Matrix Utilities Library
The matrix utilities return information on various attributes of vector space mapping and related matrix tensors.
The URI for the matrix utilities is <http://cambridgesemantics.com/anzograph/matrices#>
. For readability, the syntax for each function below includes the prefix matrices:
, defined as PREFIX matrices: <http://cambridgesemantics.com/anzograph/matrices#>
.
- dump_tensor: Displays the Armadillo header and the first few elements of the matrix or vector as a string.
- dump_vec: Returns the string representation of a row or column vector.
- get_cols: Returns the number of columns present in a tensor.
- get_diag: Extracts a diagonal from a matrix or sparse matrix.
- get_elem: Accesses one or more elements that are stored in a tensor.
- get_max_val: Retrieves the maximum value from a tensor.
- get_min_val: Retrieves the minimum value from a tensor.
- get_nonzero: Returns the number of non-zero elements that are present in a sparse matrix.
- get_order: Returns the tensor order.
- get_rows: Returns the number of rows present in a tensor.
- get_shape: Formats the shape of a tensor as a string.
- get_slices: Returns the number of slices present in a tensor.
- get_subvec: Extracts a range of elements from a row or column vector.
- get_total_elem: Returns the total number of elements that are present in a tensor.
dump_tensor
This function displays the Armadillo header and the first few elements of the matrix or vector as a string.
Syntax
matrices:dump_tensor(b [, type ] [, isRowWise ])
b
|
http://anzograph.com/matrices#tensor |
A tensor of matrix/row vector/column vector. |
type
|
int |
Optional argument that specifies the type of tensor: 0 =row vector, 1 =column vector, 2 =matrix. Default is 2 . |
isRowWise
|
Boolean |
Optional argument that indicates whether the display matrix is column- or row- wise: false =column-wise, true =row-wise. Default is true . |
Returns
string |
Row- or column- wise string representation of the vector or matrix. |
dump_vec
This function returns the string representation of a row or column vector.
Syntax
matrices:dump_vec(b)
b
|
http://anzograph.com/matrices#tensor |
The row or column vector to convert to a string. |
Returns
string |
The string representation of the row or column vector. |
get_cols
This function returns the number of columns present in a tensor.
Syntax
matrices:get_cols(b)
b
|
http://anzograph.com/matrices#tensor |
The tensor to evaluate. |
Returns
long |
The number of columns. |
get_diag
This function extracts a diagonal from a matrix or sparse matrix.
Syntax
matrices:get_diag(b [, k ])
b
|
http://anzograph.com/matrices#tensor |
The matrix or sparse matrix. |
k
|
long |
Optional diagonal number. By default, the main diagonal is accessed (k=0 ). For k>0 , the k th super-diagonal is accessed (top right corner). For k<0 , the k th sub-diagonal is accessed (bottom left corner). |
Returns
http://anzograph.com/matrices#tensor |
The tensor representation of the diagonal as a column vector. |
get_elem
This function accesses one or more elements that are stored in a tensor.
Syntax
matrices:get_elem(b, i [, j ] [, k ])
b
|
http://anzograph.com/matrices#tensor |
The tensor. |
i
|
long |
The element stored in the ith row. |
j
|
long |
Optional argument that lists the element stored in the jth column. |
k
|
long |
Optional argument that lists the element stored in the kth slice. |
Returns
double |
The element value. |
get_max_val
This function retrieves the maximum value from a tensor.
Syntax
matrices:getmax_val(b)
b
|
http://anzograph.com/matrices#tensor |
The tensor from which to return the maximum value. |
Returns
double |
The maximum value in the tensor. |
get_min_val
This function retrieves the minimum value from a tensor.
Syntax
matrices:getmin_val(b)
b
|
http://anzograph.com/matrices#tensor |
The tensor from which to return the minimum value. |
Returns
double |
The minimum value from the tensor. |
get_nonzero
This function gets the number of non-zero elements that are present in a sparse matrix.
Syntax
matrices:get_nonzero(b)
b
|
http://anzograph.com/matrices#tensor |
The sparse matrix. |
Returns
long |
The number of non-zero elements. |
get_order
This function returns the tensor order.
