a private EKS cluster is deployed in an existing

VPC. In addition, NAT gateways are created in each of the cluster's Availability Zones, making

the cluster highly available.

For a summary of the files in the eksctl directory, see Download the Cluster Creation Scripts and

Configuration Files. Specifics about the parameters in the sample files are included in Creating the

EKS Cluster.

To get started on creating the EKS infrastructure, see Creating and Assigning IAM Policies for instructions

on creating the IAM policies that are needed for assigning permissions to create and use the EKS cluster.

Related Topics
Setting Up a Workstation

Creating and Assigning IAM Policies

Creating the EKS Cluster

Creating the Required Node Groups

Planning the Anzo and EKS Network Architecture 146

Creating and Assigning IAM Policies

There are two custom Identity and Access Management (IAM) policies that need to be created in AWS to

grant the necessary permissions to the following two types of EKS users:

1. The first type of user is the user who accesses AWS services to set up the K8s infrastructure, i.e., the

user who configures, creates, and maintains the EKS cluster and node groups. This policy is called the

EKS Cluster Admin.

2. The second type of user is the user who connects to the EKS cluster and deploys the dynamic Anzo

applications. Typically this user is Anzo. Since Anzo communicates to the K8s services that provision

the applications, the Anzo service account needs to be granted certain privileges. This user role is

called the EKS Cluster Developer.

Note
The enterprise-level Anzo service account is a requirement for the Anzo installation and is

typically in place before Anzo is installed. For more information, see Anzo Service Account

Requirements.

This topic provides instructions for creating the two policies and gives guidance on attaching the policies to

the appropriate users or roles.

l Create and Assign the EKS Cluster Admin Policy

l Create and Assign the EKS Cluster Developer Policy

Create and Assign the EKS Cluster Admin Policy

The following IAM policy applies the minimum permissions needed for an EKS cluster administrator who will

create and manage the cluster and node groups. Follow the steps below to create the policy and attach it to

the appropriate principal.

1. Refer to Creating IAM Policies in the AWS documentation to create the following policy using your

preferred method. You can save the contents below as a JSON file on your workstation and use the

AWS CLI to create the policy, or you can paste the contents on the JSON tab if you use the IAM

console.

{

"Version": "2012-10-17",

"Statement": [

{

Creating and Assigning IAM Policies 147

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

"Sid": "IAMPermissions",

"Effect": "Allow",

"Action": [

"iam:GetInstanceProfile",

"iam:CreateInstanceProfile",

"iam:AddRoleToInstanceProfile",

"iam:RemoveRoleFromInstanceProfile",

"iam:DeleteInstanceProfile",

"iam:GetRole",

"iam:CreateRole",

"iam:TagRole",

"iam:PassRole",

"iam:GetRolePolicy",

"iam:AttachRolePolicy",

"iam:PutRolePolicy",

"iam:DetachRolePolicy",

"iam:DeleteRolePolicy",

"iam:UntagRole",

"iam:DeleteRole"

],

"Resource": "*"

},

{

"Sid": "ComputeAndEKS",

"Effect": "Allow",

"Action": [

"autoscaling:*",

"cloudformation:*",

"elasticloadbalancing:*",

"ec2:*",

"eks:*"

],

"Resource": "*"

},

{

"Sid": "ECRPushPull",

"Effect": "Allow",

"Action": [

Creating and Assigning IAM Policies 148

"ecr:CompleteLayerUpload",

"ecr:DescribeImages",

"ecr:GetAuthorizationToken",

"ecr:DescribeRepositories",

"ecr:UploadLayerPart",

"ecr:InitiateLayerUpload",

"ecr:BatchCheckLayerAvailability",

"ecr:PutImage"

],

"Resource": "*"

}

]

}

2. Once the policy has been created, attach the policy to any principal that will be used to configure,

create, and maintain the EKS cluster and node groups. For instructions on attaching policies, see

Adding and removing IAM identity permissions in the AWS Identity and Access Management User

Guide.

Create and Assign the EKS Cluster Developer Policy

The following IAM policy applies the minimum permissions needed for an EKS cluster developer. Follow the

steps below to create the policy and attach it to the Anzo service account.

1. Refer to Creating IAM Policies in the AWS Identity and Access Management User Guide to create the

following policy using your preferred method. You can save the contents below as a JSON file on your

workstation and use the AWS CLI to create the policy, or you can paste the contents on the JSON tab if

you use the IAM console.

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "Compute",

"Effect": "Allow",

"Action": [

"ec2:*",

"elasticloadbalancing:*",

"autoscaling:*"

Creating and Assigning IAM Policies 149

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

],

"Resource": "*"

},

{

"Sid": "Pricing",

"Effect": "Allow",

"Action": [

"pricing:GetProducts"

],

"Resource": "*"

},

{

"Sid": "EKSListAndDescribe",

"Effect": "Allow",

"Action": [

"eks:ListUpdates",

"eks:DescribeCluster",

"eks:DescribeNodegroup", //Needed for GovCloud only

"eks:ListClusters",

"eks:ListNodegroups", //Needed for GovCloud only

"eks:ListTagsForResource" //Needed for GovCloud only

],

"Resource": "arn:aws:eks:*:*:cluster/*"

},

{

"Sid": "ECRPull",

"Effect": "Allow",

"Action": [

"ecr:GetDownloadUrlForLayer",

"ecr:GetAuthorizationToken",

"ecr:BatchGetImage",

"ecr:BatchCheckLayerAvailability"

],

"Resource": "*"

}

]

}

Creating and Assigning IAM Policies 150

2. Once the policy has been created, attach the policy to the Anzo service user so that Anzo has

permission to connect to the EKS services and deploy application pods. For instructions on attaching

policies, see Adding and removing IAM identity permissions in the AWS Identity and Access

Management User Guide.

Once the IAM policies are in place and attached to principals, proceed to Creating the EKS Cluster for

instructions on configuring and creating the cluster.

Related Topics
Creating the EKS Cluster

Creating the Required Node Groups

Creating the EKS Cluster

Follow the instructions below to define the EKS cluster resource requirements and then create the cluster

based on your specifications.

l Define the EKS Cluster Requirements

l (Optional) Define the IAM Role for K8s Service Accounts Requirements

l Create the EKS Cluster

Define the EKS Cluster Requirements

The first step in creating the K8s cluster is to define the infrastructure specifications. The configuration file to

use for defining the specifications is called k8s_cluster.conf. Multiple sample k8s_cluster.conf files are
included in the eksctl directory. Any of them can be copied and used as templates, or the files can be edited

directly.

Sample k8s_cluster.conf Files

To help guide you in choosing the appropriate template for your use case, this section describes each of the

sample files. Details about the parameters in the sample files are included in Cluster Parameters below.

eksctl/conf.d/k8s_cluster.conf

This file is a non-specific use case. It includes sample values for all of the available cluster parameters.

eksctl/sample_use_cases/1_existing_vpc_private_cluster/k8s_cluster.conf

This file includes sample values for a use case where:

l The EKS cluster will be deployed in a new private subnet in an existing VPC. You specify the existing

VPC ID in the VPC_ID parameter.

Creating the EKS Cluster 151

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

l A NAT gateway is deployed to enable access to external services. If your VPC has an existing NAT

gateway that you want to use, you can specify the CIDR for the existing gateway in the NAT_SUBNET_

CIDRS parameter.

l The control plane security group is configured to allow access only from certain CIDRs. Those CIDRs

are specified in the ALLOW_NETWORK_CIDRS parameter.

l Communication through your VPN can be enabled and routes can automatically be propagated to the

route tables by including ENABLE_ROUTE_PROPAGATION=true.

eksctl/sample_use_cases/2_new_vpc_public_cluster/k8s_cluster.conf

This file includes sample values for a use case where:

l A new VPC will be created and the EKS cluster will be deployed into it. You specify the CIDR for the

new VPC in the VPC_CIDR parameter.

l A NAT gateway is deployed to enable outbound connectivity for the cluster nodes.

l Public and private subnets will be created in the new VPC based on the CIDRs specified in the

PUBLIC_SUBNET_CIDRS and PRIVATE_SUBNET_CIDRS parameters.

l Public access can be restricted to certain IP ranges by specifying the allowed CIDRs in the ALLOW_

NETWORK_CIDRS parameter.

l Since a new VPC is created (rather than creating the cluster in the same VPC as Anzo) the new VPC

must be configured to allow access from Anzo.

eksctl/sample_use_cases/3_nat_ha_private_cluster/k8s_cluster.conf

Like the 1_existing_vpc_private_cluster sample file described above, this file includes sample values
for a use case where:

l The EKS cluster will be deployed in a new private subnet in an existing VPC. You specify the existing

VPC ID in the VPC_ID parameter.

l Multiple NAT gateways will be created, making the cluster highly available. One NAT gateway is

deployed in each Availability Zone specified in the AvailabilityZones parameter. And a CIDR for

each gateway needs to be specified in the NAT_SUBNET_CIDRS parameter. In addition, VPC_NAT_

MODE="HighlyAvailable".

l The control plane security group is configured to allow access only from certain CIDRs. Those CIDRs

are specified in the ALLOW_NETWORK_CIDRS parameter.

l Communication through VPN is enabled to automatically propagate routes to the route tables by

including ENABLE_ROUTE_PROPAGATION=true.

Creating the EKS Cluster 152

Cluster Parameters

The contents of k8s_cluster.conf are shown below. Descriptions of the cluster parameters follow the

contents.

AWS Configuration parameters

REGION="<region>"

AvailabilityZones="<zones>"

TAGS="<tags>"

Networking configuration

VPC_ID="<vpc-id>"

VPC_CIDR="<vpc-cidr>"

NAT_SUBNET_CIDRS="<nat-subnet-cidr>"

PUBLIC_SUBNET_CIDRS="<public-subnet-cidr>"

PRIVATE_SUBNET_CIDRS="<private-subnet-cidr>"

VPC_NAT_MODE="<nat-mode>"

WARM_IP_TARGET="<warm-ip-target>"

PUBLIC_ACCESS_CIDRS="<public-access-cidrs>"

ALLOW_NETWORK_CIDRS="<allow-network-cidrs>"

ENABLE_ROUTE_PROPAGATION=<enable-route-propagation>

EKS control plane configuration

CLUSTER_NAME="<name>"

CLUSTER_VERSION="<version>"

ENABLE_PRIVATE_ACCESS=<resources-vpc-config endpointPrivateAccess>

ENABLE_PUBLIC_ACCESS=<resources-vpc-config endpointPublicAccess>

CNI_VERSION="<cni-version>"

Logging types: ["api","audit","authenticator","controllerManager","scheduler"]

ENABLE_LOGGING_TYPES="<logging-types>"

DISABLE_LOGGING_TYPES="<logging-types>"

Common parameters

WAIT_DURATION=<wait-duration>

WAIT_INTERVAL=<wait-interval>

STACK_CREATION_TIMEOUT="<timeout>"

Creating the EKS Cluster 153

Parameter Description

REGION The AWS region for the EKS cluster. For example, us-east-1.

AvailabilityZones A space-separated list of each of the Availability Zones in which you want to make

the EKS cluster highly available. To ensure that the AWS EKS service can

maintain high availability, you can list up to three Availability Zones. For example,

us-east-1a us-east-1b.

TAGS A comma-separated list of any labels that you want to add to the EKS cluster

resources. Tags are optional key/value pairs that you define for categorizing

resources.

VPC_ID The ID of the VPC to provision the cluster into. Typically this value is the ID for the

VPC that Anzo is deployed in. For example, vpc-0dd06b24c819ec3e5.

Note
If you want eksctl to create a new VPC, you can leave this value blank.

However, after deploying the EKS cluster, you must configure the new

VPC to make it routable from the Anzo VPC.

VPC_CIDR The CIDR block to use for the VPC. For example, 10.107.0.0/16.

Note
Supply this value even if VPC_ID is not set and a new VPC will be

created.

NAT_SUBNET_
CIDRS

A space-separated list of the CIDR blocks for the public subnets that will be used

by the NAT gateway. For example, 10.107.0.0/24 10.107.5.0/24.

Note
The number of CIDR blocks should equal the number of specified

AvailabilityZones if you want the NAT gateway to be highly available.

PUBLIC_SUBNET_ A space-separated list of the CIDR blocks for the public subnets. For example,

Creating the EKS Cluster 154

Parameter Description

CIDRS 10.107.1.0/24 10.107.2.0/24. For a private cluster, leave this value blank.

PRIVATE_SUBNET_
CIDRS

A space-separated list of the CIDR blocks for the private subnets. For example,

10.107.3.0/24 10.107.4.0/24.

VPC_NAT_MODE The NAT mode for the VPC. Valid values are "HighlyAvailable," "Single," or

"Disable." When this value is HighlyAvailable and multiple Availability Zones are
specified in AvailabilityZones, a NAT gateway is deployed in each zone.

WARM_IP_TARGET Specifies the "warm pool" or number of free IP addresses to keep available for pod

assignment on each node so that there is less time spent waiting for IP addresses

to be assigned when a pod is scheduled. Cambridge Semantics recommends that

you set this value to 8.

PUBLIC_ACCESS_
CIDRS

A comma-separated list of the CIDR blocks that can access the K8s API server

over the public endpoint.

ALLOW_
NETWORK_CIDRS

A comma-separated list of the CIDR blocks that can access the K8s API over port

443.

ENABLE_ROUTE_
PROPAGATION

Indicates whether to allow the virtual private gateway to automatically propagate

routes to the route tables. This feature is useful when the cluster subnets need

access to intranet/VPN routes.

CLUSTER_NAME Name to give the EKS cluster. For example, csi-k8s-cluster.

CLUSTER_
VERSION

The Kubernetes version of the EKS cluster.

ENABLE_PRIVATE_
ACCESS

Indicates whether to enable private (VPC-only) access to the EKS cluster

endpoint. This parameter accepts a "true" or "false" value and maps to the EKS --

resources-vpc-config endpointPrivateAccess option. The default

value in k8s_cluster.conf is true.

Creating the EKS Cluster 155

Parameter Description

ENABLE_PUBLIC_
ACCESS

Whether to enable public access to the EKS cluster endpoint. This parameter

accepts a "true" or "false" value and maps to the EKS --resources-vpc-

config endpointPublicAccess option. The default value in k8s_cluster.conf

is false.

CNI_VERSION An optional property that specifies the version of the VPC CNI plugin to use for pod

networking.

ENABLE_
LOGGING_TYPES

A comma-separated list of the logging types to enable for the cluster. Valid values

are api, audit, authenticator, controllerManager, and scheduler. For
information about the types, see Amazon EKS Control Plane Logging in the EKS

documentation. The default value in k8s_cluster.conf is api,audit for Kubernetes
API logging and Audit logs, which provide a record of the users, administrators, or

system components that have affected the cluster.

DISABLE_
LOGGING_TYPES

A comma-separated list of the logging types to disable for the cluster. Valid values

are api, audit, authenticator, controllerManager, and scheduler. The default
value in k8s_cluster.conf is controllerManager,scheduler, which disables the
Kubernetes Controller Manager daemon as well as the Kubernetes Scheduler.

WAIT_DURATION The number of seconds to wait before timing out during cluster resource creation.

For example, 1200means the creation of a resource will time out if it is not finished
in 20 minutes.

WAIT_INTERVAL The number of seconds to wait before polling for resource state information. The

default value in k8s_cluster.conf is 10 seconds.

STACK_
CREATION_
TIMEOUT

Example Cluster Configuration File

An example completed k8s_cluster.conf file is shown below.

Creating the EKS Cluster 156

https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html

AWS Configuration parameters

REGION="us-east-1"

AvailabilityZones="us-east-1a us-east-1b"

TAGS="Description=EKS Cluster"

Networking configuration

VPC_ID="vpc-0dd06b24c819ec3e5"

VPC_CIDR="10.107.0.0/16"

NAT_SUBNET_CIDRS="10.107.0.0/24 10.107.5.0/24"

PUBLIC_SUBNET_CIDRS="10.107.1.0/24 10.107.2.0/24"

PRIVATE_SUBNET_CIDRS="10.107.3.0/24 10.107.4.0/24"

VPC_NAT_MODE="HighlyAvailable"

WARM_IP_TARGET="8"

PUBLIC_ACCESS_CIDRS="1.2.3.4/32,1.1.1.1/32"

ALLOW_NETWORK_CIDRS="10.108.0.0/16 10.109.0.0/16"

ENABLE_ROUTE_PROPAGATION=true

EKS control plane configuration

CLUSTER_NAME="csi-k8s-cluster"

CLUSTER_VERSION="1.19"

ENABLE_PRIVATE_ACCESS=True

ENABLE_PUBLIC_ACCESS=False

CNI_VERSION="1.7.5"

Logging types: ["api","audit","authenticator","controllerManager","scheduler"]

ENABLE_LOGGING_TYPES="api,audit"

DISABLE_LOGGING_TYPES="controllerManager,scheduler"

Common parameters

WAIT_DURATION=1200

WAIT_INTERVAL=10

STACK_CREATION_TIMEOUT="30m"

(Optional) Define the IAM Role for K8s Service Accounts Requirements

For fine-grained permission management of the applications that run in the EKS cluster, you can associate

an IAM role with a Kubernetes (K8s) Service Account. The Service Account can then be used to grant

permissions to the pods in the cluster so that the container applications can use an AWS SDK or AWS CLI to

make API requests to AWS services like S3 or Amazon RDS. For details, see IAM Roles for Service

Accounts in the Amazon EKS documentation.

Creating the EKS Cluster 157

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

If you want to create a new IAM role with associated K8s Service Accounts during EKS cluster creation, you

can define the Service Account requirements in the iam_serviceaccounts.yaml file in the conf.d
directory. When you create the cluster, there is a prompt that asks if you want to update IAM properties for

the cluster. Responding y (yes) creates the account based on the specifications in iam_
serviceaccounts.yaml. The contents of the file are shown below. Descriptions of the parameters follow the

contents.

apiVersion: eksctl.io/v1alpha5

kind: ClusterConfig

metadata:

name: <eks-cluster-name>

region: <cluster-region>

iam:

withOIDC: true

serviceAccounts:

- metadata:

name: <service-account-name>

namespace: <namespace>

labels: {<label-name>: "<value>"}

attachPolicyARNs:

- "<arn>"

tags:

<tag-name>: "<value>"

- metadata:

name: <service-account-name>

namespace: <namespace>

labels: {<label-name>: "<value>"}

attachPolicyARNs:

- "<arn>"

tags:

<tag-name>: "<value>"

wellKnownPolicies:

<policy>: <enable-policy>

roleName: <role-name>

roleOnly: <role-only>

Creating the EKS Cluster 158

Parameter Description

apiVersion The version of the schema for this object.

kind The schema for this object.

name The name of the EKS cluster (CLUSTER_NAME) to create the Service Accounts

for. For example, csi-k8s-cluster.

region The region that the EKS cluster is deployed in (REGION). For example, us-east-
1.

withOIDC Indicates whether to enable the IAM OpenID Connect Provider (OIDC) as well as

IRSA for the Amazon CNI plugin. This value must be true. Amazon requires
OIDC to use IAM roles for Service Accounts.

serviceAccounts There are multiple - metadata sequences under serviceAccounts. Each

sequence supplies the metadata for one Service Account. You can include

any number of metadata sequences to create multiple Service Accounts.

- metadata:

name: <service-account-name>

namespace: <namespace>

labels: {<label-name>: "<value>"}

attachPolicyARNs:

- "<arn>"

tags:

<tag-name>: "<value>"

name The name to use for the Service Account.

namespace The namespace to create the Service Account in. If the namespace you specify

does not exist, a new namespace is created. If namespace is not specified,

default is used.

labels An optional list of labels to add to the Service Account.

Creating the EKS Cluster 159

Parameter Description

attachPolicyARNs A list of the Amazon Resource Names (ARN) for the IAM policies to attach to the

Service Account.

tags An optional list of tags to add to the Service Account.

wellKnownPolicies A list of any common AWS IAM policies that you want to attach to the Service

Accounts, such as imageBuilder, autoScaler, awsLoadBalancerController, or

certManager. For a complete list of the supported well-known policies, see the

eksctl Config File Schema.

roleName The name for the new Service Account IAM Role.

roleOnly Indicates whether to annotate the Service Accounts with the ARN of the new IAM

Role (eks.amazonaws.com/role-arn). Cambridge Semantics recommends that

you set this value to true.

Example IAM Role for Service Accounts Configuration File

An example completed iam_serviceaccounts.yaml file is shown below. This example creates a role called

S3ReadRole with one Service Account that gives AnzoGraph containers read-only access to Amazon S3.

apiVersion: eksctl.io/v1alpha5

kind: ClusterConfig

metadata:

name: csi-k8s-cluster

region: us-east-1

iam:

withOIDC: true

serviceAccounts:

- metadata:

name: s3-reader

namespace: anzograph

labels: {app: "database"}

attachPolicyARNs:

- "arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess"

tags:

Creating the EKS Cluster 160

https://eksctl.io/usage/schema/#iam-serviceAccounts-wellKnownPolicies

Team: "AnzoGraph Deployment"

wellKnownPolicies:

autoScaler: true

roleName: S3ReadRole

roleOnly: true

Create the EKS Cluster

After defining the cluster requirements, run the create_k8s.sh script in the eksctl directory to create the
cluster.

Note
The create_k8s.sh script references the files in the eksctl/reference directory. If you

customized the directory structure on the workstation, ensure that the reference directory is
available at the same level as create_k8s.sh before creating the cluster.

Run the script with the following command. The arguments are described below.

./create_k8s.sh -c <config_file_name> [-d <config_file_directory>] [-f | --

force] [-h | --help]

Argument Description

-c <config_
file_name>

This is a required argument that specifies the name of the configuration file that supplies
the cluster requirements. For example, -c k8s_cluster.conf.

