
Altair® Graph Lakehouse™ 2025.0
Documentation

Last Updated: 3/19/2025

Online documentation is available at docs.cambridgesemantics.com

© 2025 Altair Engineering Inc.

https://docs.cambridgesemantics.com/

Table of Contents

About This Doc 11

Best Practice 12

Graph Lakehouse Features and Benefits 13

Graph Lakehouse Architecture 16

Planning and Deployment Guidelines 19

Server and Cluster Requirements 20

Sizing Guidelines for In-Memory Storage 29

Securing a Graph Lakehouse Environment 38

Container Image Deployments 42

Container Engine Requirements 43

Deploy the Graph Lakehouse Container Image 46

Kubernetes Deployments 56

Install the Kubernetes Command Line Client 57

Configure Access to a Kubernetes Cluster 58

Install Helm 60

Deploy Graph Lakehouse with Helm 61

Enterprise Linux 9 Deployments 65

Pre-Installation Requirements 66

Install Graph Lakehouse 69

Table of Contents 2

Post-Installation Configuration 78

Uninstalling and Updating Graph Lakehouse 88

IBM Cloud Pak Deployments 91

Get Started 96

Quickstart with the Query Console 97

Quickstart with the CLI 103

Licensing Methods 105

Install or Upgrade a License 107

Learn SPARQL 117

SPARQL Query Basics 118

SELECT 119

CONSTRUCT 121

ASK 123

DESCRIBE 123

PREFIX Clause 125

FROM Clause 126

WHERE Clause 129

SPARQL Best Practices 134

SPARQL Tips and Tricks 137

Managing Your Data 137

Exploring Your Data 140

Table of Contents 3

Understanding Your Data as a Graph 144

Sample Data and Tutorials 148

Working with SPARQL and the Tickit Data 149

Working with Cypher and the Movie Data 166

Load & Manage Data 172

Load RDF Data from Files 173

RDF Load File Requirements 174

Data Type Handling 177

Load RDF Files with the IO Load Service 179

Load Local RDF Files with SPARQL LOAD 183

Load or Virtualize Non-RDF Sources with SPARQL Queries 187

Introduction to the Graph Data Interface 188

GDI Concepts and Basic Usage 191

Getting Started with GDI Queries 191

Generating a Knowledge Graph 207

Reading Data Source Metadata 222

Pagination Options 239

Binding and Hierarchy Concepts 243

Incremental Load Concepts 251

Options for Data Types, Data Connections, and Models 256

Data Type Formatting Options 256

Table of Contents 4

Model Normalization Options 259

Data Linking Options 268

Advanced Usage by Data Source Type 272

Query a Database Source 272

Query an HTTP Source 286

Query an Elasticsearch Source 307

Query a File Source 331

GDI Property Reference 385

Universal Properties 385

DbSource Properties 390

FileSource Properties 393

ElasticSource Properties 398

Use a Query Context 401

Create a Labeled Property Graph (RDF-star) 405

Defining Properties in Turtle Load Files 406

Defining Properties in INSERT Queries 408

Querying Property Graphs 412

Return Edges and Vertexes as JSON Objects 414

Infer New Data (RDFS+ Inferencing) 424

RDFS-Plus Rules 426

Validate Data with SHACL (Preview) 436

Table of Contents 5

Introduction to SHACL 437

Constraint Component Reference 438

Create a Shapes Graph 453

Validate a Data Graph 458

Copy Graphs to Files 465

Schedule Automated Data Updates 468

Access & Analyze Data 478

Use the Query & Admin Console 479

Use the Graph Lakehouse CLI 493

Use Third-Party Visualization Tools 498

Access the SPARQL and RDF Endpoints 509

Access Data with OData Protocol 518

Create a Data on Demand Endpoint 519

Access a Data on Demand Endpoint 522

OData Reference 529

Create and Save Views 537

Create and Save a View for Reuse 538

Create a View Inline for One-Time Use 539

WITH Syntax 539

Examples 541

Save Queries for Reuse 544

Table of Contents 6

Create and Save a Query for Reuse 545

Create a Query Inline for One-Time Use 547