Syntax
matrices:get_order(b)
b
|
http://anzograph.com/matrices#tensor |
The tensor to evaluate. |
Returns
get_rows
This function returns the number of rows present in a tensor.
Syntax
matrices:get_rows(b)
b
|
http://anzograph.com/matrices#tensor |
The tensor for which to return the number of rows. |
Returns
get_shape
This function formats the shape of a tensor as a string.
Syntax
matrices:get_shape(b)
b
|
http://anzograph.com/matrices#tensor |
The tensor to format. |
Returns
string |
The shape of the tensor. |
get_slices
This function gets the number of slices present in a tensor.
Syntax
matrices:get_slices(b)
b
|
http://anzograph.com/matrices#tensor |
The tensor for which to return the number of slices. |
Returns
long |
The number of slices. |
get_subvec
This function extracts a range of elements from a row or column vector.
Syntax
matrices:get_subvec(b, i, j)
b
|
http://anzograph.com/matrices#tensor |
The row or column vector. |
i
|
long |
The start index. |
j
|
long |
The end index. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a row or column vector. |
get_total_elem
This function returns the total number of elements that are present in a tensor.
Syntax
matrices:get_total_elem(b)
b
|
http://anzograph.com/matrices#tensor |
The tensor for which to return the total number of elements. |
Returns
long |
The total number of elements. |
Matrix Properties
- has_nan: Evaluates whether a matrix is not a number (NaN).
- is_colvec: Evaluates whether the given matrix is a column vector.
- is_diag_mat: Evaluates whether a matrix is diagonal.
- is_hermitian: Evaluates whether the matrix is hermitian (self-adjoint).
- is_rowvec: Evaluates whether the given matrix is a row vector.
- is_sorted: Evaluates whether a vector or matrix is sorted.
- is_square: Evaluates whether a matrix is square.
- is_symmetric: Evaluates whether a matrix is symmetrical.
- is_tri_mat_lower: Evaluates whether a matrix is lower triangular.
- is_tri_mat_upper: Evaluates whether a matrix is upper triangular.
- is_vec: Evaluates whether the given matrix is a row or column vector.
has_nan
This function evaluates whether a matrix is not a number (NaN).
Syntax
matrices:has_nan(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
Returns
boolean |
Returns true if at least one of the elements is NaN and false if all elements are numbers. |
is_colvec
This function evaluates whether the given matrix is a column vector.
Syntax
matrices:is_colvec(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
Returns
boolean |
True if the matrix can be interpreted as a column vector. False if the matrix does not have exactly one column. |
is_diag_mat
This function evaluates whether a matrix is diagonal, i.e., all elements outside of the main diagonal are zero.
Syntax
matrices:is_diag_mat(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
Returns
boolean |
Returns true if the matrix is diagonal and false if it is not. |
is_hermitian
This function evaluates whether a matrix is hermitian (self-adjoint).
Syntax
matrices:is_hermitian(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
Returns
boolean |
Returns true if the matrix is hermitian and false if it is not. |
is_rowvec
This function evaluates whether the given matrix is a row vector.
Syntax
matrices:is_rowvec(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
Returns
boolean |
True if the matrix can be interpreted as a row vector. False if the matrix does not have exactly one row. |
is_sorted
This function evaluates whether a vector or matrix is sorted.
Syntax
matrices:is_sorted(b [, t ] [, d ])
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
t
|
boolean |
Optional argument that specifies the sort dimension for the matrix. Set to true if elements are sorted row-wise and false if they are sorted column-wise. Default is false . |
d
|
int |
Optional argument that specifies the sort direction for the matrix. Allowed arguments are:- 0: ascend (default). Elements are ascending; consecutive elements can be equal.
- 1: descend. Elements are descending; consecutive elements can be equal.
- 2: strictascend. Elements are strictly ascending; consecutive elements cannot be equal.
- 3: strictdescend. Elements are strictly descending; consecutive elements cannot be equal.
|
Returns
boolean |
True if the elements are sorted. False if they are not. |
is_square
This function evaluates whether a matrix is square, i.e., the number of rows is equal to the number of columns.