-d <config_
file_
directory>

This is an optional argument that specifies the path and directory name for the
configuration file specified for the -c argument. If you are using the original eksctl

directory file structure and the configuration file is in the conf.d directory, you do not need

to specify the -d argument. If you created a separate directory structure for different Anzo

environments, include the -d option. For example, -d /eksctl/env1/conf.

-f | --force This is an optional argument that controls whether the script prompts for confirmation
before proceeding with each stage involved in creating the cluster. If -f (--force) is
specified, the script assumes the answer is "yes" to all prompts and does not display them.

-h | --help This argument is an optional flag that you can specify to display the help from the create_

Creating the EKS Cluster 161

Argument Description

k8s.sh script.

For example, the following command runs the create_k8s script, using k8s_cluster.conf as input to the script.

Since k8s_cluster.conf is in the conf.d directory, the -d argument is excluded:

./create_k8s.sh -c k8s_cluster.conf

The script validates that the required software packages, such as the aws-cli, eksctl, and kubectl, are

installed and that the versions are compatible with the script. It also displays an overview of the deployment

details based on the values in the configuration file.

The script then prompts you to proceed with deploying each component of the EKS cluster infrastructure.

Type y (yes) and press Enter to proceed with each step in creating the specified network, cluster, Internet
gateway, NAT gateway, route table, and security group resources. All resources are created according to the

specifications in the configuration file. Once the cluster resources are deployed, the script asks whether you

would like to update IAM properties for the cluster. Continue to Configuring Cluster IAM Properties below for

background information and details on configuring IAM properties.

Configuring Cluster IAM Properties

At the final stage of EKS cluster creation, the last few prompts are related to IAM properties.

First, you are asked about IAM roles for K8s Service Accounts. If you want to create Service Accounts, as

described in (Optional) Define the IAM Role for K8s Service Accounts Requirements, answer y (yes) to the
prompt Do you want to update IAM properties for cluster? Service Accounts will be created according to
the specifications in iam_serviceaccounts.yaml. If you do not want to create Service Accounts, answer n
(no).

The last prompt is related to IAM identity mapping for the EKS cluster. Only the IAM entity that created the

cluster has system:masters permission for the cluster and its K8s services. To grant additional AWS users

or roles the ability to interact with the cluster, IAM identity mapping must be performed by adding the aws-
auth ConfigMap to the EKS cluster configuration (see Managing Users or IAM Roles for your Cluster in the

Amazon EKS documentation).

To aid you in updating the ConfigMap so that additional users can access the cluster, the create_k8s.sh

script includes prompts that ask for the required ConfigMap information. If you want to update the

Creating the EKS Cluster 162

https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

ConfigMap, answer y (yes) to the Do you want to add IAM users to control access to cluster prompt.
The script prompts for the following values, which will be used to update mapRoles and/or mapUsers in

aws-auth ConfigMap:

l Account ID: The AWS account ID where the EKS cluster is deployed.

l User Name: The username within Kubernetes to map to the IAM role. For example, admin.

l RBAC Group: The Kubernetes group to map the IAM role to. For example, system:masters.

l Service Name: This value must be emr-containers.

l Namespace: The namespace to create RBAC resources in.

l User or Role ARN: The Amazon Resource Name for the IAM role or user to create. For example,

arn:aws:iam::105333188789:role/admin.

When cluster creation is complete, proceed to Creating the Required Node Groups to add the required node

groups to the cluster.

Related Topics
Creating and Assigning IAM Policies

Creating the Required Node Groups

Creating the Required Node Groups

This topic provides instructions for creating the four types of required node groups:

l The Common node group for running K8s services such as the Cluster Autoscaler and Load
Balancers.

l The Operator node group for running the AnzoGraph, Anzo Agent with Anzo Unstructured (AU) and
Elasticsearch operator pods.

l The AnzoGraph node group for running AnzoGraph application pods.

l The Dynamic node group for running Anzo Agent with AU and Elasticsearch application pods.

Tip
For more information about the node groups, see Node Pool Requirements.

l Define the Node Group Requirements

l Create the Node Groups

Creating the Required Node Groups 163

Define the Node Group Requirements

Before creating the node groups, configure the infrastructure requirements for each type of group. The

nodepool_*.yaml object files in the eksctl/conf.d directory are sample configuration files that you can
use as templates, or you can edit the files directly:

l nodepool_common.yaml defines the requirements for the Common node group.

l nodepool_operator.yaml defines the requirements for the Operator node group.

l nodepool_anzograph.yaml defines the requirements for the AnzoGraph node group.

l nodepool_dynamic.yaml defines the requirements for the Dynamic node group.

Each type of node group configuration file contains the following parameters. Descriptions of the parameters

and guidance on specifying the appropriate values for each type of node group are provided below.

apiVersion: eksctl.io/v1alpha5

kind: ClusterConfig

metadata:

name: <eks-cluster-name>

region: <cluster-region>

tags:

<metadata-tag-name>: "<value>"

managedNodeGroups:

- name: <node-prefix>

amiFamily: <ami-type>

labels:

<label-name>: '<value>'

instanceType: <instance-type>

desiredCapacity: <desired-capacity>

availabilityZones:

- <zones>

minSize: <min-size>

maxSize: <max-size>

volumeSize: <volume-size>

maxPodsPerNode: <max-pods>

iam:

attachPolicyARNs:

- <arns>

withAddonPolicies:

autoScaler: <auto-scaler>

Creating the Required Node Groups 164

imageBuilder: <image-builder>

efs: <efs>

cloudWatch: <cloud-watch>

volumeType: <volume-type>

privateNetworking: <private-networking>

ssh:

allow: <allow-ssh>

publicKeyName: <public-key-name>

taints:

'<taint-name>': '<taint-value>'

tags:

'<tag-name>': '<tag-value>'

asgMetricsCollection:

- granularity: <granularity>

metrics:

- <metric-name>

apiVersion

The version of the schema for this object.

kind

The schema for this object.

name

The name of the EKS cluster that hosts the node group. For example, csi-k8s-cluster.

region

The region that the EKS cluster is deployed in. For example, us-east-1.

tags

A list of any custom tags to add to the AWS resources that are created by eksctl.

name

The prefix to add to the names of the nodes that are deployed in this node group.

Node Group Type Sample name Value

Common common

Creating the Required Node Groups 165

Node Group Type Sample name Value

Operator operator

AnzoGraph anzograph

Dynamic dynamic

amiFamily

The EKS-optimized Amazon Machine Image (AMI) type to use when deploying nodes in the node group.

Cambridge Semantics recommends that you specify AmazonLinux2.

labels

A space-separated list of key/value pairs that define the type of pods that can be placed on the nodes in

this node group. One label, cambridgesemantics.com/node-purpose, is required for each type of
node group. The node-purpose label indicates that the purpose of the nodes in the groups are to host

operator, anzograph, dynamic, or common pods. Labels are used to attract pods to nodes, while "taints"

(described in taints below) are used to repel other types of pods from being placed in this node group. The

table below lists the required labels for each node group.

Node Group Type Required nodeGroups labels Value

Common cambridgesemantics.com/node-purpose: 'common'

deploy-ca: 'true'

cluster-autoscaler-version: '<version>'

Operator cambridgesemantics.com/node-purpose: 'operator'

AnzoGraph cambridgesemantics.com/node-purpose: 'anzograph'

Dynamic cambridgesemantics.com/node-purpose: 'dynamic'

Note
The additional Common node group label deploy-ca: 'true' identifies this group as the node
group to host the Cluster Autoscaler (CA) service. The related cluster-autoscaler-version label
identifies the CA version. The version that you specify must have the same major and minor

Creating the Required Node Groups 166

version as the Kubernetes version for the EKS cluster (CLUSTER_VERSION). For example, if the

cluster version is 1.24, the CA version must be 1.24.n, where n is a valid CA patch release

number, such as 1.24.1. To view the CA releases for your Kubernetes version, see Cluster

Autoscaler Releases on GitHub.

instanceType

The EC2 instance type to use for the nodes in the node group.

Node Group Type Sample instanceType Value

Common m5.large

Operator m5.large

AnzoGraph m5.8xlarge

Dynamic m5.2xlarge

Tip
For more guidance on determining the instance types to use for nodes in the required node

groups, see Compute Resource Planning.

desiredCapacity

The number of nodes to deploy when this node group is created. This value must be set to at least 1.
When you create the node group, at least one node in the group needs to be deployed as well. However, if

minSize is 0 and the autoScaler addon is enabled, the autoscaler will deprovision this node because it is
not in use.

availabilityZones

A list of the Availability Zones to make this node group available to.

minSize

The minimum number of nodes for the node group. If you set the minimum size to 0, nodes will not be
provisioned unless a pod is scheduled for deployment in that group.

maxSize

The maximum number of nodes that can be deployed in the node group.

Creating the Required Node Groups 167

https://github.com/kubernetes/autoscaler/releases
https://github.com/kubernetes/autoscaler/releases

volumeSize

The size (in GB) of the EBS volume to add to the nodes in this node group.

maxPodsPerNode

The maximum number of pods that can be hosted on a node in this node group.In addition to Anzo

application pods, this limit also needs to account for K8s service pods and helper pods. Cambridge

Semantics recommends that you set this value to at least 16 for all node group types.

attachPolicyARNs

A list of the Amazon Resource Names (ARN) for the IAM policies to attach to the node group. These

policies apply at the node level. Include the default node policies as well as any other policies that you

want to add. For example:

attachPolicyARNs:

- arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy

- arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy

- arn:aws:iam::aws:policy/AmazonS3FullAccess

autoScaler

Indicates whether to add an autoscaler to this node group. Cambridge Semantics recommends that you

set this value to true.

imageBuilder

Indicates whether to allow this node group to access the full Elastic Container Registry (ECR). Cambridge

Semantics recommends that you set this value to true.

efs

Indicates whether to enable access to the persistent volume, Elastic File System (EFS).

cloudWatch

Indicates whether to enable the CloudWatch service, which performs control plane logging when the node

group is created.

volumeType

The type of EBS volume to use for the nodes in this node group.

Creating the Required Node Groups 168

privateNetworking

Indicates whether to isolate the node group from the public internet. Cambridge Semantics recommends

that you set this value to true.

allow

Indicates whether to allow SSH access to the nodes in this node group.

publicKeyName

The public key name in EC2 to add to the nodes in this node group. If allow is false, this value is ignored.

taints

This parameter defines the type of pods that are allowed to be placed in this node group. When a pod is

scheduled for deployment, the scheduler relies on this value to determine whether the pod belongs in this

group. If a pod has a toleration that is not compatible with this taint, the pod is rejected from the group.

The following recommended values specify that pods must be operator pods to be deployed in the

Operator node group; they must be anzograph pods to be deployed in the AnzoGraph node group; and

they must be dynamic pods to be deployed in the Dynamic node group. The NoSchedule value means a
toleration is required and pods without a toleration will not be allowed in the group.

Node Group Type Recommended taints Value

Operator 'cambridgesemantics.com/dedicated': 'operator:NoSchedule'

AnzoGraph 'cambridgesemantics.com/dedicated': 'anzograph:NoSchedule'

Dynamic 'cambridgesemantics.com/dedicated': 'dynamic:NoSchedule'

tags

The list of key:value pairs to add to the nodes in this node group. For autoscaling to work, the list of tags

must include the namespaced version of the label and taint definitions.

Node Group Recommended tags Value

Common 'k8s.io/cluster-autoscaler/node-template/label/cambridgesemantics.com/node-

purpose': 'common'

Operator 'k8s.io/cluster-autoscaler/node-template/label/cambridgesemantics.com/node-

Creating the Required Node Groups 169

Node Group Recommended tags Value

purpose': 'operator'

'k8s.io/cluster-autoscaler/node-template/taint/cambridgesemantics.com/dedicated':

'operator:NoSchedule'

'cambridgesemantics.com/node-purpose': 'operator'

AnzoGraph 'k8s.io/cluster-autoscaler/node-template/label/cambridgesemantics.com/node-

purpose': 'anzograph'

'k8s.io/cluster-autoscaler/node-template/taint/cambridgesemantics.com/dedicated':

'anzograph:NoSchedule'

'cambridgesemantics.com/node-purpose': 'anzograph'

Dynamic 'k8s.io/cluster-autoscaler/node-template/label/cambridgesemantics.com/node-

purpose': 'dynamic'

'k8s.io/cluster-autoscaler/node-template/taint/cambridgesemantics.com/dedicated':

'dynamic:NoSchedule'

'cambridgesemantics.com/node-purpose': 'dynamic'

Tip
You can also augment the required tags with any custom tags that you want to include. For

information about tagging, see Tagging your Amazon EKS Resources in the Amazon EKS

documentation.

asgMetricsCollection

If cloudWatch is enabled, this parameter configures the specific Auto Scaling Group (ASG) metrics to

capture as well as the frequency with which to capture the metrics.

granularity

This property is a required property that specifies the frequency with which Amazon EC2 Auto Scaling

sends aggregated data to CloudWatch. The only valid value is 1Minute.

metrics

This property lists the specific group-level metrics to collect. If granularity is specified butmetrics is
omitted, all of the metrics are enabled. For more information and a list of valid values, see

AutoScalingGroup MetricsCollection in the AWS CloudFormation documentation.

Creating the Required Node Groups 170

https://docs.aws.amazon.com/eks/latest/userguide/eks-using-tags.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-as-metricscollection.html

Example Configuration Files

Example completed configuration files for each type of node group are shown below.

Common Node Group

The example below shows a completed nodepool_common.yaml file.

apiVersion: eksctl.io/v1alpha5

kind: ClusterConfig

metadata:

name: csi-k8s-cluster

region: us-east-1

tags:

description: "K8s cluster Common node group"

managedNodeGroups:

- name: common

amiFamily: AmazonLinux2

labels:

cambridgesemantics.com/node-purpose: 'common'

deploy-ca: 'true'

cluster-autoscaler-version: '1.24.1'

instanceType: m5.large

desiredCapacity: 1

availabilityZones:

- us-east-1a

minSize: 0

maxSize: 4

volumeSize: 50

maxPodsPerNode: 16

iam:

attachPolicyARNs:

- arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy

- arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy

- arn:aws:iam::aws:policy/AmazonS3FullAccess

withAddonPolicies:

autoScaler: true

imageBuilder: true

efs: true

CloudWatch: true

volumeType: gp2

Creating the Required Node Groups 171

privateNetworking: true

ssh:

allow: true

publicKeyName: common-keypair

tags:

'k8s.io/cluster-autoscaler/node-

template/label/cambridgesemantics.com/node-purpose': 'common'

asgMetricsCollection:

- granularity: 1Minute

metrics:

- GroupPendingInstances

- GroupInServiceInstances

- GroupTerminatingInstances

- GroupInServiceCapacity

Operator Node Group

The example below shows a completed nodepool_operator.yaml file.

apiVersion: eksctl.io/v1alpha5

kind: ClusterConfig

metadata:

name: csi-k8s-cluster

region: us-east-1

tags:

description: "K8s cluster Operator node group"

managedNodeGroups:

- name: operator

amiFamily: AmazonLinux2

labels:

cambridgesemantics.com/node-purpose: 'operator'

instanceType: m5.large

desiredCapacity: 1

availabilityZones:

- us-east-1a

minSize: 0

maxSize: 5

volumeSize: 50

maxPodsPerNode: 16

iam:

Creating the Required Node Groups 172

attachPolicyARNs:

- arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy

- arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy

- arn:aws:iam::aws:policy/AmazonS3FullAccess

withAddonPolicies:

autoScaler: true

imageBuilder: true

efs: true

cloudWatch: true

volumeType: gp2

privateNetworking: true

ssh:

allow: true

publicKeyName: operator-keypair

taints:

'cambridgesemantics.com/dedicated': 'operator:NoSchedule'

tags:

'k8s.io/cluster-autoscaler/node-

template/label/cambridgesemantics.com/node-purpose': 'operator'

'k8s.io/cluster-autoscaler/node-

template/taint/cambridgesemantics.com/dedicated': 'operator:NoSchedule'

'cambridgesemantics.com/node-purpose': 'operator'

asgMetricsCollection:

- granularity: 1Minute

metrics:

- GroupPendingInstances

- GroupInServiceInstances

- GroupTerminatingInstances

- GroupInServiceCapacity

AnzoGraph Node Group

The example below shows a completed nodepool_anzograph.yaml file.

apiVersion: eksctl.io/v1alpha5

kind: ClusterConfig

metadata:

name: csi-k8s-cluster

region: us-east-1

tags:

Creating the Required Node Groups 173

description: "K8s cluster AnzoGraph node group"

managedNodeGroups:

- name: anzograph

amiFamily: AmazonLinux2

labels:

cambridgesemantics.com/node-purpose: 'anzograph'

instanceType: m5.8xlarge

desiredCapacity: 1

availabilityZones:

- us-east-1a

minSize: 0

maxSize: 12

volumeSize: 100

maxPodsPerNode: 16

iam:

attachPolicyARNs:

- arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy

- arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy

- arn:aws:iam::aws:policy/AmazonS3FullAccess

withAddonPolicies:

autoScaler: true

imageBuilder: true

efs: true

CloudWatch: true

volumeType: gp2

privateNetworking: true

ssh:

allow: true

publicKeyName: anzograph-keypair

taints:

'cambridgesemantics.com/dedicated': 'anzograph:NoSchedule'

tags:

'k8s.io/cluster-autoscaler/node-

template/label/cambridgesemantics.com/node-purpose': 'anzograph'

'k8s.io/cluster-autoscaler/node-

template/taint/cambridgesemantics.com/dedicated': 'anzograph:NoSchedule'

'cambridgesemantics.com/node-purpose': 'anzograph'

asgMetricsCollection:

- granularity: 1Minute

Creating the Required Node Groups 174

metrics:

- GroupPendingInstances

- GroupInServiceInstances

- GroupTerminatingInstances

- GroupInServiceCapacity

Dynamic Node Group

The example below shows a completed nodepool_dynamic.yaml file.

apiVersion: eksctl.io/v1alpha5

kind: ClusterConfig

metadata:

name: csi-k8s-cluster

region: us-east-1

tags:

description: "K8s cluster Dynamic node group"

nodeGroups:

- name: dynamic

amiFamily: AmazonLinux2

labels:

cambridgesemantics.com/node-purpose: 'dynamic'

instanceType: m5.2xlarge

desiredCapacity: 1

availabilityZones:

- us-east-1a

minSize: 0

maxSize: 12

volumeSize: 100

maxPodsPerNode: 16

iam:

attachPolicyARNs:

- arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy

- arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy

- arn:aws:iam::aws:policy/AmazonS3FullAccess

withAddonPolicies:

autoScaler: true

imageBuilder: true

efs: true

CloudWatch: true

Creating the Required Node Groups 175

volumeType: gp2

privateNetworking: true

ssh:

allow: true

publicKeyName: dynamic-keypair

taints:

'cambridgesemantics.com/dedicated': 'dynamic:NoSchedule'

tags:

'k8s.io/cluster-autoscaler/node-

template/label/cambridgesemantics.com/node-purpose': 'dynamic'

'k8s.io/cluster-autoscaler/node-

template/taint/cambridgesemantics.com/dedicated': 'dynamic:NoSchedule'

'cambridgesemantics.com/node-purpose': 'dynamic'

asgMetricsCollection:

- granularity: 1Minute

metrics:

- GroupPendingInstances

- GroupInServiceInstances

- GroupTerminatingInstances

- GroupInServiceCapacity

Create the Node Groups

After defining the requirements for the node groups, run the create_nodepools.sh script in the eksctl
directory to create each type of node group. Run the script once for each type of group.

Note
The create_nodepools.sh script references the files in the eksctl/reference directory. If you

customized the directory structure on the workstation, ensure that the reference directory is
available at the same level as create_nodepools.sh before creating the node groups.

Run the script with the following command. The arguments are described below.

./create_nodepools.sh -c <config_file_name> [-d <config_file_directory>] [-f

| --force] [-h | --help]

Important
It is important to create the Common node group first. The Cluster Autoscaler and other core cluster

services are dependent on the Common node group.

Creating the Required Node Groups 176

Argument Description

-c <config_
file_name>

This is a required argument that specifies the name of the configuration file (i.e.,
nodepool_common.yaml, nodepool_operator.yaml, nodepool_

anzograph.yaml, or nodepool_dynamic.yaml) that supplies the node group

requirements. For example, -c nodepool_dynamic.yaml.

-d <config_
file_
directory>

This is an optional argument that specifies the path and directory name for the
configuration file specified for the -c argument. If you are using the original eksctl

directory file structure and the configuration file is in the conf.d directory, you do not need

to specify the -d argument. If you created a separate directory structure for different Anzo

environments, include the -d option. For example, -d /eksctl/env1/conf.

-f | --force This is an optional argument that controls whether the script prompts for confirmation
before proceeding with each stage involved in creating the node group. If -f (--force) is
specified, the script assumes the answer is "yes" to all prompts and does not display them.

-h | --help This argument is an optional flag that you can specify to display the help from the create_

nodepools.sh script.

For example, the following command runs the create_nodepools script, using nodepool_common.yaml as

input to the script. Since nodepool_common.yaml is in the conf.d directory, the -d argument is excluded:

./create_nodepools.sh -c nodepool_common.yaml

The script validates that the required software packages, such as aws-cli, eksctl, and kubectl, are installed

and that the versions are compatible with the script. It also displays an overview of the deployment details

based on the values in the specified configuration file.

The script then prompts you to proceed with deploying each component of the node group. Type y and press
Enter to proceed with the configuration.

Once the Common, Operator, AnzoGraph, and Dynamic node groups are created, the next step is to create

a Cloud Location in Anzo so that Anzo can connect to the EKS cluster and deploy applications. See

Connecting to a Cloud Location in the Administration Guide.