WITH Syntax 547

Examples 549

SPARQL Query Language Reference 552

Built-in Functions 553

Aggregate Functions 553

Casting Functions 568

Date and Time Functions 579

Graph Algorithms 597

Hash Functions 614

Informational or Testing Functions 619

Logical Functions 625

Math Functions 636

Property Paths 657

String Functions 658

Update Functions 681

Window Aggregate and Ranking Functions 686

Advanced Grouping Sets 702

Extension Libraries 704

Apache Arrow Library 704

Data Science Library 715

Table of Contents 7

Geospatial Library 742

Matrix Utilities Library 890

Sketch Library 939

Utilities Library 956

Cypher Query Language Reference 964

Cypher Language Overview 965

Cypher Patterns 971

Cypher Types, Lists, and Maps 976

Comparability, Equality, Orderability, and Equivalence 983

Cypher Expressions, Variables, and Parameters 990

Cypher Operators 993

Cypher Clauses 997

Cypher Functions 1013

Admin 1020

Start and Stop Graph Lakehouse 1021

Deploy the Frontend Container 1023

Authentication and Access Control 1031

Access Control Basics and Terminology 1032

Configure Graph Lakehouse for LDAP Authentication 1046

Create and Manage Roles from the Console 1050

Monitor Access Control Activity 1061

Table of Contents 8

Manage the Server Configuration 1064

System Settings Reference 1065

Change System Settings 1079

Manage File Access Policies 1080

Ignore Missing Graphs and Unbound Variables in Queries 1084

Change the Default FROM Clause Behavior 1085

Relocate Graph Lakehouse Directories 1086

Manage Automatic Database Restart Options 1087

Develop 1092

UDX Terminology and Concepts 1093

Developing User-Defined Extensions 1102

UDX Development Process Overview 1103

Reviewing UDX Interface Files 1105

Creating New UDX Library Source Files 1116

Registering a UDX in an Extension Library 1121

Compiling UDX Source Files 1126

Loading a UDX to the Database 1129

Using Extensions in SPARQL Queries 1130

UDX Examples 1131

User-Defined Function (UDF) Examples 1132

User-Defined Aggregate (UDA) Examples 1138

Table of Contents 9

FAQ & Troubleshooting 1150

FAQ 1151

Error Message Reference 1160

Retrieving Diagnostic Files 1162

Getting Support 1168

Table of Contents 10

About This Doc

This document contains deployment instructions, best practices, usage, administration, and

troubleshooting documentation for Graph Lakehouse for Developers 2025.0. It is a PDF version of

the content that is available at https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc.

This document is intended for application developers who have a Graph Lakehouse license for

standalone use without Graph Studio™. If you use Graph Studio, refer to the Graph Studio

Documentation for all Graph Studio and Graph Lakehouse / Anzo & AnzoGraph usage information.

About This Doc 11

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/
https://docs.cambridgesemantics.com/
https://docs.cambridgesemantics.com/

Best Practice

Graph Lakehouse is a high performance graph OLAP database that lets users perform BI-style

analytics with unparalled speed and scalability. Graph Lakehouse supports parallel loading of data

so users can begin performing analytics on data quickly. Graph Lakehouse uses standards from the

W3C regarding RDF data formats and the SPARQL query language.

Graph Lakehouse can be deployed in cloud environments such as Amazon AWS, Google Cloud,

Microsoft Azure, and IBM Cloud Pak, or on-premises on Linux bare metal and virtual machines.

Graph Lakehouse also supports Docker and Kubernetes deployments with data staged locally or in

shared NFS, HDFS, or object storage. This section provides an overview of Graph Lakehouse

features and architecture.