Syntax
matrices:is_square(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
Returns
boolean |
Returns true if the matrix is square and false if it is not. |
is_symmetric
This function evaluates whether a matrix is symmetrical.
Syntax
matrices:is_symmetric(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
Returns
boolean |
Returns true if the matrix is symmetrical and false if it is not. |
is_tri_mat_lower
This function evaluates whether a matrix is lower triangular, i.e., the matrix is square sized and all elements above the main diagonal are zero.
Syntax
matrices:is_tri_mat_lower(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
Returns
boolean |
Returns true if the matrix is lower triangular and false if it is not. |
is_tri_mat_upper
This function evaluates whether a matrix is upper triangular, i.e., the matrix is square sized and all elements below the main diagonal are zero.
Syntax
matrices:is_tri_mat_upper(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
Returns
boolean |
Returns true if the matrix is upper triangular and false if it is not. |
is_vec
This function evaluates whether the given matrix is a row or column vector.
Syntax
matrices:is_vec(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
Returns
boolean |
True if the matrix can be interpreted as a column or row vector. False if the matrix does not have exactly one column or one row. |
Matrix and Vector Construction
- gramian: Creates a Gramian matrix that is commonly used to compute linear independence.
- make_matrix: Creates a matrix of doubles with the given dimensions and values.
- make_tensor_from_string: Constructs a tensor from the given dimensions in a string.
- make_vec: Constructs a row vector with the given index and value to be stored in the index.
- string_from_vector: Formats a row vector as a plain string.
- vector_from_string: Returns a vector from a string representation of a vector.
gramian
The Gramian matrix linear algebra aggregate creates a Gramian matrix commonly used to compute linear independence.
Syntax
matrices:gramian(x1, x2, ..., xn)
x1–xn
|
double |
The feature column datasets. |
Returns
http://anzograph.com/matrices#tensor |
The Gramian matrix. |
make_matrix
This function creates a matrix of doubles with the given dimensions and values.
Syntax
matrices:make_matrix(m, n [, v1, v2, ..., vn ])
m
|
int |
The number of rows for the new matrix. |
n
|
int |
The number of columns for the new matrix. |
v1–vn
|
double |
Optional arguments that specify the row-wise matrix elements to include. Default value is 0 for all elements. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation for m x n matrix of doubles. |
make_tensor_from_string
This function constructs a tensor from the given dimensions in a string.
Syntax
matrices:make_tensor_from_string(s [, n ])
s
|
string |
The string that contains the row-wise elements for constructing the tensor. |
n
|
int |
Optional argument that specifies the number of columns to include in the tensor. The default value is 0 , which constructs a row vector. A value of 1 constructs a column vector. A value that is greater than 1 constructs a matrix with the specified number of columns. |
Returns
http://anzograph.com/matrices#tensor |
A tensor of doubles. |
make_vec
This aggregate constructs a row vector with the given index and value to be stored in the index.
Syntax
matrices:make_vec(n, v)
n
|
int |
The index into the vector. |
v
|
double |
The value to be stored in the vector at the nth index. |
Returns
http://anzograph.com/matrices#tensor |
A row vector. |
string_from_vector
This function formats a row vector as a plain string.
Syntax
matrices:string_from_vector(b)
b
|
http://anzograph.com/matrices#tensor |
The row vector to format. |
Returns
vector_from_string
This function returns a vector from a string representation of a vector.
Syntax
matrices:vector_from_string(s)
s
|
string |
The string representation of a vector. |
Returns
http://anzograph.com/matrices#tensor |
The vector as a tensor. |
Submatrix and Subvector Extraction
- subvec_head: Extracts starting elements from a row or column vector.
- subvec_tail: Extracts tailing elements from a row or column vector.
- subview_col: Extracts a column from a matrix or sparse matrix.
- subview_cols: Extracts a range of columns from a matrix or sparse matrix.
- subview_head_cols: Extracts starting columns from a matrix or sparse matrix.
- subview_head_rows: Extracts starting rows from a matrix or sparse matrix.
- subview_mat: Extracts a submatrix from a matrix or sparse matrix.
- subview_row: Extracts a row from a matrix or sparse matrix.