Related Topics
Creating the EKS Cluster

Creating the Required Node Groups 177

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/cloud-location.htm

Google Kubernetes Engine Deployments

The topics in this section guide you through the process of deploying all of the Google Kubernetes Engine

(GKE) infrastructure that is required to support dynamic deployments of Anzo components. The topics

provide instructions for setting up a workstation to use for deploying the K8s infrastructure, performing the

prerequisite tasks before deploying the GKE cluster, creating the GKE cluster, and creating the required

node pools.

Setting Up a Workstation 178

Planning the Anzo and GKE Network Architecture 184

Creating and Assigning IAM Roles 187

Creating the GKE Cluster 192

Creating the Required Node Pools 203

Setting Up a Workstation

This topic provides the requirements and instructions to follow for configuring a workstation to use for

creating and managing the GKE infrastructure. The workstation needs to be able to connect to the Google

Cloud API. It also needs to have the required Google Cloud and Kubernetes (K8s) software packages as well

as the deployment scripts and configuration files supplied by Cambridge Semantics. This workstation will be

used to connect to the Google Cloud API and provision the K8s cluster and node pools.

Note
You can use the Anzo server as the workstation if the network routing and security policies permit

the Anzo server to access the Google Cloud and K8s APIs. When deciding whether to use the Anzo

server as the K8s workstation, consider whether Anzo may be migrated to a different server or VPC

in the future.

l Review the Requirements and Install the Software

l Download the Cluster Creation Scripts and Configuration Files

Review the Requirements and Install the Software

The table below lists the requirements for the K8s workstation.

Component Requirement

Operating System The operating system for the workstation must be RHEL/CentOS 7.8

Google Kubernetes Engine Deployments 178

Component Requirement

or higher.

Networking The workstation should be in the same VPC network as the GKE

cluster. If it is not in the same VPC, make sure that it is on a network

that is routable from the cluster's VPC.

Software l Kubectl Versions 1.21 – 1.24 are supported. Cambridge
Semantics recommends that you use the same kubectl version

as the GKE cluster version. For instructions, see Install

Kubectl below.

l Google Cloud SDK is required. For installation instructions,

see Install the Google Cloud SDK below.

CSI GCLOUD
Package

Cambridge Semantics provides gcloud scripts and configuration files
to use for provisioning the GKE cluster and node pools. Download the

files to the workstation. See Download the Cluster Creation Scripts and

Configuration Files for more information about the gcloud package.

Install Kubectl

Follow the instructions below to install kubectl on your workstation. Cambridge Semantics recommends that

you install the same version of kubectl as the K8s cluster API. For more information, see Install and Set Up

kubectl on Linux in the Kubernetes documentation.

1. Run the following cURL command to download the kubectl binary:

curl -LO https://dl.k8s.io/release/<version>/bin/linux/amd64/kubectl

Where <version> is the version of kubectl to install. For example, the following command downloads

version 1.19.12:

curl -LO https://dl.k8s.io/release/v1.19.12/bin/linux/amd64/kubectl

2. Run the following command to make the binary executable:

chmod +x ./kubectl

Setting Up a Workstation 179

https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

3. Run the following command to move the binary to your PATH:

sudo mv ./kubectl /usr/local/bin/kubectl

4. To confirm that the binary is installed and that you can run kubectl commands, run the following

command to display the client version:

kubectl version --client

The command returns the following type of information. For example:

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.12",

GitCommit:"f3abc15296f3a3f54e4ee42e830c61047b13895f",

GitTreeState:"clean", BuildDate:"2021-06-16T13:21:12Z",

GoVersion:"go1.13.15", Compiler:"gc", Platform:"linux/amd64"}

Install the Google Cloud SDK

Follow the instructions below to install the Google Cloud SDK on your workstation.

1. Run the following command to configure access to the Google Cloud repository:

sudo tee -a /etc/yum.repos.d/google-cloud-sdk.repo << EOM

[google-cloud-sdk]

name=Google Cloud SDK

baseurl=https://packages.cloud.google.com/yum/repos/cloud-sdk-el7-x86_64

enabled=1

gpgcheck=1

repo_gpgcheck=1

gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg

https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg

EOM

2. Run the following command to install google-cloud-sdk:

sudo yum install google-cloud-sdk

The following packages are installed:

Setting Up a Workstation 180

google-cloud-sdk-app-engine-grpc

google-cloud-sdk-pubsub-emulator

google-cloud-sdk-app-engine-go

google-cloud-sdk-cloud-build-local

google-cloud-sdk-datastore-emulator

google-cloud-sdk-app-engine-python

google-cloud-sdk-cbt

google-cloud-sdk-bigtable-emulator

google-cloud-sdk-datalab

google-cloud-sdk-app-engine-java

3. Next, configure the default project and region settings for the Cloud SDK:

a. Run the following command to set the default project for the GKE cluster:

gcloud config set project <project_ID>

Where <project_ID> is the Project ID for the project in which the GKE cluster will be provisioned.

b. If you work with zonal clusters, run the following command to set the default compute zone for

the GKE cluster:

gcloud config set compute/zone <compute_zone>

Where <compute_zone> is the default compute zone for the GKE cluster. For example:

gcloud config set compute/zone us-central1-a

c. If you work with regional clusters, run the following command to set the default region for the

GKE cluster:

gcloud config set compute/region <compute_region>

Where <compute_region> is the default region for the GKE cluster. For example:

gcloud config set compute/region us-east1

d. To make sure that you are using the latest version of the Cloud SDK, run the following command

to check for updates:

gcloud components update

Setting Up a Workstation 181

Download the Cluster Creation Scripts and Configuration Files

The Cambridge Semantics GitHub repository, k8s-genesis (https://github.com/cambridgesemantics/k8s-

genesis.git), includes all of the files that are needed to manage the configuration, creation, and deletion of

the GKE cluster and node pools.

You can clone the repository to any location on the workstation or download the k8s-genesis package as a

ZIP file, copy the file to the workstation, and extract the contents. The k8s-genesis directory includes three

subdirectories (one for each supported Cloud Service Provider), the license information, and a readme file:

k8s-genesis

├── aws

├── azure

├── gcp

├── LICENSE

└── README.md

Navigate to /gcp/k8s/gcloud. The gcloud directory contains all of the GKE cluster and node pool

configuration files. You can remove all other directories from the workstation. The gcloud files and

subdirectories are shown below:

gcloud

├── common.sh

├── conf.d

│ ├── k8s_cluster.conf

│ ├── nodepool_anzograph.conf

│ ├── nodepool_anzograph_tuner.yaml

│ ├── nodepool_common.conf

│ ├── nodepool.conf

│ ├── nodepool_dynamic.conf

│ ├── nodepool_dynamic_tuner.yaml

│ └── nodepool_operator.conf

├── create_k8s.sh

├── create_nodepools.sh

├── delete_k8s.sh

├── delete_nodepools.sh

├── gcloud_cli_common.sh

├── README.md

└── sample_use_cases

Setting Up a Workstation 182

https://github.com/cambridgesemantics/k8s-genesis

├── 1_usePrivateEndpoint_private_cluster

│ └── k8s_cluster.conf

├── 2_public_cluster

│ └── k8s_cluster.conf

├── 3_useAuthorizedNetworks

│ └── k8s_cluster.conf

└── 4_providePublicEndpointAccess

└── k8s_cluster.conf

The following list gives an overview of the files. Subsequent topics describe the files in more detail.

l The common.sh and gcloud_cli_common.sh scripts are used by the create*.sh and delete*.sh
scripts when the GKE cluster and node pools are created or deleted.

l The conf.d directory contains the configuration files that supply the specifications to follow when

creating the K8s cluster and node pools.
o k8s_cluster.conf: Supplies the specifications for the GKE cluster.
o nodepool_anzograph.conf: Supplies the specifications for the AnzoGraph node pool.
o nodepool_anzograph_tuner.conf: Supplies the kernel-level tuning and security policies to
apply to AnzoGraph runtime environments.

o nodepool_common.conf: Supplies the specifications for a Common node pool. The Common
node pool is not required for GKE deployments, and this configuration file is typically not used.

o nodepool.conf: This file is supplied as a reference. It contains the superset of node pool
parameters.

o nodepool_dynamic.conf: Supplies the specifications for the Dynamic node pool.
o nodepool_dynamic_tuner.conf: Supplies the kernel-level tuning and security policies to apply
to Dynamic runtime environments.

o nodepool_operator.conf: Supplies the specifications for the Operator node pool.

l The create_k8s.sh script is used to deploy the GKE cluster.

l The create_nodepools.sh script is used to deploy node pools in the GKE cluster.

l The delete_k8s.sh script is used to delete the GKE cluster.

l The delete_nodepools.sh script is used to remove node pools from the GKE cluster.

l The sample_use_cases directory contains sample GKE cluster configuration files that you can refer

to or use as a template for configuring your GKE cluster depending on your use case:

Setting Up a Workstation 183

o The k8s_cluster.conf file in the 1_usePrivateEndpoint_private_cluster directory is a sample
file for a use case where you want to deploy the GKE cluster in an existing network that does not

have public internet access.
o The k8s_cluster.conf file in the 2_public_cluster directory is a sample file for a use case
where you want to deploy the GKE cluster into a new network with public internet access.

o The k8s_cluster.conf file in the 3_useAuthorizedNetworks directory is a sample file for a use
case where you want to deploy the GKE cluster into a private network with master authorized

networks.
o The k8s_cluster.conf file in the 4_providePublicEndpointAccess directory is a sample file for
a use case where you want to deploy the GKE cluster into a private network that has public

endpoint access enabled.

Once the workstation is configured, see Planning the Anzo and GKE Network Architecture to review

information about the network architecture that the gcloud scripts create. And see Creating and Assigning

IAM Roles for instructions on creating the IAM roles that are needed for assigning permissions to create and

use the GKE cluster.

Related Topics
Planning the Anzo and GKE Network Architecture

Creating and Assigning IAM Roles

Creating the GKE Cluster

Creating the Required Node Pools

Planning the Anzo and GKE Network Architecture

This topic describes the network architecture that supports the Anzo and GKE integration.

Note
When you deploy the K8s infrastructure, Cambridge Semantics strongly recommends that you

create the GKE cluster in the same VPC network as Anzo. If you create the GKE cluster in a new

VPC, you must configure the new VPC to be routable from the Anzo VPC.

The diagram below shows the typical network components that are employed when a GKE cluster is

integrated with Anzo. Most of the network resources shown in the diagram are automatically deployed (and

the appropriate routing is configured) according to the values that you supply in the cluster and node pool

.conf files in the gcloud package on the workstation.

Planning the Anzo and GKE Network Architecture 184

In the diagram, there are two components that you deploy before configuring and creating the K8s

resources:

l Anzo: Since the Anzo server is typically deployed before the K8s components, you specify the Anzo
network when creating the GKE cluster, ensuring that Anzo and all of the GKE cluster components are

in the same network and can talk to each other. Also, make sure that Anzo has access to the GCP and

GKE APIs.

l NFS: You are required to create a network file system (NFS). However, Anzo automatically mounts the

NFS to the nodes when AnzoGraph, Anzo Unstructured, Spark, and Elasticsearch pods are deployed

so that all of the applications can share files. See Deploying the Shared File System for more

information. The NFS does not need to have its own subnet but it can.

The rest of the components in the diagram are automatically provisioned, depending on your specifications,

when the GKE cluster and node pools are created. The gcloud scripts can be used to create a NAT gateway

and subnet for outbound internet access, such as for pulling container images from the Cambridge

Semantics repository. In addition, the scripts create a subnet for the K8s services and node pools and

configure the routing so that Anzo can communicate with the K8s services and the services can talk to the

pods that are deployed in the node pools.

Planning the Anzo and GKE Network Architecture 185

Tip
When considering the network requirements of your organization and planning how to integrate the

new K8s infrastructure in accordance with those requirements, it may help to consider the following

types of use cases. Cambridge Semantics supplies sample cluster configuration files in the

gcloud/sample_use_cases directory that are tailored for each of these use cases:

l Deploy a private GKE cluster in an existing network (i.e., the same network as Anzo)

In this use case, the GKE cluster is deployed in a private subnet in your existing network. And

a new (or existing, if you have one) NAT gateway is used to enable outbound access to

services that are outside of the network. The control plane (master) is configured to allow

access only from certain CIDRs.

l Deploy a public GKE cluster in a new network

In this use case, a new network is created with the specified CIDR. A new NAT gateway is

deployed to provide outbound connectivity for the cluster nodes. Public and private subnets

are also created, and public access is restricted to specific IP ranges. The new network will

need to be configured so that it is routable from Anzo.

l Deploy a private GKE cluster with master authorized networks

In this use case (like the first case listed above), a private GKE cluster is deployed in an

existing network. Master authorized network IP ranges are specified to limit the access to the

public endpoint.

l Deploy a private GKE cluster with public endpoint access enabled

In this use case, a private GKE cluster is deployed but public endpoint access is enabled and

not restricted to specific IP ranges.

For a summary of the files in the gcloud directory, see Download the Cluster Creation Scripts and

Configuration Files. Specifics about the parameters in the sample files are included in Creating the

GKE Cluster.

To get started on creating the GKE infrastructure, see Creating and Assigning IAM Roles for instructions on

creating the IAM roles that are needed for assigning permissions to create and use the GKE cluster.

Related Topics
Setting Up a Workstation

Creating and Assigning IAM Roles

Planning the Anzo and GKE Network Architecture 186

Creating the GKE Cluster

Creating the Required Node Pools

Creating and Assigning IAM Roles

There are two custom Identity and Access Management (IAM) roles that need to be created in Google Cloud

to grant the necessary permissions to the following two types of GKE users:

1. The first type of user is the user who sets up the K8s infrastructure, i.e., the user who configures,

creates, and maintains the GKE cluster and node pools. This user role is called the GKE Cluster
Admin.

2. The second type of user is the user who connects to the GKE cluster and deploys the dynamic Anzo

applications. Typically this user is Anzo. Since Anzo communicates to the K8s services that provision

the applications, the Anzo service account needs to be granted certain privileges. This user role is

called the GKE Cluster Developer.

Note
The enterprise-level Anzo service account is a requirement for the Anzo installation and is

typically in place before Anzo is installed. For more information, see Anzo Service Account

Requirements.

This topic provides instructions for creating the two roles and gives guidance on assigning the roles to the

appropriate members or service accounts.

l Create and Assign the GKE Cluster Admin Role

l Create and Assign the GKE Cluster Developer Role

Create and Assign the GKE Cluster Admin Role

To ensure that the GKE cluster creator has all of the permissions needed for creating and managing K8s

resources, there are four predefined Google roles in addition to the GKE Cluster Admin custom role that

must be applied to the member or service account that will be used when creating the K8s infrastructure.

Follow the instructions below to create the custom role and assign all necessary roles to the appropriate

member or service account.

Note
Google Cloud IAM administrator privileges are required to create and assign IAM roles. The steps

below give instructions for creating the custom GKE Cluster Admin role from the workstation. For

more information about creating roles, including instructions on creating roles from the Cloud

Creating and Assigning IAM Roles 187

Console, see Creating and Managing Custom Roles in the Google Cloud documentation.

1. Create a JSON file on your workstation and copy the following contents to the file. For example, vi

/tmp/gke-cluster-admin.json. The contents apply the minimum permissions needed for the

GKE Cluster Admin.

{

"name": "customClusterAdminRole",

"title": "Custom Role for GKE Cluster Admin",

"includedPermissions": [

"compute.addresses.create",

"compute.addresses.delete",

"compute.addresses.get",

"compute.addresses.use",

"compute.firewallPolicies.get",

"compute.firewalls.get",

"compute.instanceGroups.get",

"compute.instanceGroups.list",

"compute.instances.get",

"compute.instances.list",

"compute.networks.create",

"compute.networks.delete",

"compute.networks.get",

"compute.networks.listPeeringRoutes",

"compute.networks.updatePolicy",

"compute.networks.use",

"compute.nodeGroups.get",

"compute.regionOperations.get",

"compute.regionOperations.list",

"compute.regions.get",

"compute.routers.create",

"compute.routers.delete",

"compute.routers.get",

"compute.routers.update",

"compute.routers.use",

"compute.subnetworks.create",

"compute.subnetworks.delete",

"compute.subnetworks.get",

Creating and Assigning IAM Roles 188

https://cloud.google.com/iam/docs/creating-custom-roles

"compute.subnetworks.use",

"compute.vpnTunnels.get",

"container.clusters.create",

"container.clusters.delete",

"container.clusters.update",

"container.daemonSets.create",

"container.daemonSets.delete",

"container.daemonSets.get",

"container.daemonSets.getStatus",

"container.daemonSets.list",

"container.nodes.list",

"container.operations.get",

"container.operations.list",

"container.podSecurityPolicies.create",

"container.podSecurityPolicies.delete",

"container.podSecurityPolicies.get",

"container.podSecurityPolicies.list",

"container.podSecurityPolicies.update",

"container.roleBindings.create",

"container.roleBindings.delete",

"container.roleBindings.get",

"container.roles.bind",

"container.roles.create",

"container.roles.delete",

"container.roles.get",

"container.serviceAccounts.create",

"container.serviceAccounts.delete",

"container.serviceAccounts.get"

],

"stage": "GA"

}

2. Once the file is created, run the following command to create the GKE Cluster Admin role, named

customClusterAdminRole:

gcloud iam roles create <role_name> --project <project_name> --

file=/<path>/<file_name>.json

Where <project_name> is the project ID that the GKE cluster will be deployed in. For example:

Creating and Assigning IAM Roles 189

gcloud iam roles create customClusterAdminRole --project cloud-project-

1592 --file=/tmp/gke-cluster-admin.json

3. Next, grant the new customClusterAdminRole and the following four predefined Compute Engine,
Kubernetes Engine, Service Account, and Logging roles to the member or service account that will be

used to create the GKE cluster:

l roles/compute.networkViewer

l roles/container.clusterViewer

l roles/iam.serviceAccountUser

l roles/logging.viewer

For information about granting roles to a member, see Granting, changing, and revoking access to

resources. For information about applying a role to a service account, see Creating and managing

service accounts. And for details about the predefined roles, see Predefined Roles in the Google

Cloud documentation.

Create and Assign the GKE Cluster Developer Role

The following IAM role applies the minimum permissions needed for the GKE Cluster Developer role. Follow

the instructions below to create the role and assign it to the Anzo service account.

Note
Google Cloud IAM administrator privileges are required to create and assign IAM roles. The steps

below give instructions for creating the custom GKE Cluster Developer role from the workstation. For

more information about creating roles, including instructions on creating roles from the Cloud

Console, see Creating and Managing Custom Roles in the Google Cloud documentation.

1. Create a JSON file on your workstation and copy the following contents to the file. For example, vi

/tmp/gke-cluster-developer.json.

{

"name": "customClusterDevAnzoRole",

"title": "Custom Role with Additional permissions required to deploy

resources through Anzo",

"includedPermissions": [

"compute.machineTypes.list",

"storage.buckets.get",

"storage.buckets.list"

Creating and Assigning IAM Roles 190

https://cloud.google.com/iam/docs/granting-changing-revoking-access
https://cloud.google.com/iam/docs/granting-changing-revoking-access
https://cloud.google.com/iam/docs/creating-managing-service-accounts
https://cloud.google.com/iam/docs/creating-managing-service-accounts
https://cloud.google.com/iam/docs/understanding-roles#predefined_roles
https://cloud.google.com/iam/docs/creating-custom-roles

],

"stage": "GA"

}

2. Once the file is created, run the following command to create the GKE Cluster Developer role, named

customClusterDevAnzoRole:

gcloud iam roles create <role_name> --project <project_name> --

file=/<path>/<file_name>.json

Where <role_ID> is the unique ID to use for the role and <project_name> is the project ID that the GKE

cluster will be deployed in. For example:

gcloud iam roles create customClusterDevAnzoRole --project cloud-project-

1592 --file=/tmp/gke-cluster-developer.json

3. Next, grant the new customClusterDevAnzoRole and the following three predefined Kubernetes
Engine Developer, Kubernetes Engine Service Agent, and Storage Object Viewer roles to the Anzo

service account:

l roles/container.developer

l roles/container.serviceAgent

l roles/storage.objectViewer

For information about applying a role to a service account, see Creating and managing service

accounts in the Google Cloud documentation. For details about the predefined roles, see Predefined

Roles in the Google Cloud documentation.

Once the IAM roles are in place and users are granted access, proceed to Creating the GKE Cluster for

instructions on configuring and creating the cluster.

Related Topics
Setting Up a Workstation

Planning the Anzo and GKE Network Architecture

Creating the GKE Cluster

Creating the Required Node Pools

Creating and Assigning IAM Roles 191

https://cloud.google.com/iam/docs/creating-managing-service-accounts
https://cloud.google.com/iam/docs/creating-managing-service-accounts
https://cloud.google.com/iam/docs/understanding-roles#predefined_roles
https://cloud.google.com/iam/docs/understanding-roles#predefined_roles

Creating the GKE Cluster

Follow the instructions below to define the GKE cluster resource requirements and then create the cluster

based on your specifications.

l Define the GKE Cluster Requirements

l Create the GKE Cluster

Define the GKE Cluster Requirements

The first step in creating the K8s cluster is to define the infrastructure specifications. The configuration file to

use for defining the specifications is called k8s_cluster.conf. Multiple sample k8s_cluster.conf files are
included in the gcloud directory. Any of them can be copied and used as templates, or the files can be edited

directly.