In this section:
Graph Lakehouse Features and Benefits 13

Graph Lakehouse Architecture 16

Planning and Deployment Guidelines 19

Securing a Graph Lakehouse Environment 38

Best Practice 12

Graph Lakehouse Features and Benefits

Graph Lakehouse is a native, massively parallel processing (MPP) graph OLAP database, built to

deliver hyperfast advanced analytics at big data scale. This topic provides details about the key

Graph Lakehouse features and the benefits that they provide.

l Native Graph Database

l Massively Parallel Processing

l Performance at Scale

l Graph OLAP Technology and Multi-Graph Support

l Standards-Based Query Languages and Protocols

l Advanced Analytics

l Flexible and Schema-less Data Loading

Native Graph Database

Graph Lakehouse is built to handle graph workloads throughout the computing stack, from the

query language to the database and memory management engine, and the file system. Data is

stored in native graph format whether it is on disk or in memory. Graph Lakehouse's use of the

organic graph model avoids the overhead that non-native graph databases employ for simulating

graph traversal and reformatting data on disk. Graph Lakehouse processes queries faster, scales

better, and runs efficiently on hardware, virtual, or cloud platforms.

Massively Parallel Processing

Graph Lakehouse is a massively parallel processing (MPP) graph database. Its compressed in-

memory and on disk data storage and MPP design provides extremely fast data loading, real-time

updates, and interactive analytics on huge amounts of data. For more information, see Graph

Lakehouse Architecture.

Graph Lakehouse Features and Benefits 13

Performance at Scale

Graph Lakehouse scales with your needs by distributing graph data across cluster nodes and

processing queries in parallel on all nodes. Because of Graph Lakehouse's MPP and fast intra-

cluster network implementation, load and query performance increases as the data and cluster size

grow.

Graph OLAP Technology and Multi-Graph Support

Unlike transaction-oriented graph databases, Graph Lakehouse is a modern enterprise Graph

Online Analytics Processing (GOLAP) database that enables users to interactively view, analyze,

and update graph data. Graph Lakehouse provides unmatched analytic processing of complex

queries that require many joins, filters, and aggregation. Graph Lakehouse enables data scientists,

data architects, and application developers to deliver supercharged analytic insights at massive

scale to support vital real-time solutions for detecting fraud, ensuring compliance, optimizing supply

chains, building enterprise knowledge bases, and more. In accordance with the RDF/SPARQL

standard, Graph Lakehouse has robust multi-graph support.

Standards-Based Query Languages and Protocols

Graph Lakehouse adheres to the W3C RDF and SPARQL 1.1 standards and offers the standard

SPARQL 1.1 and RDF Graph Store Protocol on HTTP/S for sending and receiving SPARQL queries

between client applications and the database. Graph Lakehouse also supports the industry

standard CSV and RDF load file formats. Developers and analysts do not need to learn a

proprietary query language to work with Graph Lakehouse and can incorporate Graph Lakehouse

into their existing infrastructure of products that support standard graph APIs, such as data

preparation, graph transaction processing, visualization, business intelligence, and machine

learning tools.

In addition to SPARQL, Graph Lakehouse provides Cypher query language support. Graph

Lakehouse supports the Bolt protocol to provide a Cypher-based CLI from which users can directly

execute Cypher statements. Other Cypher applications that use the Bolt protocol can also execute

either Cypher or SPARQL queries against Graph Lakehouse data. For more information on Graph

Lakehouse Cypher language support, see Cypher Query Language Reference.

Graph Lakehouse Features and Benefits 14

Advanced Analytics

Graph Lakehouse extends the SPARQL 1.1 specification to add support for advanced analytics

such as window aggregates and advanced grouping capabilities. Graph Lakehouse also supports

conditional expressions, named queries and views, inferencing (RDFS+), labeled property graphs

(using the W3C RDF-star proposed standard), and graph algorithms. In addition, Graph Lakehouse

provides pre-built extension libraries that you can also use in the same way as other native, built-in

analytic functions. For more information about using built-in analytics and extensions, see SPARQL

Query Language Reference.

In addition to supporting all standard SPARQL functions, Graph Lakehouse includes a rich library of

SQL and Microsoft Excel-like built-in functions as well as both C++ and Java APIs for creating user-

defined or custom extension functions, aggregates, and services. For more information about the

extensions, see Develop.

Flexible and Schema-less Data Loading

Loading data to Graph Lakehouse does not require maintenance of error-prone and time-

consuming ETL pipelines, rigid schemas, or relational database models. And Graph Lakehouse’s

virtually unlimited capacity and real-time performance enables users to load structured,

unstructured, internal, or external data on-demand, bringing immediate access and analysis to

everyone. For more information, see Load & Manage Data.