- subview_rows: Extracts a range of rows from a matrix or sparse matrix.
- subview_tail_cols: Extracts tailing columns from a matrix or sparse matrix.
- subview_tail_rows: Extracts tailing rows from a matrix or sparse matrix.
subvec_head
This function extracts starting elements from a row or column vector.
Syntax
matrices:subvec_head(b, n)
b
|
http://anzograph.com/matrices#tensor |
A row or column vector. |
n
|
long |
The number of elements to extract from the beginning of the vector. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a row or column vector with elements from 0 to n-1 . |
subvec_tail
This function extracts tailing elements from a row or column vector.
Syntax
matrices:subvec_tail(b, n)
b
|
http://anzograph.com/matrices#tensor |
A row or column vector. |
n
|
long |
The number of elements to extract from the end of the vector. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a row or column vector with n elements from the tail. |
subview_col
This function extracts a column from a matrix or sparse matrix.
Syntax
matrices:subview_col(b, n)
b
|
http://anzograph.com/matrices#tensor |
A matrix or sparse matrix. |
n
|
long |
The column index. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a column vector. |
subview_cols
This function extracts a range of columns from a matrix or sparse matrix.
Syntax
matrices:subview_cols(b, c1, ..., cn)
b
|
http://anzograph.com/matrices#tensor |
A matrix or sparse matrix. |
c1–n
|
long |
The start column index to the end column index. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of the matrix with columns from c1 to cn . |
subview_head_cols
This function extracts starting columns from a matrix or sparse matrix.
Syntax
matrices:subview_head_cols(b, n)
b
|
http://anzograph.com/matrices#tensor |
The matrix to extract starting columns from. |
n
|
long |
The number of columns to extract from the beginning of the matrix. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a matrix with columns from 0 to n-1 . |
subview_head_rows
This function extracts starting rows from a matrix or sparse matrix.
Syntax
matrices:subview_head_rows(b, n)
b
|
http://anzograph.com/matrices#tensor |
The matrix to extract starting rows from. |
n
|
long |
The number of rows to extract from the beginning of the matrix |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a matrix with rows from 0 to n-1 . |
subview_mat
This function extracts a submatrix from a matrix or sparse matrix.
Syntax
matrices:subview_mat(b, r1, ..., rn, c1, ..., cn)
b
|
http://anzograph.com/matrices#tensor |
The matrix to extract a submatrix from. |
r1–n
|
long |
The start row index to the end row index. |
c1–n
|
long |
The start column index to the end column index. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a matrix of size [1+(rn-r1)] x [1+(cn-c1)] . |
subview_row
This function extracts a row from a matrix or sparse matrix.
Syntax
matrices:subview_row(b, n)
b
|
http://anzograph.com/matrices#tensor |
The matrix to extract the row from. |
n
|
long |
The row index. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a row vector. |
subview_rows
This function extracts a range of rows from a matrix or sparse matrix.
Syntax
matrices:subview_rows(b, r1, ..., rn)
b
|
http://anzograph.com/matrices#tensor |
The matrix to extract the rows from. |
r1–rn
|
long |
The start row index to the end row index. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of the matrix with rows from r1 to rn . |
subview_tail_cols
This function extracts tailing columns from a matrix or sparse matrix.
Syntax
matrices:subview_tail_cols(b, n)
b
|
http://anzograph.com/matrices#tensor |
The matrix to extract trailing columns from. |
n
|
long |
The number of columns to extract from the end of the matrix. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a matrix with n columns from the tail. |
subview_tail_rows
This function extracts tailing rows from a matrix or sparse matrix.
Syntax
matrices:subview_tail_rows(b, n)
b
|
http://anzograph.com/matrices#tensor |
The matrix to extract tailing rows from. |
n
|
long |
The number of rows to extract from the end of the matrix. |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a matrix with n rows from the tail. |
Correlation and Similarity
- cancor: Calculates the overall correlation between two sets of variables.
- cosine_similarity: Calculates the cosine similarity between two row vectors.
- covariance: Provides a measure of the strength of the correlation between two or more sets of random variables.
cancor
The Canonical correlation aggregate calculates the canonical correlation between two sets of variables.