Sample k8s_cluster.conf Files

To help guide you in choosing the appropriate template for your use case, this section describes each of the

sample files. Details about the parameters in the sample files are included in Cluster Parameters below.

gcloud/conf.d/k8s_cluster.conf

This file is a non-specific use case. It includes sample values for all of the available cluster parameters.

gcloud/sample_use_cases/1_usePrivateEndpoint_private_cluster/k8s_cluster.conf

This file includes sample values for a use case where:

l The GKE cluster will be deployed in a new private subnet in an existing network. You specify the

existing network name in the GCLOUD_NETWORK parameter.

l A NAT gateway is deployed with a private endpoint (GKE_ENABLE_PRIVATE_ENDPOINT=true, GKE_

ENABLE_PRIVATE_ENDPOINT=true, GKE_PRIVATE_ACCESS=true). There is no client access to

the public endpoint.

l Secondary IP ranges are added to the NAT mapping along with the primary IP when NETWORK_NAT_

ALLOW_SUBNET_SECONDARY_IPS=true. Outbound connectivity is allowed through the NAT

gateway but restricted to the IP ranges specified in the GKE_MASTER_ACCESS_CIDRS parameter.

gcloud/sample_use_cases/2_public_cluster/k8s_cluster.conf

This file includes sample values for a use case where:

l A new network with public and private subnetworks will be created and the GKE cluster will be

deployed into it.

l The cluster is public (GKE_PRIVATE_ACCESS=false).

Creating the GKE Cluster 192

gcloud/sample_use_cases/3_useAuthorizedNetworks/k8s_cluster.conf

This file includes sample values for a use case where:

l The GKE cluster will be deployed in a new or existing network with public and private subnets.

l The GKE_MASTER_ACCESS_CIDRS parameter is used to limit the access to the public endpoint.

gcloud/sample_use_cases/4_providePublicEndpointAccess/k8s_cluster.conf

This file includes sample values for a use case where:

l The GKE cluster will be deployed as a private cluster with public endpoint access enabled (GKE_

ENABLE_PRIVATE_ENDPOINT=false).

Cluster Parameters

The contents of k8s_cluster.conf are shown below. Descriptions of the cluster parameters follow the

contents.

NETWORK_BGP_ROUTING="<bgp-routing-mode>"

NETWORK_SUBNET_MODE="<subnet-mode>"

NETWORK_ROUTER_NAME="<router>"

NETWORK_ROUTER_MODE="<advertisement-mode>"

NETWORK_ROUTER_ASN=<asn>

NETWORK_ROUTER_DESC="<description>"

NETWORK_NAT_NAME="<nat-name>"

NETWORK_NAT_UDP_IDLE_TIMEOUT="<udp-idle-timeout>"

NETWORK_NAT_ICMP_IDLE_TIMEOUT="<icmp-idle-timeout>"

NETWORK_NAT_TCP_ESTABLISHED_IDLE_TIMEOUT="<tcp-established-idle-timeout>"

NETWORK_NAT_TCP_TRANSITORY_IDLE_TIMEOUT="<tcp-transitory-idle-timeout>"

NETWORK_NAT_ALLOW_SUBNET_SECONDARY_IPS=<allow-subnet-secondary-ips>

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"<cluster-name>"}

K8S_CLUSTER_PODS_PER_NODE="<default-max-pods-per-node>"

K8S_CLUSTER_ADDONS="<addons>"

GKE_MASTER_VERSION="<cluster-version>"

GKE_PRIVATE_ACCESS=<enable-private-nodes>

GKE_MASTER_NODE_COUNT_PER_LOCATION=<num-nodes>

GKE_NODE_VERSION="<node-version>"

GKE_IMAGE_TYPE="<image-type>"

GKE_MAINTENANCE_WINDOW='<maintenance-window>'

GKE_ENABLE_PRIVATE_ENDPOINT=<enable-private-endpoint>

GKE_MASTER_ACCESS_CIDRS="<master-authorized-networks>"

K8S_PRIVATE_CIDR="<cluster-ipv4-cidr>"

Creating the GKE Cluster 193

K8S_SERVICES_CIDR="<services-ipv4-cidr>"

GCLOUD_NODES_CIDR="<create-subnetwork>"

K8S_API_CIDR="<master-ipv4-cidr>"

K8S_HOST_DISK_SIZE='<disk-size>'

K8S_HOST_DISK_TYPE="<disk-type>"

K8S_HOST_MIN_CPU_PLATFORM="<min-cpu-platform>"

K8S_POOL_HOSTS_MAX=<max-nodes-per-pool>

K8S_METADATA="<metadata>"

K8S_MIN_NODES=<min-nodes>

K8S_MAX_NODES=<max-nodes>

GCLOUD_RESOURCE_LABELS='<labels>'

GCLOUD_VM_LABELS=<node-labels>

GCLOUD_VM_TAGS="<tags>"

GCLOUD_VM_MACHINE_TYPE="<machine-type>"

GCLOUD_VM_SSD_COUNT=<local-ssd-count>

GCLOUD_PROJECT_ID=${GCLOUD_PROJECT_ID:-"<project>"}

GCLOUD_NETWORK=${GCLOUD_NETWORK:-"<network>"}

GCLOUD_NODES_SUBNET_SUFFIX="<suffix>"

GCLOUD_CLUSTER_REGION=${GCLOUD_CLUSTER_REGION:-"<region>"}

GCLOUD_NODE_LOCATIONS="<node-locations>"

GCLOUD_NODE_TAINTS='<node-taints>'

GCLOUD_NODE_SCOPE='<scopes>'

Parameter Description

NETWORK_BGP_
ROUTING

The mode the Cloud Router will use to advertise BGP routes when the network is

created, i.e, whether the cluster is global or regional. This parameter maps to the

gcloud Cloud Router --bgp-routing-mode option. The default value is

regional.

NETWORK_
SUBNET_MODE

The method to use when subnets are created. Valid values are "auto" or "custom."

This parameter maps to the gcloud VPC --subnet-mode option. The

recommended value is custom.

NETWORK_
ROUTER_NAME

The name to assign to the Cloud Router. For example, csi-cloudrouter.

Creating the GKE Cluster 194

Parameter Description

NETWORK_
ROUTER_MODE

The route advertisement mode for the Cloud Router. This parameter maps to the

gcloud Cloud Router --advertisement-mode option. The recommended value

is custom.

NETWORK_
ROUTER_ASN

The Border Gateway Protocol (BGP) autonomous system number (ASN). When a

router is created, it is assigned an ASN. This parameter maps to the gcloud Cloud

Router --asn option. Coordinate with your network administrator to determine the

number to specify.

NETWORK_
ROUTER_DESC

A description of the Cloud Router. This parameter maps to the gcloud Cloud Router

--description option. For example, Cloud router for K8S NAT.

NETWORK_NAT_
NAME

The name to assign to the NAT gateway. For example, csi-natgw.

NETWORK_NAT_
UDP_IDLE_
TIMEOUT

The timeout value for UDP connections to the NAT gateway. This parameter maps

to the gcloud NAT router --udp-idle-timeout option. The default value in k8s_

cluster.conf is 60s (60 seconds). For information about duration formats, refer to
gcloud topic datetimes in the Cloud SDK documentation.

NETWORK_NAT_
ICMP_IDLE_
TIMEOUT

The timeout value for ICMP connections to the NAT gateway. This parameter maps

to the gcloud NAT router --icmp-idle-timeout option. The default value in

k8s_cluster.conf is 60s (60 seconds).

NETWORK_NAT_
TCP_
ESTABLISHED_
IDLE_TIMEOUT

The timeout value for TCP established connections to the NAT gateway. This

parameter maps to the gcloud NAT router --tcp-established-idle-

timeout option. The default value in k8s_cluster.conf is 60s (60 seconds).

NETWORK_NAT_
TCP_
TRANSITORY_
IDLE_TIMEOUT

The timeout value to use for TCP transitory connections to the NAT gateway. This

parameter maps to the gcloud NAT router --tcp-transitory-idle-timeout

option. The default value in k8s_cluster.conf is 60s (60 seconds).

Creating the GKE Cluster 195

https://cloud.google.com/sdk/gcloud/reference/topic/datetimes

Parameter Description

NETWORK_NAT_
ALLOW_SUBNET_
SECONDARY_IPS

Indicates whether to allow all secondary IP ranges for the GKE cluster to use the

NAT gateway. If true, the secondary IP ranges for the subnets will have NAT

gateway access.

K8S_CLUSTER_
NAME

The name to give to the cluster. For example, csi-k8s-cluster.

K8S_CLUSTER_
PODS_PER_NODE

The maximum number of pods that can be hosted on each compute instance. This

parameter maps to the gcloud container cluster --default-max-pods-per-

node option. This value also applies to the node pools in the cluster if the node pool

configuration does not specify the maximum number of pods per node. Cambridge

Semantics recommends that you set this value to 16.

K8S_CLUSTER_
ADDONS

A comma-separated list of any additional Kubernetes cluster components to enable

for the cluster. This parameter maps to the gcloud container cluster --addons

option. By default, the k8s_cluster.conf file lists HttpLoadBalancing and
HorizontalPodAutoscaling. Cambridge Semantics recommends that you include
both of these components as a best practice.

GKE_MASTER_
VERSION

The Kubernetes version to use for the GKE cluster. This parameter maps to the

gcloud container cluster --cluster-version option.

GKE_PRIVATE_
ACCESS

Indicates whether the cluster's nodes should have external IP addresses. When

GKE_PRIVATE_ACCESS=true, the cluster remains private and nodes are not

assigned external IP addresses. This parameter maps to the GKE --enable-

private-nodes option.

GKE_MASTER_
NODE_COUNT_
PER_LOCATION

The number of nodes to create for running the K8s services in the default node pool

in each of the cluster's zones. This value must be at least 1. For high availability,
Cambridge Semantics recommends setting this value to 3. This parameter maps to
the gcloud container cluster --num-nodes option.

GKE_NODE_ The Kubernetes version to use for nodes in the node pools. This parameter maps to

Creating the GKE Cluster 196

Parameter Description

VERSION the gcloud container cluster --node-version option. Cambridge Semantics

recommends that you specify the same version as the GKE_MASTER_VERSION.

GKE_IMAGE_TYPE The base operating system that the nodes in the cluster will run on. This parameter

maps to the gcloud container cluster --image-type option. This value must be

COS.

GKE_
MAINTENANCE_
WINDOW

The time of day to start maintenance on this cluster. This parameter maps to the

gcloud container cluster --maintenance-window option. The time corresponds

to the UTC time zone and must be in HH:MM format. The default value in k8s_

cluster.conf is 06:00 (6:00 am).

GKE_ENABLE_
PRIVATE_
ENDPOINT

Indicates whether to use a private or public IP address for the master API endpoint.

When GKE_ENABLE_PRIVATE_ENDPOINT=true, the IP address for the API

endpoint is private. This parameter maps to the GKE --enable-private-

endpoint option.

GKE_MASTER_
ACCESS_CIDRS

The list of CIDR blocks (up to 50) that are allowed to connect to the GKE cluster

over HTTPS. This value should include the Anzo subnet CIDR so that Anzo has

access to the GKE cluster. This parameter maps to the gcloud container cluster --

master-authorized-networks option. For example, 10.128.0.0/9.

K8S_PRIVATE_
CIDR

The IP address range (in CIDR notation) for the pods in this cluster. This parameter

maps to the gcloud container cluster --cluster-ipv4-cidr option. For

example, 172.16.0.0/20.

K8S_SERVICES_
CIDR

The IP address range for the cluster services. This parameter maps to the gcloud

container cluster --services-ipv4-cidr option. For example: 172.17.0.0/20.

GCLOUD_NODES_
CIDR

The CIDR for the new subnet that will be created for the K8s cluster. This

parameter maps to the --create-subnetwork option For example,

192.168.0.0/20.

Creating the GKE Cluster 197

Parameter Description

K8S_API_CIDR The IPv4 CIDR range to use for the master network. The range should have a

subnet mask of /28. This parameter maps to the gcloud container cluster --
master-ipv4-cidr option. For example, 192.171.0.0/28.

K8S_HOST_DISK_
SIZE

The size of the boot disks on the cluster compute instances. This parameter maps

to the gcloud container cluster --disk-size option. For example, 50GB.

K8S_HOST_DISK_
TYPE

The type of boot disk to use. This parameter maps to the gcloud container cluster -

-disk-type option. For example, pd-standard.

K8S_HOST_MIN_
CPU_PLATFORM

The minimum CPU platform to use. This parameter maps to the gcloud container

cluster --min-cpu-platform option. This value is left blank in the k8s_

cluster.conf file.

K8S_POOL_
HOSTS_MAX

The maximum number of nodes to allocate for the default initial node pool. This

parameter maps to the gcloud container cluster --max-nodes-per-pool option.

The default value is 1000, but it can be set as low as 100 for the initial creation.

K8S_METADATA The compute engine metadata (in the format key=val,key=val) to make available to

the guest operating system running on nodes in the node pools. This parameter

maps to the gcloud container cluster --metadata option.

Important
Including disable-legacy-endpoints=true is required to ensure that
legacy metadata APIs are disabled. For more information about the

option, see Protecting Cluster Metadata in the GKE documentation.

K8S_MIN_NODES The minimum number of nodes in the default node pool. This parameter maps to

the gcloud container cluster --min-nodes option. For example, 1.

K8S_MAX_NODES The maximum number of nodes in the default node pool. This parameter maps to

the gcloud container cluster --max-nodes option. For example, 3.

Creating the GKE Cluster 198

https://cloud.google.com/kubernetes-engine/docs/how-to/protecting-cluster-metadata

Parameter Description

GCLOUD_
RESOURCE_
LABELS

A comma-separated list of any labels that you want to apply to the Google Cloud

resources in use by the GKE cluster (unrelated to Kubernetes labels).

GCLOUD_VM_
LABELS

A comma-separated list of any Kubernetes labels to apply to nodes in the default

node pool. This parameter maps to the gcloud container cluster --node-labels

option.

GCLOUD_VM_
TAGS

A comma-separated list of strings to add to the instances in the cluster to classify

the VMs. This parameter maps to the gcloud container cluster --tags option.

GCLOUD_VM_
MACHINE_TYPE

The machine type to use for the GKE cluster nodes. This parameter maps to the

gcloud container cluster --machine-type option. For example, n1-standard-1.

GCLOUD_VM_
SSD_COUNT

The number of local SSD disks to add to each node. This parameter maps to the

gcloud container cluster --local-ssd-count option. For example, specify 0 if
you do not want to add SSDs to the nodes.

GCLOUD_
PROJECT_ID

The Project ID for the GKE cluster. This parameter maps to the gcloud-wide --

project option. For example, cloud-project-1592.

GCLOUD_
NETWORK

The network to provision the GKE cluster in. This value should match the name of

the network that Anzo is deployed in. This parameter maps to the gcloud container

cluster --network option. For example, devel-network.

Note
If you want gcloud to create a new network, you can leave this value

blank. However, after deploying the GKE cluster, you must configure the

new network so that it is routable from the Anzo network.

GCLOUD_NODES_
SUBNET_SUFFIX

The suffix to add to the subnetworks. For example, nodes.

Creating the GKE Cluster 199

Parameter Description

GCLOUD_
CLUSTER_REGION

The compute region for the GKE cluster. This value should match the name of the

region that Anzo is deployed in. This parameter maps to the gcloud container

cluster --region option. For example, us-central1.

GCLOUD_NODE_
LOCATIONS

A comma-separated list of any zones to replicate the nodes in. This parameter

maps to the gcloud container cluster --node-locations option. For example,

us-central1-f.

GCLOUD_NODE_
TAINTS

A comma-separated list of the Kubernetes taints for the nodes in the default node

pool. When a pod is scheduled for deployment, the scheduler relies on this

information to find the node pool that the pod belongs in. A pod has a toleration
that identifies whether it is compatible with a node taint. This parameter maps to the

gcloud container cluster --node-taints option. For more information, see

Controlling Scheduling with Node Taints in the GKE documentation.

GCLOUD_NODE_
SCOPE

A comma-separated list of the access scopes the nodes should have. This

parameter maps to the gcloud container cluster --scopes option. For example,

gke-default.

Example Configuration File

An example completed k8s_cluster.conf file is shown below.

NETWORK_BGP_ROUTING="regional"

NETWORK_SUBNET_MODE="custom"

NETWORK_ROUTER_NAME="csi-cloudrouter"

NETWORK_ROUTER_MODE="custom"

NETWORK_ROUTER_ASN=64512

NETWORK_ROUTER_DESC="Cloud router for K8S NAT."

NETWORK_NAT_NAME="csi-natgw"

NETWORK_NAT_UDP_IDLE_TIMEOUT="60s"

NETWORK_NAT_ICMP_IDLE_TIMEOUT="60s"

NETWORK_NAT_TCP_ESTABLISHED_IDLE_TIMEOUT="60s"

NETWORK_NAT_TCP_TRANSITORY_IDLE_TIMEOUT="60s"

NETWORK_NAT_ALLOW_SUBNET_SECONDARY_IPS=false

Creating the GKE Cluster 200

https://cloud.google.com/kubernetes-engine/docs/how-to/node-taints

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"csi-k8s-cluster"}

K8S_CLUSTER_PODS_PER_NODE="16"

K8S_CLUSTER_ADDONS="HttpLoadBalancing,HorizontalPodAutoscaling"

GKE_MASTER_VERSION="1.19.9-gke.1900"

GKE_PRIVATE_ACCESS=true

GKE_MASTER_NODE_COUNT_PER_LOCATION=1

GKE_NODE_VERSION="1.19.9-gke.1900"

GKE_IMAGE_TYPE="COS"

GKE_MAINTENANCE_WINDOW='06:00'

GKE_ENABLE_PRIVATE_ENDPOINT=true

GKE_MASTER_ACCESS_CIDRS="10.128.0.0/9"

K8S_PRIVATE_CIDR="172.16.0.0/20"

K8S_SERVICES_CIDR="172.17.0.0/20"

GCLOUD_NODES_CIDR="192.168.0.0/20"

K8S_API_CIDR="192.171.0.0/28"

K8S_HOST_DISK_SIZE='50GB'

K8S_HOST_DISK_TYPE="pd-standard"

K8S_HOST_MIN_CPU_PLATFORM=""

K8S_POOL_HOSTS_MAX=1000

K8S_METADATA="disable-legacy-endpoints=true"

K8S_MIN_NODES=1

K8S_MAX_NODES=3

GCLOUD_RESOURCE_LABELS='deleteafter=false,owner=user'

GCLOUD_VM_LABELS=description=k8s_cluster

GCLOUD_VM_TAGS="cluster-vm"

GCLOUD_VM_MACHINE_TYPE="n1-standard-1"

GCLOUD_VM_SSD_COUNT=0

GCLOUD_PROJECT_ID=${GCLOUD_PROJECT_ID:-"cloud-project-1592"}

GCLOUD_NETWORK=${GCLOUD_NETWORK:-"devel-network"}

GCLOUD_NODES_SUBNET_SUFFIX="nodes"

GCLOUD_CLUSTER_REGION=${GCLOUD_CLUSTER_REGION:-"us-central1"}

GCLOUD_NODE_LOCATIONS="us-central1-f"

GCLOUD_NODE_TAINTS='key1=val1:NoSchedule,key2=val2:PreferNoSchedule'

GCLOUD_NODE_SCOPE='gke-default'

Create the GKE Cluster

After defining the cluster requirements, run the create_k8s.sh script in the gcloud directory to create the
cluster. Run the script with the following command. The arguments are described below.

Creating the GKE Cluster 201

./create_k8s.sh -c <config_file_name> [-d <config_file_directory>] [-f | --

force] [-h | --help]

Argument Description

-c <config_
file_name>

This is a required argument that specifies the name of the configuration file that supplies
the cluster requirements. For example, -c k8s_cluster.conf.

-d <config_
file_
directory>

This is an optional argument that specifies the path and directory name for the
configuration file specified for the -c argument. If you are using the original gcloud

directory file structure and the configuration file is in the conf.d directory, you do not need

to specify the -d argument. If you created a separate directory structure for different Anzo

environments, include the -d option. For example, -d /gcloud/env1/conf.

-f | --force This is an optional argument that controls whether the script prompts for confirmation
before proceeding with each stage involved in creating the cluster. If -f (--force) is
specified, the script assumes the answer is "yes" to all prompts and does not display them.

-h | --help This argument is an optional flag that you can specify to display the help from the create_

k8s.sh script.

For example, the following command runs the create_k8s script, using k8s_cluster.conf as input to the script.

Since k8s_cluster.conf is in the conf.d directory, the -d argument is excluded:

./create_k8s.sh -c k8s_cluster.conf

The script validates that the required software packages, such as the gcloud sdk and kubectl, are installed

and that the versions are compatible with the deployment. It also displays an overview of the deployment

details based on the values in the specified configuration file. For example:

Operating System : CentOS Linux

- Google Cloud SDK: 322.0.0

alpha: 2021.01.05

beta: 2021.01.05

bq: 2.0.64

core: 2021.01.05

Creating the GKE Cluster 202

gsutil: 4.57

kubectl cli version: Client Version: v1.19.12

valid

Deployment details:

Project : cloud-project-1592

Region : us-central1

GKE Cluster : cloud-k8s-cluster

GKE Master version : 1.19.9-gke.1900

The script then prompts you to proceed with deploying each component of the GKE cluster infrastructure.

Type y and press Enter to proceed with creating the specified network, cluster, cloud router, and NAT
gateway components. All components are created according to the specifications in the configuration file.

When cluster creation is complete, proceed to Creating the Required Node Pools to add the required node

pools to the cluster.

Related Topics
Creating and Assigning IAM Roles

Creating the Required Node Pools

Creating the Required Node Pools

This topic provides instructions for creating the three types of required node pools:

l The Operator node pool for running the AnzoGraph, Anzo Agent with Anzo Unstructured (AU), and
Elasticsearch operator pods.

l The AnzoGraph node pool for running AnzoGraph application pods.

l The Dynamic node pool for running Anzo Agent with AU and Elasticsearch application pods.