Graph Lakehouse provides a number of different data samples, tutorials, and notebooks to help you

get started quickly using Graph Lakehouse and also familiarize you with the various operations you

can perform. For more information, see Get Started.

Graph Lakehouse Features and Benefits 15

Graph Lakehouse Architecture

Graph Lakehouse uses massively parallel processing (MPP) to perform analytic operations on

graph data conforming to RDF and RDF* standards. You can scale Graph Lakehouse to run in

environments ranging from a single server to multiple servers in a cluster, in either on-premises or

cloud environments.

Though all servers in an Graph Lakehouse cluster store the system metadata and have the ability to

perform leader operations, one server acts as the leader for the cluster. All client applications

should connect to this server.

In-Memory Data Storage Architecture

To provide the highest performance possible, Graph Lakehouse stores all graph data and performs

all analytic operations entirely in memory. At startup, Graph Lakehouse sets the number of shards

(called "slices" in Graph Lakehouse) per node to the number of cores on a single server. To utilize

massively parallel processing of queries, Graph Lakehouse distributes (as evenly as possible) the

data into memory across all of the slices. When data is loaded, Graph Lakehouse hashes on

subjects to determine how the data is distributed. Distributing on subject allows the database to

avoid distributing data over the network under certain conditions. Every slice contains several

blocks that store the triples.

Graph Lakehouse Architecture 16

Note
When installed in a cluster, Graph Lakehouse requires that all servers provide the same

equivalent hardware and quality of service.

Leader and Query Processing

When an application sends a request, the leader node dedicates a thread to process the request. All

other threads remain ready for subsequent requests. The leader routes the query through parsing

and planning. The planner determines the steps that the query requires, for example, whether a

hash join, merge join, or an aggregation step is needed. The planner passes the final query plan to

the code generator, which assembles the groups of steps into segments. The code generator then

packages all of the segments for the query into a stream. The leader sends the stream to all of the

nodes in the cluster and to its own slices. The nodes process the stream in parallel; each node

dedicates a thread to process each segment. The nodes then return the results to the leader to send

to the application.

Graph Lakehouse Architecture 17

For information about server requirements and recommendations, see Planning and Deployment

Guidelines.

Graph Lakehouse Architecture 18

Planning and Deployment Guidelines

This section provides information on choosing an appropriate system design and configuration for

deploying Graph Lakehouse. It also helps you determine the optimum amount of memory needed to

handle the requirements of analytic workloads of various sizes and details other best practices in

planning, designing, and implementing solutions using Graph Lakehouse.

The main selection criteria for choosing a system design, as well as the associated server sizing

and scaling, starts with the analytic applications you intend to run and their importance to your

business. You also need to consider the sources and volume of data you plan to analyze as well as

your performance requirements.

In this section:
Server and Cluster Requirements 20

Sizing Guidelines for In-Memory Storage 29

Planning and Deployment Guidelines 19

Server and Cluster Requirements

Before installing and configuring Graph Lakehouse, it is important to determine the appropriate size

and scale of the environment, whether you are installing on "bare metal" servers, virtual machines,

or using a cloud service. This topic details the minimum requirements and recommendations to

follow for setting up Graph Lakehouse host servers and cluster environments.

l Hardware Requirements

l Software Requirements

l Firewall Requirements

l Virtual Environments and Cluster Configuration

Hardware Requirements

Altair lists above average production system hardware requirements as a guideline. Large

production data sets running interactive queries may require significantly more powerful hardware

and RAM configurations. Provision production server hardware accordingly to avoid performance

issues.

Component Minimum Recommended Guidelines

Available RAM 16 GB (for
small-scale
testing only)

200+ GB Graph Lakehouse needs enough RAM
to store data, intermediate query results,
and run the server processes. Altair
recommends that you allocate 3 to 4
times as much RAM as the planned data
size. Do not overcommit RAM on a VM
or on the hypervisor/container host.
Avoid memory paging to disk (swapping)
to achieve the highest possible level of
performance. For more information
about determining the server and cluster
size that is ideal for hosting Graph
Lakehouse, see Sizing Guidelines for In-

Server and Cluster Requirements 20

Component Minimum Recommended Guidelines

Memory Storage.