Syntax
matrices:cancor(lc, m, x1, x2, ..., xn, y1, y2, ..., yn)
lc
|
int |
The number of linear combinations for the first canonical correlation. |
m
|
int |
The number of columns in the first set. |
x1–xn
|
double |
The feature columns from the first dataset. |
y1–yn
|
double |
The feature columns from the second dataset. |
Returns
string |
Canonical correlation. |
string |
Square of the canonical correlation. |
string |
Canonical coefficient. |
cosine_similarity
This function calculates the cosine similarity between two row vectors.
The cosine_similarity function is not compatible with column or matrix vectors. The input must be row vectors.
Syntax
matrices:cosine_similarity(m, n)
m
|
http://anzograph.com/matrices#tensor |
A row vector. |
n
|
http://anzograph.com/matrices#tensor |
The row vector to compare to the vector in argument m . |
Returns
double |
Results range from -1 to 1 : -1 is perfectly dissimilar and 1 is perfectly similar. |
covariance
The Covariance aggregate provides a measure of the strength of the correlation between two or more sets of random variables (or variates).
Syntax
matrices:covariance(x1, x2, ..., xn)
x1–xn
|
double |
Feature columns from the dataset. |
Returns
http://anzograph.com/matrices#tensor |
The covariance matrix. |
Distance and Vector Flattening
euclidean_distance
This function returns the euclidean distance between two vectors.
Syntax
matrices:euclidean_distance(b, c)
b
|
http://anzograph.com/matrices#tensor |
The first vector in the calculation. |
c
|
http://anzograph.com/matrices#tensor |
The vector to calculate the distance from vector b . |
Returns
double |
The euclidean distance between the input vectors. |
flatten_as_col
This function returns a flattened version of a matrix as a column vector.
Syntax
matrices:flatten_as_col(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to flatten. |
Returns
http://anzograph.com/matrices#tensor |
The tensor representation of the matrix as a column vector. |
flatten_as_row
This function returns a flattened version of a matrix as a row vector.
Syntax
matrices:flatten_as_row(b)
b
|
http://anzograph.com/matrices#tensor |
The matrix to flatten. |
Returns
http://anzograph.com/matrices#tensor |
The tensor representation of the matrix as a row vector. |
Dimensionality Reduction
Linear Discriminant Analysis (LDA)
Linear discriminant analysis functions apply linear discriminant analysis (LDA) to create combined eigenvalues and vectors that characterize or separate two or more classes of objects or events. The following functions are available for LDA operations:
lda::create
This aggregate applies LDA to create combined eigenvalues and eigenvectors.
Syntax
matrices:lda::create(y, x1, x2, ..., xn)
y
|
double |
The class of the feature tuple.
|
x1–xn
|
double |
The feature column datasets. |
Returns
http://anzograph.com/matrices#lda_result |
The combined eigenvalues, eigenvectors, class mean, count, and class map. |
lda::get_eigvec
Given LDA data, this function returns LDA's eigenvectors as a matrix.
Syntax
matrices:lda::get_eigvec(lda_data)
lda_data
|
http://anzograph.com/matrices#lda_result |
Linear discriminant analysis data. |
Returns
http://anzograph.com/matrices#tensor |
Eigenvectors as a matrix. |
lda::get_eigval
Given LDA data, this function gets LDA's eigenvalues as a column vector.
Syntax
matrices:lda::get_eigval(lda_data)
lda_data
|
http://anzograph.com/matrices#lda_result |
Linear discriminant analysis data. |
Returns
http://anzograph.com/matrices#tensor |
Eigenvalues in descending order as a column vector. |
lda::get_raw_eigval
Given LDA data, this function gets LDA's unsorted eigenvalues.
Syntax
matrices:lda::get_raw_eigval(lda_data)
lda_data |
http://anzograph.com/matrices#lda_result |
LDA data. |
Returns
http://anzograph.com/matrices#tensor |
Eigenvalues in unsorted order as a column vector. |
lda::predict
This function predicts the class for the samples using LDA as the classifier.