Tip
For more information about the node pools, see Node Pool Requirements.

l Define the Node Pool Requirements

l Create the Node Pools

Creating the Required Node Pools 203

Define the Node Pool Requirements

Before creating the node pools, configure the infrastructure requirements for each type of pool. The

nodepool_*.conf files in the gcloud/conf.d directory are sample configuration files that you can use as
templates, or you can edit the files directly:

l nodepool_operator.conf defines the requirements for the Operator node pool.

l nodepool_anzograph.conf defines the requirements for the AnzoGraph node pool.

l nodepool_dynamic.conf defines the requirements for the Dynamic node pool.

Important
The additional AnzoGraph and Dynamic node pool configuration files, nodepool_anzograph_
tuner.yaml and nodepool_dynamic_tuner.yaml, configure the kernel-level tuning and security
policies to apply to AnzoGraph and Dynamic runtime environments. Do not make changes to the

files. There is a stage during node pool creation when the script prompts, Do you want to tune the
nodepools?. It is important to answer y (yes) so that the kernel tuning and security policies are
applied.

Each type of node pool configuration file contains the following parameters. Descriptions of the parameters

and guidance on specifying the appropriate values for each type of node pool are provided below.

DOMAIN="<domain>"

KIND="<kind>"

GCLOUD_CLUSTER_REGION=${GCLOUD_CLUSTER_REGION:-"<region>"}

GCLOUD_NODE_TAINTS="<node-taints>"

GCLOUD_PROJECT_ID=${GCLOUD_PROJECT_ID:-"<project>"}

GKE_IMAGE_TYPE="<image-type>"

GKE_NODE_VERSION="<version>"

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"<cluster>"}

NODE_LABELS="<node-labels>"

MACHINE_TYPES="<machine-type>"

TAGS="<tags>"

METADATA="<metadata>"

MAX_PODS_PER_NODE=<max-pods-per-node>

MAX_NODES=<max-nodes>

MIN_NODES=<min-nodes>

NUM_NODES=<num-nodes>

DISK_SIZE="<disk-size>"

DISK_TYPE="<disk-type>"

Creating the Required Node Pools 204

DOMAIN

The name of the domain that hosts the node pool. This is typically prefaced with the name of the

organization.

Node Pool Type Sample DOMAIN Value

Operator csi-operator

AnzoGraph csi-anzograph

Dynamic csi-dynamic

KIND

This parameter classifies the node pool in terms of kernel tuning and the type of pods that the node pool

will host.

Node Pool Type Required KIND Value

Operator operator

AnzoGraph anzograph

Dynamic dynamic

GCLOUD_CLUSTER_REGION

The compute region for the GKE cluster. This parameter maps to the gcloud container cluster --region

option. For example, us-central1.

GCLOUD_NODE_TAINTS

This parameter configures a node so that the scheduler avoids or prevents using it for hosting certain

pods. When a pod is scheduled for deployment, the scheduler relies on this value to determine whether

the pod belongs in this pool. If a pod has a toleration that is not compatible with this taint, the pod is
rejected from the pool. The table below lists the recommended values. The NoSchedule value means a

toleration is required and pods without the appropriate toleration will not be allowed in the pool.

Creating the Required Node Pools 205

Node Pool Type Recommended GCLOUD_NODE_TAINTS Value

Operator cambridgesemantics.com/dedicated=operator:NoSchedule

AnzoGraph cambridgesemantics.com/dedicated=anzograph:NoSchedule,

cloud.google.com/gke-preemptible="false":PreferNoSchedule

Dynamic cambridgesemantics.com/dedicated=dynamic:NoSchedule,

cloud.google.com/gke-preemptible="true":NoSchedule

GCLOUD_PROJECT_ID

The Project ID for the node pool. This parameter maps to the gcloud-wide --project option. The value

should match the Project ID for the GKE cluster. For example, cloud-project-1592.

GKE_IMAGE_TYPE

The base operating system that the nodes in the node pool will run on. This parameter maps to the gcloud

container cluster --image-type option. This value must be cos_containerd.

GKE_NODE_VERSION

The Kubernetes version to use for nodes in the node pool. Cambridge Semantics recommends that you

specify the same version as the GKE_MASTER_VERSION. This parameter maps to the gcloud container

cluster --node-version option.

K8S_CLUSTER_NAME

The name of the GKE cluster to add the node pool to. For example, csi-k8s-cluster.

NODE_LABELS

A comma-separated list of key/value pairs that define the type of pods that can be placed on the nodes in

this node pool. Labels are used to attract pods to nodes, while "taints" (GCLOUD_NODE_TAINTS) are

used to repel other types of pods from being placed in this node pool. One label,

cambridgesemantics.com/node-purpose, is required for each type of node pool. The node-
purpose label indicates that the purpose of the nodes in the pools are to host operator, anzograph, or

dynamic pods. The table below lists the required labels for each node pool.

Node Pool Type Required NODE_LABELS Value

Operator cambridgesemantics.com/node-purpose=operator

Creating the Required Node Pools 206

Node Pool Type Required NODE_LABELS Value

AnzoGraph cambridgesemantics.com/node-purpose=anzograph

Dynamic cambridgesemantics.com/node-purpose=dynamic

MACHINE_TYPES

A space-separated list of the machine types that can be used for the nodes in this node pool. This

parameter maps to the gcloud container cluster --machine-type option. If you list multiple machine

types, the node pool creation script prompts you to create multiple node pools of the same KIND, one pool

for each machine type.

Node Pool Type Sample MACHINE_TYPES Value

Operator n1-standard-1

AnzoGraph n1-standard-16 n1-standard-32 n1-standard-64

Dynamic n1-standard-4

Tip
For more guidance on determining the instance types to use for nodes in the required node pools,

see Compute Resource Planning.

TAGS

A comma-separated list of strings to add to the instances in the node pool to classify the VMs. This

parameter maps to the gcloud container cluster --tags option. For example, csi-anzo.

METADATA

The compute engine metadata (in the format key=val,key=val) to make available to the guest operating

system running on nodes in the node pool. This parameter maps to the gcloud container cluster --

metadata option.

Important
Including disable-legacy-endpoints=true is required to ensure that legacy metadata APIs are
disabled. For more information about the option, see Protecting Cluster Metadata in the GKE

documentation.

Creating the Required Node Pools 207

https://cloud.google.com/kubernetes-engine/docs/how-to/protecting-cluster-metadata

MAX_PODS_PER_NODE

The maximum number of pods that can be hosted on a node in this node pool. This parameter maps to the

gcloud container cluster --max-pods-per-node option. In addition to Anzo application pods, this limit

also needs to account for K8s service pods and helper pods. Cambridge Semantics recommends that you

set this value to at least 16 for all node pool types.

MAX_NODES

The maximum number of nodes in the node pool. This parameter maps to the gcloud container cluster --

max-nodes option.

Node Pool Type Sample MAX_NODES Value

Operator 8

AnzoGraph 64

Dynamic 64

MIN_NODES

The minimum number of nodes in the node pool. This parameter maps to the gcloud container cluster --

min-nodes option. If you set the minimum nodes to 0 for each node pool type, nodes will not be
provisioned unless the relevant type of pod is scheduled for deployment.

NUM_NODES

The number of nodes to deploy when the node pool is created. This value must be set to at least 1. When

you create the node pool, at least one node in the pool needs to be deployed as well. However, if the GKE

cluster autoscaler addon is enabled, the autoscaler will deprovision this node because it is not in use.

Note
Depending on the version of gcloud that you are using, you may be able to set NUM_NODES to 0.
Recent versions of gcloud added support for creating node pools without deploying any nodes.

DISK_SIZE

The size of the boot disks on the nodes. This parameter maps to the gcloud container cluster --disk-

size option.

Creating the Required Node Pools 208

Node Pool Type Sample DISK_SIZE Value

Operator 50GB

AnzoGraph 200GB

Dynamic 100GB

DISK_TYPE

The type of boot disk to use. This parameter maps to the gcloud container cluster --disk-type option.

Node Pool Type Sample DISK_TYPE Value

Operator pd-standard

AnzoGraph pd-ssd

Dynamic pd-ssd

Example Configuration Files

Example completed configuration files for each type of node pool are shown below.

Operator Node Pool

The example below shows a configured nodepool_operator.conf file.

DOMAIN="csi-operator"

KIND="operator"

GCLOUD_NODE_

TAINTS="cambridgesemantics.com/dedicated=operator:NoSchedule,cloud.google.com/g

ke-preemptible="false":NoSchedule"

GCLOUD_CLUSTER_REGION=${GCLOUD_CLUSTER_REGION:-"us-central1"}

GKE_IMAGE_TYPE="cos_containerd"

GKE_NODE_VERSION="1.23.7-gke.1400"

GCLOUD_PROJECT_ID=${GCLOUD_PROJECT_ID:-"cloud-project-1592"}

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"csi-k8s-cluster"}

NODE_LABELS="cambridgesemantics.com/node-

purpose=operator,cambridgesemantics.com/description=k8snode"

MACHINE_TYPES="n1-standard-1"

Creating the Required Node Pools 209

TAGS="csi-anzo"

METADATA="disable-legacy-endpoints=true"

MAX_PODS_PER_NODE=16

MAX_NODES=8

MIN_NODES=0

NUM_NODES=1

DISK_SIZE="50Gb"

DISK_TYPE="pd-standard"

AnzoGraph Node Pool

The example below shows a configured nodepool_anzograph.conf file.

DOMAIN="csi-anzograph"

KIND="anzograph"

GCLOUD_CLUSTER_REGION=${GCLOUD_CLUSTER_REGION:-"us-central1"}

GCLOUD_NODE_

TAINTS="cambridgesemantics.com/dedicated=anzograph:NoSchedule,cloud.google.com/

gke-preemptible="false":PreferNoSchedule"

GCLOUD_PROJECT_ID=${GCLOUD_PROJECT_ID:-"cloud-project-1592"}

GKE_IMAGE_TYPE="cos_containerd"

GKE_NODE_VERSION="1.23.7-gke.1400"

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"csi-k8s-cluster"}

NODE_LABELS="cambridgesemantics.com/node-

purpose=anzograph,cambridgesemantics.com/description=k8snode"

MACHINE_TYPES="n1-standard-16 n1-standard-32 n1-standard-64"

TAGS="csi-anzo"

METADATA="disable-legacy-endpoints=true"

MAX_PODS_PER_NODE=16

MAX_NODES=64

MIN_NODES=0

NUM_NODES=1

DISK_SIZE="200Gb"

DISK_TYPE="pd-ssd"

Dynamic Node Pool

The example below shows a configured nodepool_dynamic.conf file.

Creating the Required Node Pools 210

DOMAIN="csi-dynamic"

KIND="dynamic"

GCLOUD_CLUSTER_REGION=${GCLOUD_CLUSTER_REGION:-"us-central1"}

GCLOUD_NODE_

TAINTS="cambridgesemantics.com/dedicated=dynamic:NoSchedule,cloud.google.com/gk

e-preemptible="false":NoSchedule"

GCLOUD_PROJECT_ID=${GCLOUD_PROJECT_ID:-"cloud-project-1592"}

GKE_IMAGE_TYPE="cos_containerd"

GKE_NODE_VERSION="1.23.7-gke.1400"

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"csi-k8s-cluster"}

NODE_LABELS="cambridgesemantics.com/node-

purpose=dynamic,cambridgesemantics.com/description=k8snode"

MACHINE_TYPES="n1-standard-4"

TAGS="csi-anzo"

METADATA="disable-legacy-endpoints=true"

MAX_PODS_PER_NODE=16

MAX_NODES=64

MIN_NODES=0

NUM_NODES=1

DISK_SIZE="100Gb"

DISK_TYPE="pd-ssd"

Create the Node Pools

After defining the requirements for the node pools, run the create_nodepools.sh script in the gcloud
directory to create each type of node pool. Run the script with the following command. Run it once for each

type of pool. The arguments are described below.

./create_nodepools.sh -c <config_file_name> [-d <config_file_directory>] [-f

| --force] [-h | --help]

Argument Description

-c <config_
file_name>

This is a required argument that specifies the name of the configuration file (i.e.,
nodepool_operator.conf, nodepool_anzograph.conf, or nodepool_

dynamic.conf) that supplies the node pool requirements. For example, -c nodepool_
dynamic.conf.

Creating the Required Node Pools 211

Argument Description

-d <config_
file_
directory>

This is an optional argument that specifies the path and directory name for the
configuration file specified for the -c argument. If you are using the original gcloud

directory file structure and the configuration file is in the conf.d directory, you do not need

to specify the -d argument. If you created a separate directory structure for different Anzo

environments, include the -d option. For example, -d /gcloud/env1/conf.

-f | --force This is an optional argument that controls whether the script prompts for confirmation
before proceeding with each stage involved in creating the node pool. If -f (--force) is
specified, the script assumes the answer is "yes" to all prompts and does not display them.

-h | --help This argument is an optional flag that you can specify to display the help from the create_

nodepools.sh script.

For example, the following command runs the create_nodepools script, using nodepool_operator.conf as

input to the script. Since nodepool_operator.conf is in the conf.d directory, the -d argument is excluded:

./create_nodepools.sh -c nodepool_operator.conf

The script validates that the required software packages are installed and that the versions are compatible

with the deployment. It also displays an overview of the deployment details based on the values in the

specified configuration file. For example:

Operating System : CentOS Linux

- Google Cloud SDK: 322.0.0

alpha: 2021.01.05

beta: 2021.01.05

bq: 2.0.64

core: 2021.01.05

gsutil: 4.57

kubectl cli version: Client Version: v1.23.9

valid

Deployment details:

Project : cloud-project-1592

Creating the Required Node Pools 212

Region : us-central1

GKE Cluster : csi-k8s-cluster

The script then prompts you to proceed with deploying each component of the node pool. Type y and press
Enter to proceed with the configuration.

Important
When creating the AnzoGraph and Dynamic node pools, there is a stage when the script prompts,

Do you want to tune the nodepools?. It is important to answer y (yes) so that the kernel tuning
and security policies from the related nodepool_*_tuner.yaml file are applied to the node pool

configuration.

Once the Operator, AnzoGraph, and Dynamic node pools are created, the next step is to create a Cloud

Location in Anzo so that Anzo can connect to the GKE cluster and deploy applications. See Connecting to a

Cloud Location in the Administration Guide.

Related Topics
Creating the GKE Cluster

Creating the Required Node Pools 213

https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/cloud-location.htm
https://docs.cambridgesemantics.com/anzo/v5.4/userdoc/cloud-location.htm

Azure Kubernetes Service Deployments

The topics in this section guide you through the process of deploying all of the Azure Kubernetes Service

(AKS) infrastructure that is required to support dynamic deployments of Anzo components. The topics

provide instructions for setting up a workstation to use for deploying the K8s infrastructure, performing the

prerequisite tasks before deploying the AKS cluster, creating the AKS cluster, and creating the required

node pools.

Setting Up a Workstation 214

Planning the Anzo and AKS Network Architecture 221

Creating and Assigning IAM Roles 224

Creating the AKS Cluster 229

Creating the Required Node Pools 243

Setting Up a Workstation

This topic provides the requirements and instructions to follow for configuring a workstation to use for

creating and managing the AKS infrastructure. The workstation needs to be able to connect to the Azure

API. It also needs to have the required Azure and Kubernetes (K8s) software packages as well as the

deployment scripts and configuration files supplied by Cambridge Semantics. This workstation will be used

to connect to the Azure API and provision the K8s cluster and node pools.

Note
You can use the Anzo server as the workstation if the network routing and security policies permit

the Anzo server to access the Azure and K8s APIs. When deciding whether to use the Anzo server

as the K8s workstation, consider whether Anzo may be migrated to a different server or VPC in the

future.

l Review the Requirements and Install the Software

l Download the Cluster Creation Scripts and Configuration Files

Review the Requirements and Install the Software

Component Requirement

Operating System The operating system for the workstation must be RHEL/CentOS 7.8
or higher.

Azure Kubernetes Service Deployments 214

Component Requirement

Networking The workstation should be in the same VPC network as the AKS

cluster. If it is not in the same VPC, make sure that it is on a network

that is routable from the cluster's VPC.

Software l Python 3 is required.

l Kubectl Versions 1.21 – 1.24 are supported. Cambridge
Semantics recommends that you use the same kubectl version

as the AKS cluster version. For instructions, see Install Kubectl

below.

l Azure CLI Version 2.5.1 or later is required. For installation
instructions, see Install Azure CLI below.

CSI AZ Package Cambridge Semantics provides az scripts and configuration files to use
for provisioning the AKS cluster and node pools. Download the files to

the workstation. See Download the Cluster Creation Scripts and

Configuration Files for more information about the az package.

Install Kubectl

Follow the instructions below to install kubectl on your workstation. Cambridge Semantics recommends that

you install the same version of kubectl as the K8s cluster API. For more information, see Install and Set Up

kubectl on Linux in the Kubernetes documentation.

1. Run the following cURL command to download the kubectl binary:

curl -LO https://dl.k8s.io/release/<version>/bin/linux/amd64/kubectl

Where <version> is the version of kubectl to install. For example, the following command downloads

version 1.19.12:

curl -LO https://dl.k8s.io/release/v1.19.12/bin/linux/amd64/kubectl

2. Run the following command to make the binary executable:

chmod +x ./kubectl

Setting Up a Workstation 215

https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/
https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

3. Run the following command to move the binary to your PATH:

sudo mv ./kubectl /usr/local/bin/kubectl

4. To confirm that the binary is installed and that you can run kubectl commands, run the following

command to display the client version:

kubectl version --client

The command returns the following type of information. For example:

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.12",

GitCommit:"f3abc15296f3a3f54e4ee42e830c61047b13895f",

GitTreeState:"clean", BuildDate:"2021-06-16T13:21:12Z",

GoVersion:"go1.13.15", Compiler:"gc", Platform:"linux/amd64"}

Install Azure CLI

Follow the instructions below to install the Azure CLI on your workstation. These instructions follow the steps

in Install the Azure CLI on Linux in the Microsoft Azure CLI documentation.

1. Run the following command to import the Microsoft repository key:

sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc

2. Run the following command to create the local azure-cli repository information:

echo -e "[azure-cli]

name=Azure CLI

baseurl=https://packages.microsoft.com/yumrepos/azure-cli

enabled=1

gpgcheck=1

gpgkey=https://packages.microsoft.com/keys/microsoft.asc" | sudo tee

/etc/yum.repos.d/azure-cli.repo

3. Run the following command to install the CLI:

sudo yum install azure-cli

Setting Up a Workstation 216

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-linux?pivots=dnf

4. To ensure that the CLI was installed, run the following command to display the CLI version:

az version

5. Next, run the following command to run the Azure CLI. Follow the prompts to log in to Azure:

az login --use-device-code

Download the Cluster Creation Scripts and Configuration Files

The Cambridge Semantics GitHub repository, k8s-genesis (https://github.com/cambridgesemantics/k8s-

genesis.git), includes all of the files that are needed to manage the configuration, creation, and deletion of

the AKS cluster and node pools.

You can clone the repository to any location on the workstation or download the k8s-genesis package as a

ZIP file, copy the file to the workstation, and extract the contents. The k8s-genesis directory includes three

subdirectories (one for each supported Cloud Service Provider), the license information, and a readme file:

k8s-genesis

├── aws

├── azure

├── gcp

├── LICENSE

└── README.md

Navigate to /azure/k8s/az. The az directory contains all of the AKS cluster and node pool configuration

files. You can remove all other directories from the workstation. The az files and subdirectories are shown

below:

az

├── common.sh

├── conf.d

│ ├── k8s_cluster.conf

│ ├── nodepool_anzograph.conf

│ ├── nodepool_common.conf

│ ├── nodepool.conf

│ ├── nodepool_dynamic.conf

│ └── nodepool_operator.conf

├── create_k8s.sh

├── create_nodepools.sh

Setting Up a Workstation 217

https://github.com/cambridgesemantics/k8s-genesis

├── delete_k8s.sh

├── delete_nodepools.sh

├── exec_samples

│ ├── rbac_aad_group.yaml

│ └── rbac_aad_user.yaml

├── permissions

│ ├── aks_admin_role.json

│ └── cluster_developer_role.json

├── README.md

├── reference

│ ├── nodepool_anzograph_tuner.yaml

│ └── nodepool_dynamic_tuner.yaml

└── sample_use_cases

├── 10_useExistingResources

│ └── k8s_cluster.conf

├── 11_useProximityPlacementGroups

│ └── k8s_cluster.conf

├── 1_azureManagedIdentity_private_cluster

│ └── k8s_cluster.conf

├── 2_createServicePrincipal_public_cluster

│ └── k8s_cluster.conf

├── 3_useServicePrincipal

│ └── k8s_cluster.conf

├── 4_userManagedAAD

│ └── k8s_cluster.conf

├── 5_azureManagedAAD

│ └── k8s_cluster.conf

├── 6_attachACR

│ └── k8s_cluster.conf

├── 7_clusterAutoscalerSupport

│ └── k8s_cluster.conf

├── 8_MonitoringEnabled

│ └── k8s_cluster.conf

└── 9_RBACSupport

└── k8s_cluster.conf

The following list gives an overview of the files. Subsequent topics describe the files in more detail.