Disk space &
Type

40 GB HDD 200+ GB SSD Graph Lakehouse requires 30 GB for
internal requirements. The amount of
additional disk space required for load
file staging and graph data persistence
depends on the size of the data to be
loaded. For persistence, Altair
recommends that you have twice as
much disk space on the local Graph
Lakehouse file system as RAM on the
server.

CPU 2 32 or 64 Once you provision sufficient RAM and a
high-performing I/O subsystem,
performance depends on raw CPU
capabilities. Always use multi-core
CPUs. A greater number of cores can
make a dramatic difference in the
performance of interactive queries.

Note
Intel x86-64 processors are

recommended, but Graph

Lakehouse is supported on Epyc

and later generation AMD

processors. Graph Lakehouse

does not run on Opteron AMD

processors or Mac ARM-based

processors.

Server and Cluster Requirements 21

Component Minimum Recommended Guidelines

Networking 10gbE 20+gbE Not applicable for single server
installations. Since Graph Lakehouse is
high performance, massively parallel
processing (MPP) graph OLAP engine,
inter-cluster communications bandwidth
dramatically affects performance. Graph
Lakehouse clusters require optimal
network bandwidth.

Important
All servers in a cluster must be in

the same network. Make sure

that all instances are in the same

VLAN, security group, or

placement group.

In a switched network, make sure that

all NICs link to the same Top Of Rack

or Full-Crossbar Modular switch. If

possible, enable SR-IOV and other HW

acceleration methods and dedicated

layer 2 networking that guarantees

bandwidth.

Graph Lakehouse requires that all elements of the infrastructure provide the same quality of service

(QoS). Do not run Graph Lakehouse on the same server as any other software except when in

single-server mode and with an expectation of lowered performance. Providing the same QoS is

especially important when using Graph Lakehouse in a clustered configuration. If any of the servers

in the cluster perform additional processing, the cluster becomes unbalanced and may perform

Server and Cluster Requirements 22

poorly. A single poor performing server degrades the other servers to the same performance level.

All nodes require the same hardware specification and configuration. Also use static IP
addresses or make sure that DHCP leases are persistent.

To ensure the maximum and most reliable QoS for CPU, memory, and network bandwidth, do not

co-locate other virtual machines or containers (such as Docker containers) on the same hypervisor

or container host. For hypervisor-managed VMs, configure the hypervisor to reserve the available

memory for the Graph Lakehouse server. For clusters, make sure there is enough physical RAM to

support all of the Graph Lakehouse servers, and reserve the memory via the hypervisor.

In addition, running memory compacting services such as Kernel Same-page Merging (KSM)

impacts CPU QoS significantly and does not benefit Graph Lakehouse. Live migrations also impact

the performance of VMs while they get migrated. While live migration can provide value for planned

host maintenance, Graph Lakehouse performance may be impacted if live migrations occur

frequently. For more information about Kernel Same-page Merging, see

https://en.wikipedia.org/wiki/Kernel_same-page_merging.

Note
Advanced configurations may benefit from CPU pinning on the hypervisor host and disabling

CPU hyper-threading. For more information about CPU pinning, see

https://en.wikipedia.org/wiki/Processor_affinity. For information about hyper-threading, see

https://en.wikipedia.org/wiki/Hyper-threading.

Altair can provide benchmarks to establish relative cluster performance metrics and validate the

environment.

Software Requirements

The table below lists the software requirements for Graph Lakehouse host servers.

Server and Cluster Requirements 23

https://en.wikipedia.org/wiki/Kernel_same-page_merging
https://en.wikipedia.org/wiki/Processor_affinity
https://en.wikipedia.org/wiki/Hyper-threading

Note
For container deployments, the required software and tuning is included in the Graph

Lakehouse images. For RHEL/Rocky deployments, Pre-Installation Requirements provides

details about configuring the required software on single server and cluster deployments.

Component Requirement Description

Operating
System

RHEL/Rocky
Linux 9.3+

Graph Lakehouse is not supported on Enterprise
Linux 7 or 8.