Syntax
matrices:lda::predict(lda_data, p1, p2, ..., pn)
lda_data
|
http://anzograph.com/matrices#lda_result |
LDA data. |
p1–pn
|
double |
The data sample that contains the class to predict. |
Returns
string |
The class name to which data tuple belongs. |
lda::transform
This function applies LDA to transform samples onto the new subspace.
Syntax
matrices:lda::transform(lda_data, d, x1, x2, ..., xn)
lda_data
|
http://anzograph.com/matrices#lda_result |
Linear discriminant analysis data. |
d
|
int |
The number of eigenvectors to consider from the start. |
x1–xn
|
double |
The feature column datasets. |
Returns
double |
The original data transformed into the tuple of lower dimensional space. |
Principal Component Analysis (PCA)
Applies Principal component analysis (PCA) to create combined eigenvalues and vectors that highlight patterns in a dataset, making it easier to explore and visualize data. The following functions are available for PCA operations:
pca::create
This aggregate applies PCA to create combined eigenvalues and eigenvectors.
Syntax
matrices:pca::create(x1, x2, ..., xn)
x1–xn
|
double |
The feature column datasets. |
Returns
http://anzograph.com/matrices#feature_result |
PCA data containing eigenvalues and eigenvectors. |
pca::get_eigval
This function retrieves PCA's eigenvalues as a column vector from PCA data.
Syntax
matrices:pca::get_eigval(pca_data)
pca_data
|
http://anzograph.com/matrices#feature_result |
Principal Component Analysis data. |
Returns
http://anzograph.com/matrices#tensor |
Eigenvalues in descending order as column vectors. |
pca::get_eigvec
This function retrieves PCA's eigenvectors as a matrix from the PCA data.
Syntax
matrices:pca::get_eigvec(pca_data)
pca_data
|
http://anzograph.com/matrices#feature_result |
Principal Component Analysis data. |
Returns
http://anzograph.com/matrices#tensor |
Eigenvectors as a matrix. |
pca::get_raw_eigval
This function gets the PCA's unsorted eigenvalues from the PCA data.
Syntax
matrices:pca::get_raw_eigval(pca_data)
pca_data
|
http://anzograph.com/matrices#feature_result |
Principal Component Analysis data. |
Returns
http://anzograph.com/matrices#tensor |
Eigenvalues in unsorted order as column vectors. |
Singular Value Decomposition (SVD)
The Singular value decomposition (SVD) matrix factorization method creates combined singular values and right singular vectors.
The following functions are available for SVD operations:
svd::create
This aggregate applies SVD to create combined singular values and right singular vectors.
Syntax
matrices:svd::create(x1, x2, ..., xn)
x1–xn
|
double |
The feature column datasets. |
Returns
http://anzograph.com/matrices#feature_result |
SVD data containing singular values and right singular vectors. |
svd::get_sigval
This function gets SVD's singular values as a column vector from the SVD data.
Syntax
matrices:svd::get_sigval(svd_data)
svd_data
|
http://anzograph.com/matrices#feature_result |
SVD data. |
Returns
http://anzograph.com/matrices#tensor |
Singular values in descending order as a column vector. |
svd::get_sigvec
This function gets SVD's singular vector as a matrix from the SVD data.
Syntax
matrices:svd::get_sigvec(svd_data)
svd_data
|
http://anzograph.com/matrices#feature_result |
SVD data. |
Returns
http://anzograph.com/matrices#tensor |
Right singular vectors as a matrix. |
transform
This function applies PCA or SVD (depending on the input) to transform the samples onto the new subspace.
Syntax
matrices:transform(data, d, x1, x2, ..., xn)
data
|
http://anzograph.com/matrices#feature_result |
PCA or SVD data. |
d
|
int |
The number of eigenvectors to consider from the end. |
x1–xn
|
double |
Feature column datasets. |
Returns
double |
Sample data transformed into the tuple of lower dimensional space. |
Mathematical Operations
- sigmoid: Returns the logistic sigmoid calculation of a vector.
- vdiff: Returns the difference between two vectors.
- vsum: Returns the sum of two vectors.
sigmoid
This function returns the logistic sigmoid calculation of a vector.