Setting Up a Workstation 218

l The common.sh script is used by the create and delete cluster and node pool scripts.

l The conf.d directory contains the configuration files that are used to supply the specifications to follow
when creating the K8s cluster and node pools:

o k8s_cluster.conf: Supplies the specifications for the AKS cluster.
o nodepool_anzograph.conf: Supplies the specifications for the AnzoGraph node pool.
o nodepool_common.conf: Supplies the specifications for a Common node pool. The Common
node pool is not required for AKS deployments, and this configuration file is typically not used.

o nodepool.conf: This file is supplied as a reference. It contains the super set of node pool
parameters.

o nodepool_dynamic.conf: Supplies the specifications for the Dynamic node pool.
o nodepool_operator.conf: Supplies the specifications for the Operator node pool.

l The create_k8s.sh script is used to deploy the AKS cluster, and the k8s_cluster.conf file in the
conf.d directory is the configuration file that is input to the create_k8s.sh script.

l The create_nodepools.sh script is used to deploy the required node pools in the AKS cluster. The

nodepool_*.conf files in the conf.d directory are the configuration files that are input to the create_
nodepools.sh script.

l The delete_k8s.sh script is used to delete the AKS cluster.

l The delete_nodepools.sh script is used to remove node pools from the AKS cluster.

l The exec_samples and permissions directories contain role definitions and scripts for creating the
custom roles that are needed to grant access to the Azure users and groups who will create or use the

AKS cluster.

l The reference directory contains crucial files that are referenced by the cluster and node pool creation
scripts. The files in the directory should not be edited, and the reference directory must exist on the
workstation at the same level as the create*.sh and delete*.sh scripts.

l The sample_use_cases directory contains sample AKS cluster configuration files that you can refer to

or use as a template for configuring your AKS cluster depending on your use case. There are several

files in the directory because there is an example for each type of AKS-supported identity and

authentication management option. You can use a combination of settings from different sample files

to configure your cluster, but you can only choose one type of authentication mode. For example, you

cannot enable Service Principals with Azure Active Directory.
o The k8s_cluster.conf file in the 1_azureManagedIdentity_private_cluster directory is a
sample file for a use case where you want to deploy the AKS cluster into a private Virtual

Setting Up a Workstation 219

Network and let Azure handle identity creation and management. Using an Azure managed

identity is recommended.
o The k8s_cluster.conf file in the 2_createServicePrincipal_public_cluster directory is a
sample file for a use case where you want to create a new Service Principal to deploy a public

AKS cluster. Access to the cluster is limited to certain IP ranges. Managing Service Principals

adds more complexity than using an Azure managed identity.
o The k8s_cluster.conf file in the 3_useServicePrincipal directory is a sample file for a use case
that is similar to the 2_createServicePrincipal_public_cluster use case above but uses an
existing Service Principal.

o The k8s_cluster.conf file in the 4_userManagedAAD directory is a sample file for a use case

where you want to deploy an AKS cluster that connects to your user-managed Azure Active

Directory (AAD) server for identity management. You supply the AAD client and server

applications and the AAD tenant.
o The k8s_cluster.conf file in the 5_azureManagedAAD directory is a sample file for a use case

where you want to deploy an AKS cluster that connects to an Azure-managed Azure Active

Directory (AAD) server for identity management. In this case, the AKS resource provider

manages the client and server AAD applications.
o The k8s_cluster.conf file in the 6_attachACR directory is a sample file for a use case where

you want to deploy an AKS cluster that retrieves images from a private Azure Container

Registry.
o The k8s_cluster.conf file in the 7_clusterAutoscalerSupport directory is a sample file for a
use case where you want to deploy an AKS cluster that employs the Cluster Autoscaler service.

The autoscaler automatically adds nodes to the node pool when demand increases and then

deprovisions the nodes when demand decreases.
o The k8s_cluster.conf file in the 8_MonitoringEnabled directory is a sample file for a use case
where you want to deploy an AKS cluster with cluster monitoring enabled.

o The k8s_cluster.conf file in the 9_RBACSupport directory is a sample file for a use case where
you want to deploy an AKS cluster with Azure Role-Based Access Control (RBAC). Enabling

RBAC allows you to use Azure AD users, groups, or service principals as subjects in Kubernetes

RBAC.
o The k8s_cluster.conf file in the 10_useExistingResources directory is a sample file for a use
case where you want to deploy the AKS cluster into existing resources, such an existing Virtual

Network with existing resource groups and subnetworks.

Setting Up a Workstation 220

o The k8s_cluster.conf file in the 11_useProximityPlacementGroups directory is a sample file
for a use case where you want to use proximity placement groups for reduced latency. A

proximity placement group is a logical grouping used to make sure Azure compute resources are

physically located close to each other.

Once the workstation is configured, see Planning the Anzo and AKS Network Architecture to review

information about the network architecture that the az scripts create. And see Creating and Assigning IAM

Roles for instructions on creating the IAM roles that are needed for assigning permissions to create and use

the AKS cluster.

Related Topics
Planning the Anzo and AKS Network Architecture

Creating and Assigning IAM Roles

Creating the AKS Cluster

Creating the Required Node Pools

Planning the Anzo and AKS Network Architecture

This topic describes the network architecture that supports the Anzo and AKS integration.

Note
When you deploy the K8s infrastructure, Cambridge Semantics strongly recommends that you

create the AKS cluster in the same Virtual Network as Anzo. If you create the AKS cluster in a new

Virtual Network, you must configure the new network to be routable from the Anzo Virtual Network.

The diagram below shows the typical network components that are employed when an AKS cluster is

integrated with Anzo. Most of the network resources shown in the diagram are automatically deployed (and

the appropriate routing is configured) according to the values that you supply in the cluster and node group

.conf files in the az package on the workstation.

Planning the Anzo and AKS Network Architecture 221

In the diagram, there are two components that you deploy before configuring and creating the K8s

resources:

l Anzo: Since the Anzo server is typically deployed before the K8s components, you specify the Anzo
network when creating the AKS cluster, ensuring that Anzo and all of the AKS cluster components are

in the same network and can talk to each other. Also, make sure that Anzo has access to the Azure

and AKS APIs.

l NFS: You are required to create a network file system (NFS). However, Anzo automatically mounts the

NFS to the nodes when AnzoGraph, Anzo Unstructured, Spark, and Elasticsearch pods are deployed

so that all of the applications can share files. See Deploying the Shared File System for more

information. The NFS does not need to have its own subnet but it can.

The rest of the components in the diagram are automatically provisioned, depending on your specifications,

when the AKS cluster and node pools are created. The az scripts can be used to create a subnet for the K8s

services and node pools and configure the routing so that Anzo can communicate with the K8s services and

the services can talk to the pods that are deployed in the node pools. In addition, a Standard Load Balancer

can be used to provide outbound internet access, such as for pulling container images from the Cambridge

Semantics repository.

Planning the Anzo and AKS Network Architecture 222

Tip
When considering the network requirements of your organization and planning how to integrate the

new K8s infrastructure in accordance with those requirements, it may help to consider the following

types of use cases. Cambridge Semantics supplies sample cluster configuration files in the

az/sample_use_cases directory that are tailored for each of these use cases:

l Deploy a private AKS cluster with Azure Managed Identity

In this use case, the AKS cluster is deployed as a private cluster with no public access, and the

Azure Managed Identity service is enabled for identity and authorization management. Using

Azure Managed Identity is the recommended method to choose for AKS access control.

l Deploy a public AKS cluster with a new Service Principal

In this use case, the AKS cluster is deployed as a public cluster, and a Service Principal is

created for managing access control. You are responsible for maintaining the Service Principal

to keep the cluster functional.

l Deploy a public AKS cluster with an existing new Service Principal

This use case is similar to the use case described above but uses an existing Service Principal

instead of creating a new one.

l Deploy a private AKS cluster with a user-managed Azure Active Directory server

In this use case, the AKS cluster is deployed as a private cluster and a user-managed Azure

Active Directory (AAD) server is used for identity and authorization management. In this case,

you supply the AAD client and server applications and the AAD tenant.

l Deploy a private AKS cluster with an Azure-managed AAD server

In this use case, the AKS cluster is deployed as a private cluster and an Azure-managed AAD

server is used for identity and authorization management. In this case, the AKS resource

manager manages the AAD client and server applications.

l Deploy an AKS cluster and access a private Azure Container Registry

In this use case, an AKS cluster is deployed and accesses images that are maintained in a

private Azure Container Registry.

l Deploy an AKS cluster that Auto Scales on Demand

In this use case, an AKS cluster is deployed and the Cluster Autoscaler service is enabled.

The Cluster Autoscaler automatically adds nodes to the node pool when demand increases

and deprovisions nodes when demand decreases.

Planning the Anzo and AKS Network Architecture 223

l Deploy an AKS with the Monitoring Addon

In this use case, an AKS cluster is deployed and the Log Analytics monitoring service is

enabled.

l Deploy an AKS cluster with RBAC enabled

In this use case, an AKS cluster is deployed and Role-Based Access Control (RBAC) is

enabled. RBAC manages Kubernetes user identities and credentials. RBAC can be enabled in

conjunction with other authorization modes, such as Azure Managed Identity or AAD.

l Deploy an AKS cluster using existing resources

In this use case, an AKS cluster is deployed without creating new network components. The

cluster is deployed into an existing Virtual Network and uses existing resource groups and

subnetworks.

l Deploy an AKS cluster with Proximity Placement Groups

In this case, an AKS cluster is deployed with specified Proximity Placement Groups to ensure

that compute resources are deployed physically close to each other to reduce latency.

For a summary of the files in the az directory, see Download the Cluster Creation Scripts and

Configuration Files. Specifics about the parameters in the sample files are included in Creating the

AKS Cluster.

To get started on creating the AKS infrastructure, see Creating and Assigning IAM Roles for instructions on

creating the IAM roles that are needed for assigning permissions to create and use the AKS cluster.

Related Topics
Setting Up a Workstation

Creating and Assigning IAM Roles

Creating the AKS Cluster

Creating the Required Node Pools

Creating and Assigning IAM Roles

This topic provides instructions for creating the Identity and Access Management (IAM) roles that are

needed to supply the necessary permissions for creating and managing the AKS cluster and using the

cluster to deploy applications.

Creating and Assigning IAM Roles 224

Note
AKS is typically configured to use Azure Active Directory (AD) for user authentication. AKS

integration with Azure AD is optional but highly recommended. For more information, see Azure

Active Directory Integration in the AKS documentation.

There are two custom roles that need to be created in Azure to grant the necessary permissions to the

following two types of AKS users:

1. The first type of user is the user who sets up the K8s infrastructure, i.e., the user who configures,

creates, and maintains the AKS cluster and node pools. This policy is called the AKS Cluster Admin.

2. The second type of user is the user who connects to the AKS cluster and deploys the dynamic Anzo

applications. Typically this user is Anzo. Since Anzo communicates with the K8s services that

provision the applications, the Anzo service principal needs to be granted certain privileges. This user

role is called the AKS Cluster Developer.

Note
The enterprise-level Anzo service principal is a requirement for the Anzo installation and is

typically in place before Anzo is installed. For more information, see Anzo Service Account

Requirements.

This topic provides instructions for creating the two roles and gives guidance on assigning the roles to the

appropriate users, groups, or service principals.

l Create and Assign the AKS Cluster Admin Role

l Create and Assign the AKS Cluster Developer Role

Create and Assign the AKS Cluster Admin Role

The following IAM role applies the minimum permissions needed for an AKS Cluster Admin who will create

and manage the AKS cluster and node pools. Follow the instructions below to create the role and assign it to

the user, group, or service principal that will be used when creating the K8s infrastructure.

Note
The az file package on the workstation includes the configuration file that defines the AKS Cluster

Admin role: az/permissions/aks_admin_role.json.

1. Open the az/permissions/aks_admin_role.json file for editing. At the bottom of the file,

replace <subscription_id> with the ID for the subscription to attach the new AKS Cluster Admin

role to. Then save and close the file. The contents of aks_admin_role.json are shown below:

Creating and Assigning IAM Roles 225

https://docs.microsoft.com/en-us/azure/aks/concepts-identity#azure-active-directory-integration
https://docs.microsoft.com/en-us/azure/aks/concepts-identity#azure-active-directory-integration

{

"Name": "AKS Cluster Admin",

"IsCustom": true,

"Description": "AKS cluster admin role.",

"Actions": [

"Microsoft.Resources/subscriptions/resourcegroups/read",

"Microsoft.Resources/subscriptions/resourcegroups/write",

"Microsoft.Resources/subscriptions/resourcegroups/delete",

"Microsoft.Network/virtualNetworks/read",

"Microsoft.Network/virtualNetworks/write",

"Microsoft.Network/virtualNetworks/delete",

"Microsoft.Network/virtualNetworks/subnets/read",

"Microsoft.Network/virtualNetworks/subnets/write",

"Microsoft.Network/virtualNetworks/subnets/delete",

"Microsoft.Network/virtualNetworks/subnets/join/action",

"Microsoft.Network/publicIPPrefixes/read",

"Microsoft.Network/publicIPPrefixes/write",

"Microsoft.Network/publicIPPrefixes/delete",

"Microsoft.Network/publicIPPrefixes/join/action",

"Microsoft.Authorization/roleAssignments/read",

"Microsoft.Authorization/roleAssignments/write",

"Microsoft.Authorization/roleAssignments/delete",

"Microsoft.Resources/deployments/write",

"Microsoft.ContainerService/managedClusters/read",

"Microsoft.ContainerService/managedClusters/write",

"Microsoft.ContainerService/managedClusters/delete",

"Microsoft.ContainerService/managedClusters/agentPools/read",

"Microsoft.ContainerService/managedClusters/agentPools/write",

"Microsoft.ContainerService/managedClusters/agentPools/delete",

"Microsoft.ContainerService/managedClusters/listClusterAdminCredential/ac

tion",

"Microsoft.OperationsManagement/solutions/read",

"Microsoft.OperationsManagement/solutions/write",

"Microsoft.OperationalInsights/workspaces/read",

"Microsoft.OperationalInsights/workspaces/sharedkeys/read",

"Microsoft.ContainerRegistry/registries/read"

],

Creating and Assigning IAM Roles 226

"NotActions": [

],

"AssignableScopes": [

"/subscriptions/<subscription_id>"

]

}

2. Next, run the following Azure CLI command to create a custom role definition based on aks_admin_

role.json. For information about managing role definitions, see az role definition in the Azure CLI

documentation.

az role definition create --role-definition cluster-admin-role.json

3. Once the role is defined in Azure, run the following command to assign the role to the user, group, or

service principal who will create and manage the AKS cluster. For information about managing role

assignments, see az role assignment in the Azure CLI documentation.

az role assignment create --assignee "<user_group_or_sp_name_or_id>" --

role "<role_name_or_id>"

Create and Assign the AKS Cluster Developer Role

The following IAM role applies the minimum permissions needed for the AKS Cluster Developer role. Follow

the instructions below to create the role and assign it to the Anzo service account.

Note
The az file package on the workstation includes the configuration file that defines the AKS Cluster

Developer role: az/permissions/cluster_developer_role.json.

1. Open the az/permissions/cluster_developer_role.json file for editing. At the bottom of the

file, replace <subscription_id> with the ID for the subscription to attach the new AKS Cluster

Developer role to. Then save and close the file. The contents of cluster_developer_role.json

are shown below:

{

"Name": "AKS Cluster Developer",

"IsCustom": true,

Creating and Assigning IAM Roles 227

https://docs.microsoft.com/en-us/cli/azure/role/definition?view=azure-cli-latest#az_role_definition_create
https://docs.microsoft.com/en-us/cli/azure/role/assignment?view=azure-cli-latest

"Description": "AKS cluster developer role.",

"Actions": [

"Microsoft.ContainerService/managedClusters/listClusterUserCredential/act

ion"

],

"NotActions": [

],

"AssignableScopes": [

"/subscriptions/<subscription_id>"

]

}

2. Next, run the following Azure CLI command to create a custom role definition based on cluster_

developer_role.json.

az role definition create --role-definition cluster_developer_role.json

For more information about managing role definitions in Azure, see az role definition in the Azure CLI

documentation.

3. Once the role is defined in Azure, run the following command to assign the role to the Anzo service

principal.

az role assignment create --assignee "<anzo_sp>" --role "<role_name_or_

id>"

For more information about managing role assignments in Azure, see az role assignment in the Azure

CLI documentation.

Once the IAM roles are in place and users are granted access, proceed to Creating the AKS Cluster for

instructions on configuring and creating the cluster.

Related Topics
Setting Up a Workstation

Planning the Anzo and AKS Network Architecture

Creating the AKS Cluster

Creating the Required Node Pools

Creating and Assigning IAM Roles 228

https://docs.microsoft.com/en-us/cli/azure/role/definition?view=azure-cli-latest#az_role_definition_create
https://docs.microsoft.com/en-us/cli/azure/role/assignment?view=azure-cli-latest

Creating the AKS Cluster

Follow the instructions below to define the AKS cluster resource requirements and then create the cluster

based on your specifications.

l Define the AKS Cluster Requirements

l Create the AKS Cluster

Define the AKS Cluster Requirements

The first step in creating the K8s cluster is to define the infrastructure specifications. The configuration file to

use for defining the specifications is called k8s_cluster.conf. Multiple sample k8s_cluster.conf files are
included in the az directory. Any of them can be copied and used as templates, or the files can be edited

directly.

Sample k8s_cluster.conf Files

To help guide you in choosing the appropriate template for your use case, this section describes each of the

sample files. Details about the parameters in the sample files are included in Cluster Parameters below.

Note
There are several sample use case files because there is an example for each type of AKS-

supported identity and authentication management option. You can use a combination of settings

from different sample files to configure your cluster, but you can only choose one type of

authentication. For example, you cannot configure Service Principals and enable Azure Active

Directory.

az/conf.d/k8s_cluster.conf

This file is a non-specific use case. It includes sample values for all of the available cluster parameters.

az/sample_use_cases/1_azureManagedIdentity_private_cluster/k8s_cluster.conf

This file includes sample values for a use case where:

l A private AKS cluster is deployed (PRIVATE_CLUSTER="true") so that the cluster is only accessible

from within the Virtual Network or a connected network.

l Azure Managed Identity is enabled (ENABLE_MANAGED_IDENTITY="true") so that Azure manages

identity creation and management. Using Azure Managed Identity is highly recommended.

az/sample_use_cases/2_createServicePrincipal_public_cluster/k8s_cluster.conf

This file includes sample values for a use case where:

Creating the AKS Cluster 229

l A public AKS cluster is deployed (PRIVATE_CLUSTER="false").

l A Service Principal is created (SP=${SP:-"<service-principal>"}) that must be renewed and

managed by you.

l Public access to the cluster can be limited to certain IP ranges by specifying the approved ranges in

the API_SERVER_AUTHORIZED_IP_RANGES parameter.

az/sample_use_cases/3_useServicePrincipal/k8s_cluster.conf

This file includes sample values for a use case where:

l A public AKS cluster is deployed (PRIVATE_CLUSTER="false").

l An existing Service Principal is used for identity and access management. The SP_ID and SP_

SECRET parameters are used to specify the ID and secret for the existing Service Principal.

l Public access to the cluster can be limited to certain IP ranges by specifying the approved ranges in

the API_SERVER_AUTHORIZED_IP_RANGES parameter.

az/sample_use_cases/4_userManagedAAD/k8s_cluster.conf

This file includes sample values for a use case where:

l A private AKS cluster is deployed (PRIVATE_CLUSTER="true") so that the cluster is only accessible

from within the Virtual Network or a connected network.

l An existing Azure Active Directory (AAD) server is used for identity and authorization management.

Details about the existing AAD client and server applications as well as the tenet ID need to be

specified in the AAD_CLIENT_APP_ID, AAD_SERVER_APP_ID, AAD_SERVER_APP_SECRET, and

AAD_TENANT_ID parameters.

az/sample_use_cases/5_azureManagedAAD/k8s_cluster.conf

This file includes sample values for a use case where:

l A private AKS cluster is deployed (PRIVATE_CLUSTER="true") so that the cluster is only accessible

from within the Virtual Network or a connected network.

l An Azure-managed Active Directory (AAD) server is enabled (ENABLE_AAD="true").

l The AKS resource provider manages the AAD client and server applications.

az/sample_use_cases/6_attachACR/k8s_cluster.conf

This file includes sample values for a use case where:

l A private AKS cluster is deployed (PRIVATE_CLUSTER="true") so that the cluster is only accessible

from within the Virtual Network or a connected network.

Creating the AKS Cluster 230

l The cluster is configured to retrieve images from an existing private Azure Container Registry (ACR)

by specifying the name of the ACR in the ATTACH_ACR parameter.

az/sample_use_cases/7_clusterAutoscalerSupport/k8s_cluster.conf

This file includes sample values for a use case where:

l A private AKS cluster is deployed (PRIVATE_CLUSTER="true") so that the cluster is only accessible

from within the Virtual Network or a connected network.

l The Cluster Autoscaler service is enabled (ENABLE_CLUSTER_AUTOSCALER="true") so that nodes

are automatically added to the node pool when demand increases and removed from the node pool

when demand decreases.

l The parameter CLUSTER_AUTOSCALER_PROFILE parameter is used to configure the autoscaler.

az/sample_use_cases/8_MonitoringEnabled/k8s_cluster.conf

This file includes sample values for a use case where:

l A private AKS cluster is deployed (PRIVATE_CLUSTER="true") so that the cluster is only accessible

from within the Virtual Network or a connected network.

l The Monitoring service is enabled (AKS_ENABLE_ADDONS="monitoring") for the cluster.

az/sample_use_cases/9_RBACSupport/k8s_cluster.conf

This file includes sample values for a use case where:

l A private AKS cluster is deployed (PRIVATE_CLUSTER="true") so that the cluster is only accessible

from within the Virtual Network or a connected network.

l Azure Role-Based Access Control (RBAC) is enabled (DISABLE_RBAC="false").

az/sample_use_cases/10_useExistingResources/k8s_cluster.conf

This file includes sample values for a use case where:

l A private AKS cluster is deployed (PRIVATE_CLUSTER="true") so that the cluster is only accessible

from within the Virtual Network or a connected network.

l You deploy the cluster into your existing Resource Group, Virtual Network, and Subnetwork by

specifying the values for those resources in the RESOURCE_GROUP=${RESOURCE_GROUP:-

"<resource-group>"}, VNET_NAME=${VNET_NAME:-"<name>"}, and SUBNET_

NAME="<subnet-name>" parameters.

az/sample_use_cases/11_useProximityPlacementGroups/k8s_cluster.conf

This file includes sample values for a use case where:

Creating the AKS Cluster 231

l A private AKS cluster is deployed (PRIVATE_CLUSTER="true") so that the cluster is only accessible

from within the Virtual Network or a connected network.

l You define a Proximity Placement Group (PPG) so that Azure deploys compute resources into a

logical grouping where they are physically located close to each other to reduce latency. You specify

the PPG name and type of group in the PPG=${PPG:-"<name>"} and PPG_TYPE=${PPG_TYPE:-

"<type>"} parameters.