Glibc-devel
Library

Installed on all
host servers

For compiling queries, Graph Lakehouse requires the latest
version of the glibc-devel library for your operating
system.

GNU binutils Installed on all
host servers

To compile and link programs, Graph Lakehouse requires
the latest version of the binutils package for your
operating system.

OpenJDK or
GraalVM

Version 21
Installed on all
host servers

Graph Lakehouse uses a Java client interface to access
data sources. A Java 21 environment is required for using
the Java client. Graph Lakehouse supports OpenJDK 21
and GraalVM 21.

Optional Software

Program Description

vim Editor for creating or changing files.

sudo Enables users to run programs with alternate security privileges.

net-tools Networking utilities.

Server and Cluster Requirements 24

Program Description

psutils Python system and process utilities for retrieving information on running processes
and system usage.

tuned Linux system service to apply tunables.

wget Utility for downloading files over a network.

Firewall Requirements

Graph Lakehouse servers communicate via TCP/IP sockets. Client applications connect to Graph

Lakehouse using the standard SPARQL HTTP(S) protocol. Altair applications, such as the Graph

Lakehouse front end, communicate with the database via the secure, encrypted, gRPC-based

protocol.

Important
For Graph Lakehouse clusters, all servers in the cluster must be in the same network. Make

sure that all instances are in the same VLAN, security group, or placement group.

Open the TCP ports listed in the table below. This image shows a visual representation of the

communication ports:

Server and Cluster Requirements 25

Port Description Required Access

5700 gRPC protocol port for
secure communication
between Graph
Lakehouse servers.

The following list describes the access that is needed for
port 5700:

l Between all Graph Lakehouse servers in the cluster.

l Available for Graph Lakehouse on single node

installations.

l Between the Graph Lakehouse leader server and any

applications that connect to Graph Lakehouse using

gRPC protocol, such as Apache Zeppelin and the

Graph Lakehouse console.

Note
Make sure that the Linux environment variables

http_proxy and https_proxy are not set on the
servers. The Graph Lakehouse gRPC protocol

cannot make connections to the database when

proxies are enabled.

Server and Cluster Requirements 26

Port Description Required Access

8256 SPARQL HTTPS port
for SSL communication
between applications
and Graph Lakehouse.

The following list describes the access that is needed for
port 8256:

l Between applications and the Graph Lakehouse

leader server.

l Between all Graph Lakehouse servers in a cluster.

l Available for Graph Lakehouse on single node

installations.

7070 Optional SPARQL
HTTP port for
communication
between applications
and Graph Lakehouse.

The following list describes the access that is needed for
port 7070 if you have applications that will access Graph
Lakehouse over HTTP:

l Between applications and the Graph Lakehouse

leader server.

l Between all Graph Lakehouse servers in a cluster.

l Available for Graph Lakehouse on single node

installations.

9100 The internal fabric
communications port.

The following list describes the access that is needed for
port 9100:

l Between all Graph Lakehouse servers in a cluster.

l Available for Graph Lakehouse on single node

installations.

5600 The SSL system
management port.

The following list describes the access that is needed for
port 5600:

l Between all Graph Lakehouse servers in a cluster.

l Available for Graph Lakehouse on single node

Server and Cluster Requirements 27

Port Description Required Access

installations.

Virtual Environments and Cluster Configuration

When your data loading and performance requirements warrant using a server cluster, the minimal

size cluster you create should have no fewer than four nodes. When using a single node, data gets

redistributed in memory without using a network. If you add one or two more nodes to create a two-

or three-node cluster, data then gets distributed over the network to utilize the additional CPUs in

the cluster. However, the CPU gain you would get from the additional one or two nodes added to the

cluster does not outweigh the performance degradation that the network introduces.

Once you have created and are using a cluster, you can always provision additional servers to add

CPU and memory capacity to boost performance and increase the total amount of memory available

to load graph data. Graph Lakehouse requires that all elements the infrastructure provide the same

quality of service. Do not run Graph Lakehouse on the same server as any other application

software.