Syntax
matrices:sigmoid(b)
b
|
http://anzograph.com/matrices#tensor |
The vector to evaluate. |
Returns
http://anzograph.com/matrices#tensor |
The logistic sigmoid of the vector. |
vdiff
This function returns the difference between two vectors.
Syntax
matrices:vdiff(b, c)
b
|
http://anzograph.com/matrices#tensor |
The first vector in the calculation. |
c
|
http://anzograph.com/matrices#tensor |
The vector to subtract from vector b . |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of the difference between the input vectors. |
vsum
This function returns the sum of two vectors.
Syntax
matrices:vsum(b, c)
b
|
http://anzograph.com/matrices#tensor |
The first vector in the calculation. |
c
|
http://anzograph.com/matrices#tensor |
The vector to add to vector b . |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of the sum of the input vectors. |
Relational Condition Evaluation
- mat_all: Evaluates whether all elements in a matrix are non-zero or satisfy the specified relational condition.
- mat_any: Evaluates whether any elements in a matrix are non-zero or satisfy the specified relational condition.
- vec_all: Evaluates whether all elements in a row or column vector are non-zero or satisfy the specified relational condition.
- vec_any: Evaluates whether any elements in a row or column vector are non-zero or satisfy the specified relational condition.
mat_all
This function evaluates whether all elements in a matrix are non-zero or satisfy the specified relational condition.
Syntax
matrices:mat_all(b [, d ] [, c ] [, val ])
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
d
|
boolean |
Optional argument that indicates whether to check rows or columns. Set to true for rows or false for columns. Default is false . |
c
|
int |
Optional argument that specifies the relational condition to test:- 0 (default): not equal
- 1: greater than
- 2: less than
- 3: equal
- 4: greater than or equal to
- 5: less than or equal to
|
val
|
double |
Optional argument that specifies the value to apply the condition (c ) to. Default is 0 . |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a row vector with each element as 0 or 1, indicating whether the corresponding row or column has all non-zero elements. |
mat_any
This function evaluates whether any elements in a matrix are non-zero or satisfy the specified relational condition.
Syntax
matrices:mat_any(b [, d ] [, c ] [, val ])
b
|
http://anzograph.com/matrices#tensor |
The matrix to evaluate. |
d
|
boolean |
Optional argument that indicates whether to check rows or columns. Set to true for rows or false for columns. Default is false . |
c
|
int |
Optional argument that specifies the relational condition to test:- 0 (default): not equal
- 1: greater than
- 2: less than
- 3: equal
- 4: greater than or equal to
- 5: less than or equal to
|
val
|
double |
Optional argument that specifies the value to apply the condition (c ) to. Default is 0 . |
Returns
http://anzograph.com/matrices#tensor |
Tensor representation of a row vector with each element as 0 or 1, indicating whether the corresponding row or column has any non-zero elements. |
vec_all
This function evaluates whether all elements in a row or column vector are non-zero or satisfy the specified relational condition.
Syntax
matrices:vec_all(b [, c ] [, val ])
b
|
http://anzograph.com/matrices#tensor |
The vector to evaluate. |
c
|
int |
Optional argument that specifies the relational condition to test:- 0 (default): not equal
- 1: greater than
- 2: less than
- 3: equal
- 4: greater than or equal to
- 5: less than or equal to
|
val
|
double |
Optional argument that specifies the value to apply the condition (c ) to. Default is 0 . |
Returns
boolean |
Returns true if all elements are non-zero or satisfy the condition and false if not. |
vec_any
This function evaluates whether any elements in a row or column vector are non-zero or satisfy the specified relational condition.
Syntax
matrices:vec_any(b [, c ] [, val ])
b
|
http://anzograph.com/matrices#tensor |
The vector to evaluate. |
c
|
int |
Optional argument that specifies the relational condition to test:- 0 (default): not equal
- 1: greater than
- 2: less than
- 3: equal
- 4: greater than or equal to
- 5: less than or equal to
|
val
|
double |
Optional argument that specifies the value to apply the condition (c ) to. Default is 0 . |
Returns
boolean |
Returns true if any elements are non-zero or satisfy the condition and false if not. |