Cluster Parameters

The contents of k8s_cluster.conf are shown below. Descriptions of the cluster parameters follow the

contents.

ENABLE_MANAGED_IDENTITY="<enable-managed-identity>"

SP=${SP:-"<service-principal>"}

SP_VALIDITY_YEARS="<years>"

SP_ID="<id>"

SP_SECRET="<client-secret>"

RESOURCE_GROUP=${RESOURCE_GROUP:-"<resource-group>"}

RESOURCE_GROUP_TAGS="<tags>"

LOCATION=${LOCATION:-"<location>"}

SUBSCRIPTION_ID="<subscription-id>"

VNET_NAME=${VNET_NAME:-"<name>"}

VNET_CIDR="<vnet-cidr>"

VNET_TAGS="<tags>"

VNET_VM_PROTECTION="<vm-protection>"

SUBNET_NAME="<subnet-name>"

SUBNET_CIDR="<subnet-cidr>"

NODE_ZONES="<zones>"

NODEPOOL_NAME="<name>"

NODEPOOL_TAGS="<tags>"

MACHINE_TYPE="<machine-type>"

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"<name>"}

K8S_CLUSTER_VERSION=${K8S_CLUSTER_VERSION:-"<kubernetes-version>"}

K8S_CLUSTER_NODE_COUNT="<node-count>"

K8S_NODE_ADMIN_USER="<admin-username>"

AKS_TAGS="<tags>"

AKS_ENABLE_ADDONS="<addons>"

PRIVATE_CLUSTER="<enable-private-cluster>"

LOAD_BALANCER_SKU="<load-balancer-sku>"

LB_BALANCER_IDLE_TIMEOUT=<load-balancer-idle-timeout>

Creating the AKS Cluster 232

LB_OUTBOUND_IP_PREFIXES="<load-balancer-outbound-ip-prefixes>"

LB_OUTBOUND_IPS="<load-balancer-outbound-ips>"

LB_OUTBOUND_PORTS=<load-balancer-outbound-ports>

LB_MANAGED_OUTBOUND_IP_COUNT=<load-balancer-managed-outbound-ip-count>

VM_SET_TYPE="<vm-set-type>"

NETWORK_PLUGIN="<network-plugin>"

NETWORK_POLICY="<network-policy>"

DOCKER_BRIDGE_ADDRESS="<docker-bridge-address>"

DNS_SERVICE_IP="<dns-service-ip>"

DNS_NAME_PREFIX="<dns-name-prefix>"

SERVICE_CIDR="<service-cidr>"

MIN_NODES="<min-count>"

MAX_NODES="<max-count>"

MAX_PODS_PER_NODE="<max-pods>"

DISK_SIZE="<node-osdisk-size>"

AZURE_CLI_VERSION="<azure-cli-version>"

NODE_OSDISK_TYPE="<node-osdisk-type>"

OS_DISK_ENCRYPTIONSET_ID="<node-osdisk-diskencryptionset-id>"

ENABLE_CLUSTER_AUTOSCALER="<enable-cluster-autoscaler>"

CLUSTER_AUTOSCALER_PROFILE="<cluster-autoscaler-profile>"

ATTACH_ACR="<attach-acr>"

ENABLE_AAD="<enable-aad>"

AAD_ADMIN_GROUP_OBJECT_IDS="<aad-admin-group-object-ids>"

AAD_CLIENT_APP_ID="<aad-client-app-id>"

AAD_SERVER_APP_ID="<aad-server-app-id>"

AAD_SERVER_APP_SECRET="<aad-server-app-secret>"

AAD_TENANT_ID="<tenant-id>"

ENABLE_POD_SECURITY_POLICY="<enable-pod-security-policy>"

DISABLE_RBAC="<disable-rbac>"

ENABLE_NODE_PUBLIC_IP="<enable-node-public-ip>"

SSH_PUB_KEY_VALUE="<ssh-key-value>"

API_SERVER_AUTHORIZED_IP_RANGES="<api-server-authorized-ip-ranges>"

NODEPOOL_LABELS="<nodepool-labels>"

PPG=${PPG:-"<name>"}

PPG_TYPE=${PPG_TYPE:-"<type>"}

UPTIME_SLA="<uptime-sla>"

OUTBOUND_TYPE="<outbound-type>"

Creating the AKS Cluster 233

ENABLE_MANAGED_IDENTITY

Indicates whether to use a system-assigned managed identity for cluster resource management. When

enabled, this identity is used to create the K8s cluster resources. In addition, if Managed Identity is

enabled, the Service Principal parameters (SP, SP_VALIDITY_YEARS, SP_ID, and SP_SECRET) are

not required.

SP

The Service Principal to use for the AKS cluster. If you want to use an existing Service Principal, specify

the name for that principal. If you want to create a new Service Principal, specify a new name, and the

new Service Principal will be created when the cluster is created. For example, aks-service-principal.

SP_VALIDITY_YEARS

The number of years for which the Service Principal credentials should be valid. For example, 2.

SP_ID

The ID for the existing Service Principal. Leave this value blank if you chose to create a new principal.

SP_SECRET

The secret for the existing Service Principal. Leave this value blank if you chose to create a new principal.

RESOURCE_GROUP

The name of the Azure Resource Group to allocate the AKS cluster resources to. You can specify the

name of an existing group, or you can specify a new name if you want the K8s scripts to create a new

Resource Group.

RESOURCE_GROUP_TAGS

A space-separated list of any tags (key=value pairs) to add to the Resource Group.

LOCATION

The Region code for the location where the AKS cluster will be deployed. For example, eastus.

SUBSCRIPTION_ID

The ID for your Azure subscription.

VNET_NAME

The name of the Virtual Network to provision the AKS cluster in. This value should match the name of the

network that Anzo is deployed in.

Creating the AKS Cluster 234

VNET_CIDR

The IP address prefix in CIDR format to use for the Virtual Network.

Note
Supply this value even if VNET_NAME is not set and a new Virtual Network will be created.

VNET_TAGS

A space-separated list of any tags (in key=value format) to add to the Virtual Network.

VNET_VM_PROTECTION

A true or false value that indicates whether to enable VM protection for the subnets in the Virtual Network.

SUBNET_NAME

The name of the new subnetwork to create in the Virtual Network.

SUBNET_CIDR

The IP address prefix in CIDR format for the new subnetwork.

NODE_ZONES

The number of Availability Zones to place the agent nodes in. Valid values are 1, 2, or 3.

NODEPOOL_NAME

The name to give the default node pool that is created in the AKS cluster.

NODEPOOL_TAGS

A space-separated list of any tags (in key=value format) to add to resources in the default node pool.

MACHINE_TYPE

The Virtual Machine Type to use for the nodes in the AKS cluster.

K8S_CLUSTER_NAME

The name to give the AKS cluster.

K8S_CLUSTER_VERSION

The version of Kubernetes to use for creating the cluster.

Note
Kubernetes versions 1.18 and 1.19 are supported. See the AKS Engine Release Notes for details

about the available versions.

Creating the AKS Cluster 235

https://docs.microsoft.com/en-us/azure-stack/user/kubernetes-aks-engine-release-notes?view=azs-2008

K8S_CLUSTER_NODE_COUNT

The number of nodes to deploy in the default node pool.

K8S_NODE_ADMIN_USER

The user account to create on the K8s cluster nodes for SSH access.

AKS_TAGS

A space-separated list of any tags (in key=value format) to add to the cluster.

AKS_ENABLE_ADDONS

A comma-separated list of addons to enable for the AKS cluster. Cambridge Semantics recommends that

you include themonitoring addon.

PRIVATE_CLUSTER

Indicates whether to make the AKS cluster a private cluster. If the cluster is private, network traffic

between the K8s API server and node pools remains on the private network.

Tip
When deciding whether to configure the cluster as a private cluster, you may want to review the

Limitations described in "Create a private Azure Kubernetes Service cluster" in the Azure AKS

documentation.

LOAD_BALANCER_SKU

The Azure Load Balancer SKU selection for your cluster. The options are basic or standard. The
standard SKU is recommended for AKS clusters. For information about the SKUs, see Azure Load

Balancer SKUs in the Azure documentation.

LB_BALANCER_IDLE_TIMEOUT

This optional parameter specifies the number of minutes to wait before dropping idle connections to the

Load Balancer. For example, a value of 5 means that idle connections are dropped after 5 minutes. If this
parameter is not specified, the default value is 30 minutes.

Tip
For more information about configuring the Load Balancer, including details about the idle timeout

parameter as well as the outbound IP address and port parameters, see Configure the Public

Standard Load Balancer in the Azure AKS documentation.

Creating the AKS Cluster 236

https://docs.microsoft.com/en-us/azure/aks/private-clusters#limitations
https://docs.microsoft.com/en-us/azure/load-balancer/skus
https://docs.microsoft.com/en-us/azure/load-balancer/skus
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard#configure-the-public-standard-load-balancer
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard#configure-the-public-standard-load-balancer

LB_OUTBOUND_IP_PREFIXES

This optional parameter specifies a comma-separated list of outbound IP prefix resource IDs.

LB_OUTBOUND_IPS

This optional parameter specifies a comma-separated list of outbound IP resource IDs.

LB_OUTBOUND_PORTS

This optional parameter specifies the number of outbound ports to allocate for the Load Balancer. For

example, 8000.

LB_MANAGED_OUTBOUND_IP_COUNT

This optional parameter specifies the number of AKS-managed outbound IP addresses to allocate for the

Load Balancer. For example, 10.

VM_SET_TYPE

The Agent pool VM set type. Valid values are VirtualMachineScaleSets or AvailabilitySet. Cambridge
Semantics recommends that you set this value to VirtualMachineScaleSets.

NETWORK_PLUGIN

The type of Kubernetes network plugin to use, i.e. whether to use basic (kubenet) networking or advanced

CNI (azure) networking. Valid values are kubenet or azure.

NETWORK_POLICY

The type of the network policy (Azure Network Policies or Calico Network Policies) to apply to the pods in

the AKS cluster. The network policy defines the rules for ingress and egress traffic between pods in the

cluster. Valid values are azure or calico. For information about the policies, see Network Policy Options
in AKS in the Azure AKS documentation.

DOCKER_BRIDGE_ADDRESS

The CIDR block to use for the Docker bridge. The Docker bridge is not used by the AKS cluster or pods

but does need to be set up since Docker is configured as part of the Kubernetes setup. Choose an

address space that does not collide with any other CIDRs on your networks, including the cluster's service

CIDR and pod CIDR. For example, 172.17.0.1/16.

DNS_SERVICE_IP

The IP address to assign to the Kubernetes DNS service.

Creating the AKS Cluster 237

https://docs.microsoft.com/en-us/azure/aks/use-network-policies#network-policy-options-in-aks
https://docs.microsoft.com/en-us/azure/aks/use-network-policies#network-policy-options-in-aks

DNS_NAME_PREFIX

This optional parameter specifies the prefix to use for hostnames that are created for the DNS service. If

not specified, a hostname is generated using the managed cluster and resource group names.

SERVICE_CIDR

The IP address range in CIDR notation from which to assign the Kubernetes DNS service IP addresses.

MIN_NODES

The minimum number of nodes in the default node pool.

MAX_NODES

The maximum number of nodes in the default node pool.

MAX_PODS_PER_NODE

The maximum number of pods deployable to a node in the default node pool.

DISK_SIZE

The size in GB of the OS disk for each node in the default node pool.

AZURE_CLI_VERSION

The version of the Azure CLI on the workstation. For example, 2.25.0.

NODE_OSDISK_TYPE

The type of OS disk to use for machines in the cluster. The options are Ephemeral or Managed.

OS_DISK_ENCRYPTIONSET_ID

Specifies the Resource ID of the disk encryption set to use for encryption at rest on the agent node OS

disk.

ENABLE_CLUSTER_AUTOSCALER

Indicates whether to enable the cluster autoscaler for the default node pool.

CLUSTER_AUTOSCALER_PROFILE

A space-separated list of any key=value pairs to use for configuring the Cluster Autoscaler. For example,

scan-interval=10s scale-down-delay-after-delete=10s. For information about all of the configuration
options, see Using the Autoscaler Profile in the Azure AKS documentation.

ATTACH_ACR

The name or resource ID of the Azure Container Registry to grant the acrpull role assignment to.

Creating the AKS Cluster 238

https://docs.microsoft.com/en-us/azure/aks/cluster-autoscaler#using-the-autoscaler-profile

ENABLE_AAD

Indicates whether to enable managed Azure Active Directory (AAD) for the cluster. When AAD is enabled,

the Admin Group Object IDs, AAD Client ID, Server ID, Server Secret, and Tenet ID parameters (AAD_

ADMIN_GROUP_OBJECT_IDS, AAD_CLIENT_APP_ID, AAD_SERVER_APP_ID, AAD_SERVER_

APP_SECRET, and AAD_TENANT_ID) are not required.

AAD_ADMIN_GROUP_OBJECT_IDS

This parameter specifies the comma-separated list of AAD group object IDs to set as cluster admin.

AAD_CLIENT_APP_ID

The ID of a "Native" type Azure Active Directory client application. This application is for user logins via

kubectl.

AAD_SERVER_APP_ID

The ID of a "Web app/API" Azure Active Directory server application. This application represents the

managed cluster's API Server (apiserver application).

AAD_SERVER_APP_SECRET

The secret for the Azure Active Directory server application.

AAD_TENANT_ID

The ID of the Azure Active Directory tenant.

ENABLE_POD_SECURITY_POLICY

Indicates whether to enable the pod security policy for the AKS cluster.

Note
Azure will deprecate this feature in June 2021. For information, see Secure your cluster using pod

security policies in Azure Kubernetes Service (AKS) in the Azure AKS documentation.

DISABLE_RBAC

Indicates whether to disable Kubernetes Role-Based Access Control (RBAC).

ENABLE_NODE_PUBLIC_IP

Indicates whether to enable a public IP address for the Virtual Machine Scale Set (VMSS) node.

SSH_PUB_KEY_VALUE

The public key path or key contents to install on the K8s cluster nodes for SSH access. If not specified,

the default value is ~\.ssh\id_rsa.pub.

Creating the AKS Cluster 239

https://docs.microsoft.com/en-us/azure/aks/use-pod-security-policies
https://docs.microsoft.com/en-us/azure/aks/use-pod-security-policies

API_SERVER_AUTHORIZED_IP_RANGES

The list of IP address ranges in CIDR notation that are authorized to access the AKS cluster.

NODEPOOL_LABELS

A space-separated list (in key=value format) of labels to add to the nodes in the default node pool. For

information about using labels in Kubernetes clusters, see Labels and Selectors in the Kubernetes

documentation.

PPG

This optional parameter specifies the name of the Proximity Placement Group (PPG) to use for the

cluster. For information about using proximity placement groups, see Use Proximity Placement Groups in

the Azure AKS documentation.

PPG_TYPE

If using a Proximity Placement Group (PPG), this parameter specifies the type of PPG to use. The only

valid value is Standard.

UPTIME_SLA

Indicates whether to enable a paid managed cluster service with a financially backed SLA.

OUTBOUND_TYPE

Specifies how to configure outbound traffic for the cluster. Valid values are loadBalancer and
userDefinedRouting.

Example Configuration File

An example completed k8s_cluster.conf file is shown below.

ENABLE_MANAGED_IDENTITY="true"

#SP=${SP:-"aks-service-principal"}

#SP_VALIDITY_YEARS="2"

#SP_ID="291bba3f-e0a5-47bc-a099-3bdcb2a50a05"

#SP_SECRET="ValidServicePrincipalSecretIfPresent"

RESOURCE_GROUP=${RESOURCE_GROUP:-"aks-resource-group"}

RESOURCE_GROUP_TAGS="description=aks-cluster"

LOCATION=${LOCATION:-"eastus"}

SUBSCRIPTION_ID="ValidSubscriptionId"

VNET_NAME=${VNET_NAME:-"anzo-vnet"}

VNET_CIDR="20.20.0.0/16"

Creating the AKS Cluster 240

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://docs.microsoft.com/en-us/azure/aks/reduce-latency-ppg

VNET_TAGS="description=aks-virtual-network"

VNET_VM_PROTECTION="true"

SUBNET_NAME="k8s-subnet"

SUBNET_CIDR="20.20.0.0/19"

#NODE_ZONES=""

NODEPOOL_NAME="defaultpool"

NODEPOOL_TAGS="description=default-nodepool"

MACHINE_TYPE="Standard_DS1_v2"

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"k8s-cluster"}

K8S_CLUSTER_VERSION=${K8S_CLUSTER_VERSION:-"1.18"}

K8S_CLUSTER_NODE_COUNT="2"

K8S_NODE_ADMIN_USER="azureuser"

AKS_TAGS="description=aks-cluster"

AKS_ENABLE_ADDONS="monitoring"

PRIVATE_CLUSTER="false"

LOAD_BALANCER_SKU="standard"

#LB_BALANCER_IDLE_TIMEOUT=5

#LB_OUTBOUND_IP_PREFIXES="<ip-prefix-resource-id-1,ip-prefix-resource-id-2>"

#LB_OUTBOUND_IPS="<ip-resource-id-1,ip-resource-id-2>"

#LB_OUTBOUND_PORTS=8000

#LB_MANAGED_OUTBOUND_IP_COUNT=10

VM_SET_TYPE="VirtualMachineScaleSets"

NETWORK_PLUGIN="azure"

NETWORK_POLICY="azure"

DOCKER_BRIDGE_ADDRESS="172.17.0.1/16"

DNS_SERVICE_IP="10.0.0.10"

#DNS_NAME_PREFIX="k8stest"

SERVICE_CIDR="10.0.0.0/16"

MIN_NODES="1"

MAX_NODES="8"

MAX_PODS_PER_NODE="16"

DISK_SIZE="100"

AZURE_CLI_VERSION="2.19.1"

NODE_OSDISK_TYPE="Ephemeral"

#OS_DISK_ENCRYPTIONSET_ID=""

ENABLE_CLUSTER_AUTOSCALER="true"

CLUSTER_AUTOSCALER_PROFILE="scan-interval=10s scale-down-delay-after-delete=10s"

ATTACH_ACR="ContainerRegistry"

ENABLE_AAD="true"

Creating the AKS Cluster 241

AAD_ADMIN_GROUP_OBJECT_IDS="5d24455a-1111-3333-4444-5dv77afa27aed"

#AAD_CLIENT_APP_ID="ValidAADClientAppId"

#AAD_SERVER_APP_ID="ValidAADServerAppId"

#AAD_SERVER_APP_SECRET="ValidAADServerAppSecret"

#AAD_TENANT_ID="8f70baf1-1f6e-46a2-a1ff-238dac1ebfb7"

ENABLE_POD_SECURITY_POLICY="true"

ENABLE_MANAGED_IDENTITY="false"

DISABLE_RBAC="false"

SSH_PUB_KEY_VALUE=""

API_SERVER_AUTHORIZED_IP_RANGES="10.107.1.0/24"

NODEPOOL_LABELS="description=k8scluster"

#PPG=${PPG:-"csippg"}

#PPG_TYPE=${PPG_TYPE:-"Standard"}

UPTIME_SLA="false"

OUTBOUND_TYPE="loadBalancer"

Create the AKS Cluster

After defining the cluster requirements, run the create_k8s.sh script in the az directory to create the cluster.
Run the script with the following command. The arguments are described below.

./create_k8s.sh -c <config_file_name> [-d <config_file_directory>] [-f | --

force] [-h | --help]

Argument Description

-c <config_
file_name>

This is a required argument that specifies the name of the configuration file that supplies
the cluster requirements. For example, -c k8s_cluster.conf.

-d <config_
file_
directory>

This is an optional argument that specifies the path and directory name for the
configuration file specified for the -c argument. If you are using the original az directory file

structure and the configuration file is in the conf.d directory, you do not need to specify

the -d argument. If you created a separate directory structure for different Anzo

environments, include the -d option. For example, -d /az/env1/conf.

-f | --force This is an optional argument that controls whether the script prompts for confirmation
before proceeding with each stage involved in creating the cluster. If -f (--force) is
specified, the script assumes the answer is "yes" to all prompts and does not display them.

Creating the AKS Cluster 242

Argument Description

-h | --help This argument is an optional flag that you can specify to display the help from the create_

k8s.sh script.

For example, the following command runs the create_k8s script, using k8s_cluster.conf as input to the script.

Since k8s_cluster.conf is in the conf.d directory, the -d argument is excluded:

./create_k8s.sh -c k8s_cluster.conf

The script validates that the required software packages, such as the Azure CLI and kubectl, are installed

and that the versions are compatible with the script. It also displays an overview of the deployment details

based on the values in the specified configuration file.

The script then prompts you to proceed with deploying each component of the AKS cluster infrastructure.

Type y and press Enter to proceed with each step in creating the specified Service Principal, Virtual
Network, subnetwork, and Load Balancer components. All components are created according to the

specifications in the configuration file.

When cluster creation is complete, proceed to Creating the Required Node Pools to add the required node

pools to the cluster.