Server and Cluster Requirements 28

Sizing Guidelines for In-Memory Storage

This topic provides guidance on determining the server and cluster size that is ideal for hosting

Graph Lakehouse, depending on the characteristics of your data and Graph Lakehouse use case.

l Memory and Cluster Size Guidelines

l Analyzing Data Characteristics in Load Files

l Estimating Memory Requirements Based on Data Characteristics

Memory and Cluster Size Guidelines

Since Graph Lakehouse is a high-performance, in-memory database, it is important to consider the

amount of memory needed to store the data that you plan to load. Estimating the amount of memory

your workload requires can help you decide what size server to use and whether to use multiple

servers. The sections below describe the key points to consider about memory usage and Graph

Lakehouse.

l Data at rest should use less than 50% of the total memory

l Graph Lakehouse reserves 20% of the memory for the OS

l Memory usage depends on data characteristics

l Memory usage can be high during loads

l Memory Usage Examples

Data at rest should use less than 50% of the total memory

The data loaded into memory should not consume more than 50% of the total available memory on

the instance or across a cluster. Preserve at least 50% of the memory for server processes, query

processing, and storing intermediate results.

Sizing Guidelines for In-Memory Storage 29

Note
Altair recommends that you allocate 3 to 4 times as much RAM as the planned data size,

especially if the planned workload includes running complex analytic queries. There is no

hard-wired limit on the number of queries you can run concurrently, however, you can set a

limit, configured by the user_queues setting, that determines how many queries may be

started before additional queries are placed in a queue.

Graph Lakehouse reserves 20% of the memory for the OS

To avoid unexpected shutdowns by the Linux operating system, the default Graph Lakehouse

configuration leaves 20% of memory available for the OS; Graph Lakehouse will not use more than

80% of the total available memory. Account for this memory buffer in sizing calculations.

Memory usage depends on data characteristics

Memory usage varies significantly depending on the makeup of the data, such as the data types and

sizes of literal values, and the complexity of the queries that you run. Data is loaded into Graph

Lakehouse as triples, and the storage required for each triple ranges anywhere from 12 bytes per

triple to 1 megabyte, for a triple that stores pages of text from an unstructured document.

l Triples with integer objects like the following example require about 16 bytes to store in

memory.

<http://anzograph.com/resource/person1> <http://anzograph.com/resource/age> 50

l Triples made up of URIs like the following example require about 18 bytes to store in

memory.

<http://anzograph.com/resource/person1> <http://anzograph.com/resource/friend>

<http://anzograph.com/resource/person100>

l Triples with user-defined data types (UDTs) like the following example also require about 18

bytes to store in memory.

<http://anzograph.com/resource/person1> <http://anzograph.com/resource/height>

"5'8""^^height

Sizing Guidelines for In-Memory Storage 30

l Triples with dateTime values like the following example require about 20 bytes to store in

memory.

<http://www.wikidata.org/entity/Q65949130>

<http://www.wikidata.org/prop/direct/P585>

"1995-01-01T00:00:00Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

l Triples with long strings like the following example require about 700 bytes to store in

memory.

<http://dbpedia.org/resource/Keanu_Reeves>

<http://dbpedia.org/ontology/abstract> "Keanu Charles Reeves

(/keɪˈɑːnuː/ kay-AH-noo; born September 2, 1964) is a Canadian actor,

producer, director and musician.

Reeves is best known for his acting career, beginning in 1985 and spanning

more than three decades.

He gained fame for his starring role performances in several blockbuster films

including comedies

from the Bill and Ted franchise (1989–1991), action thrillers Point Break

(1991) and Speed (1994),

and the science fiction-action trilogy The Matrix (1999–2003). He has also

appeared in dramatic

films such as Dangerous Liaisons (1988), My Own Private Idaho (1991), and

Little Buddha (1993),

as well as the romantic horror Bram Stoker's Dracula (1992)."

The following table provides estimates for the number of triples that you can load and query with

specific amounts of available RAM. The table also lists the number of triples that could be stored in

given amounts of memory, using the triples described in the previous examples.

Note
The estimates listed in the table represent the number of triples at rest and take into

consideration that the data should not consume more than 50% of all available RAM.