Related Topics
Creating and Assigning IAM Roles

Creating the Required Node Pools

Creating the Required Node Pools

This topic provides instructions for creating the three types of required node pools:

l The Operator node pool for running the AnzoGraph, Anzo Agent with Anzo Unstructured (AU), and
Elasticsearch operator pods.

l The AnzoGraph node pool for running AnzoGraph application pods.

l The Dynamic node pool for running Anzo Agent with AU and Elasticsearch application pods.

Tip
For more information about the node pools, see Node Pool Requirements.

l Define the Node Pool Requirements

l Create the Node Pools

Creating the Required Node Pools 243

Define the Node Pool Requirements

Before creating the node pools, configure the infrastructure requirements for each type of pool. The

nodepool_*.conf files in the az/conf.d directory are sample configuration files that you can use as
templates, or you can edit the files directly:

l nodepool_operator.conf defines the requirements for the Operator node pool.

l nodepool_anzograph.conf defines the requirements for the AnzoGraph node pool.

l nodepool_dynamic.conf defines the requirements for the Dynamic node pool.

Each type of node pool configuration file contains the following parameters. Descriptions of the parameters

and guidance on specifying the appropriate values for each type of node pool are provided below.

NODEPOOL_NAME="<name>"

KUBERNETES_VERSION="<kubernetes-version>"

DOMAIN="<domain>"

KIND="<kind>"

MACHINE_TYPE="<node-vm-size>"

LOCATION=${LOCATION:-"<location>"}

RESOURCE_GROUP=${RESOURCE_GROUP:-"<resource-group>"}

VNET_NAME=${VNET_NAME:-"<vnet-name>"}

SUBNET_NAME="<name>"

SUBNET_CIDR="<address-prefix>"

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"<cluster-name>"}

NODE_TAINTS="<node-taints>"

MAX_PODS_PER_NODE=<max-pods>

MAX_NODES=<max-count>

MIN_NODES=<min-count>

NUM_NODES=<node-count>

DISK_SIZE="<node-osdisk-size>"

OS_TYPE="<os-type>"

PRIORITY="<priority>"

ENABLE_CLUSTER_AUTOSCALER=<enable-cluster-autoscaler>

LABELS="<nodepool-labels>"

MODE="<mode>"

NODE_OSDISK_TYPE="<node-osdisk-type>"

PPG="<name>"

PPG_TYPE=${PPG_TYPE:-"<type>"}

Creating the Required Node Pools 244

NODEPOOL_NAME

The name to give the node pool.

Node Pool Type Sample NODEPOOL_NAME Value

Operator csi-operator

AnzoGraph csi-anzograph

Dynamic csi-dynamic

KUBERNETES_VERSION

The version of Kubernetes to use for creating the node pool. This value must match the AKS cluster

version (K8S_CLUSTER_VERSION). For example, 1.24.

DOMAIN

The name of the domain that hosts the node pool. This is typically the name or acronym for the

organization, such as csi.

KIND

This parameter classifies the node pool in terms of kernel tuning and the type of pods that the node pool

will host.

Node Pool Type Required KIND Value

Operator operator

AnzoGraph anzograph

Dynamic dynamic

MACHINE_TYPE

The Virtual Machine Type to use for the nodes in the node pool.

Node Pool Type Sample MACHINE_TYPE Value

Operator Standard_DS2_v2

Creating the Required Node Pools 245

Node Pool Type Sample MACHINE_TYPE Value

AnzoGraph Standard_D16s_v3

Dynamic Standard_D8s_v3

Tip
For more guidance on determining the instance types to use for nodes in the required node pools,

see Compute Resource Planning.

LOCATION

The Region code for the location of the AKS cluster. For example, eastus.

RESOURCE_GROUP

The name of the Azure Resource Group to allocate the node pool's resources to. You can specify the

name of an existing group, or you can specify a new name if you want the K8s scripts to create a new

Resource Group for the node pool.

VNET_NAME

The name of the Virtual Network that the AKS cluster was deployed in.

SUBNET_NAME

The name of the subnetwork to create.

SUBNET_CIDR

The IP address prefix to use when creating the subnetwork.

K8S_CLUSTER_NAME

The name of the AKS cluster.

NODE_TAINTS

This parameter configures a node so that the scheduler avoids or prevents using it for hosting certain

pods. When a pod is scheduled for deployment, the scheduler relies on this value to determine whether

the pod belongs in this pool. If a pod has a toleration that is not compatible with this taint, the pod is
rejected from the pool. The table below lists the recommended values. The NoSchedule value means a

toleration is required and pods without the appropriate toleration will not be allowed in the pool.

Creating the Required Node Pools 246

Node Pool Type Recommended NODE_TAINTS Value

Operator cambridgesemantics.com/dedicated=operator:NoSchedule

AnzoGraph cambridgesemantics.com/dedicated=anzograph:NoSchedule

Dynamic cambridgesemantics.com/dedicated=dynamic:NoSchedule

MAX_PODS_PER_NODE

The maximum number of pods that can be hosted on a node in the node pool. In addition to Anzo

application pods, this limit also needs to account for K8s service pods and helper pods. Cambridge

Semantics recommends that you set this value to at least 16 for all node pool types.

MAX_NODES

The maximum number of nodes that can be deployed in the node pool.

Node Pool Type Sample MAX_NODES Value

Operator 8

AnzoGraph 16

Dynamic 32

MIN_NODES

The minimum number of nodes to remain deployed in the node pool at all times. If the cluster autoscaler is

enabled for the node pool, you can set this value to 1 (the lowest value allowed by AKS). The autoscaler
will automatically provision additional nodes if multiple pods are scheduled for deployment.

NUM_NODES

The number of nodes to deploy when this node pool is created. This value must be set to at least 1. When

you create the node pool, at least one node in the pool needs to be deployed as well.

DISK_SIZE

The size in GB of the OS disk for each node in the node pool.

Creating the Required Node Pools 247

Node Pool Type Sample DISK_SIZE Value

Operator 50

AnzoGraph 100

Dynamic 100

OS_TYPE

The operating system to use for the nodes in the node pool. Specify Linux for each type of node pool.

PRIORITY

Specifies the priority level of the VMs for the nodes in the node pool. Valid values are Regular (dedicated)
or Spot (low-priority or preemptible).

ENABLE_CLUSTER_AUTOSCALER

Indicates whether to enable the cluster autoscaler for the node pool.

LABELS

A space-separated list (in key=value format) of labels that define the type of pods that can be placed on

the nodes in this node pool. One label, cambridgesemantics.com/node-purpose, is required for
each type of node pool. The node-purpose label indicates that the purpose of the nodes in the pools are to

host operator, anzograph, or dynamic pods. The table below lists the required labels for each node pool.

Node Pool Type Required NODE_LABELS Value

Operator cambridgesemantics.com/node-purpose=operator

AnzoGraph cambridgesemantics.com/node-purpose=anzograph

Dynamic cambridgesemantics.com/node-purpose=dynamic

For information about using labels in Kubernetes clusters, see Labels and Selectors in the Kubernetes

documentation.

Creating the Required Node Pools 248

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

MODE

The mode for the node pool. The mode defines the node pool's primary function, i.e., whether it is a

System node pool or a User pool. System node pools serve the primary purpose of hosting critical

system pods. User node pools serve the primary purpose of hosting application pods. For the Operator,

AnzoGraph, and Dynamic node pools, the mode should be set to User. For more information, see System
and User Node Pools in the Azure AKS documentation.

NODE_OSDISK_TYPE

The type of OS disk to use for machines in the node pool. The options are Ephemeral or Managed.

PPG

This optional parameter specifies the name of the Proximity Placement Group (PPG) to use for the node

pool. For information about using proximity placement groups, see Use Proximity Placement Groups in

the Azure AKS documentation.

PPG_TYPE

If using a Proximity Placement Group (PPG), this parameter specifies the type of PPG to use. The only

valid value is Standard.

Example Configuration Files

Example completed configuration files for each type of node pool are shown below.

Operator Node Pool

The example below shows a configured nodepool_operator.conf file.

NODEPOOL_NAME="csi-operator"

KUBERNETES_VERSION="1.24"

DOMAIN="csi"

KIND="operator"

MACHINE_TYPE="Standard_DS2_v2"

LOCATION=${LOCATION:-"eastus"}

RESOURCE_GROUP=${RESOURCE_GROUP:-"aks-resource-group"}

VNET_NAME=${VNET_NAME:-"anzo-vnet"}

SUBNET_NAME="k8s-subnet"

SUBNET_CIDR="20.20.2.0/19"

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"k8s-cluster"}

NODE_TAINTS="cambridgesemantics.com/dedicated=operator:NoSchedule"

MAX_PODS_PER_NODE=16

Creating the Required Node Pools 249

https://docs.microsoft.com/en-us/azure/aks/use-system-pools#system-and-user-node-pools
https://docs.microsoft.com/en-us/azure/aks/use-system-pools#system-and-user-node-pools
https://docs.microsoft.com/en-us/azure/aks/reduce-latency-ppg

MAX_NODES=8

MIN_NODES=1

NUM_NODES=1

DISK_SIZE="50"

OS_TYPE="Linux"

PRIORITY="Regular"

ENABLE_CLUSTER_AUTOSCALER=true

LABELS="cambridgesemantics.com/node-purpose=operator"

MODE="User"

NODE_OSDISK_TYPE="Managed"

#PPG="testppg"

#PPG_TYPE=${PPG_TYPE:-"standard"}

AnzoGraph Node Pool

The example below shows a configured nodepool_anzograph.conf file.

NODEPOOL_NAME="csi-anzograph"

KUBERNETES_VERSION="1.24"

DOMAIN="csi"

KIND="anzograph"

MACHINE_TYPE="Standard_D16s_v3"

LOCATION=${LOCATION:-"eastus"}

RESOURCE_GROUP=${RESOURCE_GROUP:-"aks-resource-group"}

VNET_NAME=${VNET_NAME:-"anzo-vnet"}

SUBNET_NAME="k8s-subnet"

SUBNET_CIDR="20.20.2.0/19"

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"k8s-cluster"}

NODE_TAINTS="cambridgesemantics.com/dedicated=anzograph:NoSchedule"

MAX_PODS_PER_NODE=16

MAX_NODES=16

MIN_NODES=1

NUM_NODES=1

DISK_SIZE="100"

OS_TYPE="Linux"

PRIORITY="Regular"

ENABLE_CLUSTER_AUTOSCALER=true

LABELS="cambridgesemantics.com/node-purpose=anzograph"

MODE="User"

NODE_OSDISK_TYPE="Managed"

Creating the Required Node Pools 250

#PPG="testppg"

#PPG_TYPE=${PPG_TYPE:-"standard"}

Dynamic Node Pool

The example below shows a configured nodepool_dynamic.conf file.

NODEPOOL_NAME="csi-dynamic"

KUBERNETES_VERSION="1.24"

DOMAIN="csi"

KIND="dynamic"

MACHINE_TYPE="Standard_D8s_v3"

LOCATION=${LOCATION:-"eastus"}

RESOURCE_GROUP=${RESOURCE_GROUP:-"aks-resource-group"}

VNET_NAME=${VNET_NAME:-"anzo-vnet"}

SUBNET_NAME="k8s-subnet"

SUBNET_CIDR="20.20.2.0/19"

K8S_CLUSTER_NAME=${K8S_CLUSTER_NAME:-"k8s-cluster"}

NODE_TAINTS="cambridgesemantics.com/dedicated=dynamic:NoSchedule"

MAX_PODS_PER_NODE=16

MAX_NODES=32

MIN_NODES=1

NUM_NODES=1

DISK_SIZE="100"

OS_TYPE="Linux"

PRIORITY="Regular"

ENABLE_CLUSTER_AUTOSCALER=true

LABELS="cambridgesemantics.com/node-purpose=dynamic"

MODE="User"

NODE_OSDISK_TYPE="Managed"

#PPG="testppg"

#PPG_TYPE=${PPG_TYPE:-"standard"}

Create the Node Pools

After defining the requirements for the node pools, run the create_nodepools.sh script in the az directory to
create each type of node pool. Run the script once for each type of pool.

Creating the Required Node Pools 251

Note
The create_nodepools.sh script references the files in the az/reference directory. If you

customized the directory structure on the workstation, ensure that the reference directory is
available at the same level as create_nodepools.sh before creating the node pools.

Run the script with the following command. The arguments are described below.

./create_nodepools.sh -c <config_file_name> [-d <config_file_directory>] [-f

| --force] [-h | --help]

Argument Description

-c <config_
file_name>

This is a required argument that specifies the name of the configuration file (i.e.,
nodepool_operator.conf, nodepool_anzograph.conf, or nodepool_

dynamic.conf) that supplies the node pool requirements. For example, -c nodepool_
dynamic.conf.

-d <config_
file_
directory>

This is an optional argument that specifies the path and directory name for the
configuration file specified for the -c argument. If you are using the original az directory file

structure and the configuration file is in the conf.d directory, you do not need to specify

the -d argument. If you created a separate directory structure for different Anzo

environments, include the -d option. For example, -d /az/env1/conf.

-f | --force This is an optional argument that controls whether the script prompts for confirmation
before proceeding with each stage involved in creating the node pool. If -f (--force) is
specified, the script assumes the answer is "yes" to all prompts and does not display them.

-h | --help This argument is an optional flag that you can specify to display the help from the create_

nodepools.sh script.

For example, the following command runs the create_nodepools script, using nodepool_operator.conf as

input to the script. Since nodepool_operator.conf is in the conf.d directory, the -d argument is excluded:

./create_nodepools.sh -c nodepool_operator.conf

Creating the Required Node Pools 252

The script validates that the required software packages, such as the Azure CLI and kubectl, are installed

and that the versions are compatible with the script. It also displays an overview of the node pool deployment

details based on the values in the specified configuration file.

The script then prompts you to proceed with deploying each component of the node pool. Type y and press
Enter to proceed with the configuration.

Once the Operator, AnzoGraph, and Dynamic node pools are created, the next step is to create a Cloud

Location in Anzo so that Anzo can connect to the AKS cluster and deploy applications. See Connecting to a

Cloud Location in the Administration Guide.

Related Topics
Creating the AKS Cluster

Creating the Required Node Pools 253

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/cloud-location.htm
https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/cloud-location.htm

Deploying the Anzo Java SDK

This topic provides instructions for setting up an Anzo development environment using the Anzo software

development kit (SDK) and Eclipse integrated development environment (IDE). The sample instructions

below deploy the Anzo SDK in a Windows environment with Eclipse IDE for Java Developers Version 4.12.0.

Anzo SDK and Eclipse can also be deployed on Linux and Mac operating systems.

Requirements
Make sure that the Anzo development server meets the requirements in Anzo Requirements. In addition,

install the following programs for working with the Anzo Java SDK:

l Eclipse for Java Developers Version 4.7.3+: Install the Eclipse IDE for Java Developers or Eclipse
IDE for Enterprise Java Developers.

l Java Runtime Environment Version 8: Eclipse and the Anzo SDK require JDK version 8. Cambridge

Semantics tests with jdk1.8.0_181.

Deploying the Anzo SDK with Eclipse
Follow the instructions below to import the Anzo Java SDK to Eclipse and configure and test the

environment.

1. Download the Anzo SDK .zip file to the host server. Do not unpack the file.

2. In Eclipse, click the File menu and select Import. Eclipse opens the Import dialog box. For example:

Deploying the Anzo Java SDK 254

3. In the Import dialog box, expand the General folder and select Existing Projects into Workspace
and click Next. Eclipse opens the Import Projects dialog box. For example:

4. Select the Select archive file radio button and then browse to and select the Anzo SDK .zip file.

Eclipse loads the .zip file and lists the contents in the Projects field. For example:

Deploying the Anzo Java SDK 255

The Anzo SDK contains three projects:

l com.cambridgesemantics.anzo.sdk: This core project is required for creating solutions. It
contains the Anzo libraries that provide the Anzo APIs and extension points as well as the

libraries that enable Anzo to run in the development environment.

l com.cambridgesemantics.anzo.sdk.server This core project is required for creating solutions.
It contains configuration files for running Anzo as well as a launcher for starting the Anzo server.

l com.cambridgesemantics.anzo.sdk.api: This is an example project that contains sample Java
programs that illustrate several aspects of the Anzo client APIs. Each program is a simple

example that demonstrates how to communicate with the Anzo server to read, write, and query

data. See the comments in each example for an explanation of what each one demonstrates.

5. Click Finish to import the Anzo SDK .jar files. The process may take a few minutes. When the import is

complete, Eclipse opens the workspace. At this point in the process, expect to see several errors in the

workspace. For example:

Deploying the Anzo Java SDK 256

6. Import your Anzo license:

a. Make sure that you have a copy of the Anzo license on the server. If necessary, you can view

and download a copy from the Cambridge Semantics Support Center.

b. Rename the license file so its file extension is .lic. For example, license.lic.

c. In the Eclipse Package Explorer, right-click com.cambridgesemantics.anzo.sdk.server and
select Import.

d. In the Import dialog box, expand the General folder and select File System. Then click Next.
Eclipse opens the File System Import dialog box. For example:

Deploying the Anzo Java SDK 257

https://supportcenter.cambridgesemantics.com/support/licensing

e. Click the Browse button next to the From directory field and select the directory that contains the

license file. Eclipse displays the directory and its contents.

f. Select the license file in the right pane, and then click Finish.

Deploying the Anzo Java SDK 258

7. Install the Eclipse Plugin Development Tools:

a. Click the Help menu and select Install New Software. Eclipse opens the Install dialog box.

b. In the Install dialog box, click theWork with drop-down list and select All Available Sites. In the
search field below the Work with field, type "PDE" and wait for Eclipse to find the plugin tools.

Select the checkbox next to Eclipse Plugin Development Tools, including Eclipse PDE Plug-
in Developer Resources. For example:

c. Click Next and accept the license agreement, then click Finish. Eclipse installs the software and
then prompts you to restart the application.

8. After restarting Eclipse, load the Anzo SDK Target Platform:

a. Click theWindow menu and select Preferences.

b. In the Preferences dialog box, expand Plug-in Development and select Target Platform.

Deploying the Anzo Java SDK 259

c. In the Target Platform definitions, select the Anzo SDK Devel Target checkbox. For example:

d. Click Apply and Close. Eclipse loads the Anzo SDK Target Platform.

9. Test the environment:

a. In the Eclipse workspace, click the Run menu and select Run Configurations. Eclipse opens
the Run Configurations dialog box.

b. On the left side of the dialog box, expand the OSGi Framework folder and select Anzo (SDK).
For example:

Deploying the Anzo Java SDK 260

c. Click Run to run the Anzo SDK target platform. A Console tab opens in Eclipse and shows the

status messages. When Anzo starts, the console displays the message "All Currently Registered

Services started." For example:

If Anzo fails to start, one of the common reasons for the failure is that one or more of the Anzo

ports are in use by other software. See Firewall Requirements in the Deployment Guide for

information about the ports that Anzo uses.

Note
If you deployed the Anzo SDK on Windows, Eclipse displays Spark-related error

messages such as "java.io.FileNotFoundException: Source

'...\com.cambridgesemantics.anzo.sdk.server\spark' does not

exist." The errors occur because Spark is not supported on Windows operating

systems. You cannot run ETL jobs locally, but the errors do not affect the ability to

develop Anzo extensions.

To explore the sample Java programs that are included in the Anzo SDK, expand the

com.cambridgesemantics.anzo.sdk.api package in the Package Explorer. In the package, expand the src
directory and then the com.cambridgesemantics.anzo.sdk.api directory to see the list of sample
programs. For example:

Deploying the Anzo Java SDK 261

https://docs.cambridgesemantics.com/anzo/v5.3/userdoc/anzo-reqs.htm#fw

To run a program, right-click the .java file and select Run As > Java Application. For more information
about using the Anzo SDK, see the Anzo Java SDK Guide.pdf that is distributed in the SDK .zip file.

Deploying the Anzo Java SDK 262

	Deployment Overview
	Deploying the Shared File System
	Deploying Anzo
	Anzo Requirements
	Installing Anzo
	Securing an Anzo Environment
	Installing the Anzo for Office Plugin
	Upgrading Anzo
	Uninstalling Anzo

	Deploying a Static AnzoGraph Cluster
	AnzoGraph Architecture
	AnzoGraph Requirements
	Sizing Guidelines for In-Memory Storage
	Sizing Guidelines for Disk-Based Storage (Preview)
	Installing AnzoGraph
	Complete the Pre-Installation Configuration
	Install AnzoGraph
	Complete the Post-Installation Configuration

	Securing an AnzoGraph Environment
	Upgrading AnzoGraph
	Uninstalling AnzoGraph

	Deploying a Static Anzo Unstructured Cluster
	Anzo Unstructured Overview
	Anzo Unstructured Data Onboarding Process
	Anzo Unstructured Requirements
	Installing Anzo Unstructured
	Complete the Pre-Installation Configuration
	Deploy the Leader Node
	Deploy the Worker Nodes
	Configure and Start the Anzo DU Services
	Configure the Connection to Anzo

	Installing and Configuring Elasticsearch
	Upgrading Anzo Unstructured

	Configuring K8s for Dynamic Deployments
	Kubernetes Concepts
	Anzo K8s Requirements
	Compute Resource Planning
	Deploying the K8s Infrastructure
	Amazon EKS Deployments
	Setting Up a Workstation
	Planning the Anzo and EKS Network Architecture
	Creating and Assigning IAM Policies
	Creating the EKS Cluster
	Creating the Required Node Groups

	Google Kubernetes Engine Deployments
	Setting Up a Workstation
	Planning the Anzo and GKE Network Architecture
	Creating and Assigning IAM Roles
	Creating the GKE Cluster
	Creating the Required Node Pools

	Azure Kubernetes Service Deployments
	Setting Up a Workstation
	Planning the Anzo and AKS Network Architecture
	Creating and Assigning IAM Roles
	Creating the AKS Cluster
	Creating the Required Node Pools

	Deploying the Anzo Java SDK