Available
RAM

General Estim-
ate

Examples

16 GB Up to about 100
million triples

Considering that the data at rest should use less than 8 GB
RAM, a server with 16 GB total RAM could store:

Sizing Guidelines for In-Memory Storage 31

Available
RAM

General Estim-
ate

Examples

l About 12 million 700-byte triples like the Keanu

Reeves example above.

l About 475 million 18-byte URI triples like the example

above.

32 GB Up to about 200
million triples

Considering that the data at rest should use less than 16 GB
RAM, a server with 32 GB total RAM could store:

l About 24 million 700-byte triples like the Keanu

Reeves example above.

l About 850 million 20-byte triples like the dateTime

example above.

64 GB Up to about 400
million triples

Considering that the data at rest should use less than 32 GB
RAM, a server with 64 GB total RAM could store:

l About 48 million 700-byte triples like the Keanu Reeves

example above.

l About 1.7 billion 20-byte URI triples.

128 GB Up to about 800
million triples

Considering that the data at rest should use less than 64 GB
RAM, a server with 128 GB total RAM could store:

l About 96 million 700-byte triples like the Keanu Reeves

example above.

l About 3.4 billion 20-byte URI triples.

256 GB Up to about 1.5
billion triples

Considering that the data at rest should use less than 128 GB
RAM, a server with 256 GB total RAM could store:

Sizing Guidelines for In-Memory Storage 32

Available
RAM

General Estim-
ate

Examples

l About 192 million 700-byte triples like the Keanu Reeves

example above.

l About 6.8 billion 20-byte URI triples.

512 GB Up to about 3
billion triples

Considering that the data at rest should use less than 256 GB
RAM, a server with 512 GB total RAM could store:

l About 390 million 700-byte triples like the Keanu Reeves

example above.

l About 13 billion 20-byte URI triples.

Memory usage can be high during loads

During the load process, before the data can be moved to its final storage block, memory usage

temporarily increases, particularly if the data includes many string values.

Memory Usage Examples

The following table provides memory requirement estimates for public or commercial data sets that

users may already use or be familiar with:

Data Set
Memory Require-
ments

Description

Graph-500
(.csv)

2 GB Graph search data set created by graph500.org to
facilitate benchmark testing of large data and CPU
intensive computing.

WikiData
(.nt)

340 GB at rest; 900+
GB to load and run
queries

Large downloadable data set reflecting contents of various
Wikimedia projects.

Sizing Guidelines for In-Memory Storage 33

http://graph500.org/

Analyzing Data Characteristics in Load Files

Graph Lakehouse allows you to perform pre-load analysis on load files without actually loading the

data into memory. You can use this method to run statistical queries, such as counting the number

of triples, getting to know the data, or returning a list of the nodes or subjects and predicates.

Performing a "dry run" of a data load, beforehand, enables you to analyze data set characteristics to

help with tasks such as memory sizing and overall capacity planning. You can use this method to

capture statistics about a large data set on a smaller system than what would actually be required to

load the data in memory.

Important Considerations for Analyzing Load Files

l Since Graph Lakehouse scans the files on-disk, queries run much slower than they do when

run against data in memory. Consider performance when deciding how many files to query at

once and how complex to make queries.

l Though the pre-load feature does not use memory for storing data, queries that you run

against files do consume some memory. The server must have sufficient memory available to

use for these intermediate query results.

l Unlike loads into the database, pre-load analysis does not prune duplicate triples. Statistics

returned for load file queries may differ somewhat from the statistics returned after the data is

loaded.

Analysis Query Syntax

The syntax that you use to query load files depends on the file type. For example, for files in triple or

quad format, like Turtle (.ttl), N-Triple (.n3 and .nt), N-Quad (.nq and .quads), and TriG (.trig) files,

you can use the following syntax:

SELECT <expression>

FROM EXTERNAL <dir:/path/dir_or_file_name>

[FROM EXTERNAL <dir:/path/dir_or_file_name>]

WHERE { <triple_patterns> }

Sizing Guidelines for In-Memory Storage 34

Option Description

SELECT

<expression>

In the SELECT clause, specifies an expression that returns statistical
results such as a count of the total number of triples or the number of
distinct predicates. Queries that return values for a specific property may
return an error.

FROM EXTERNAL

<dir:/path/dir_

or_file_name>

The URI in the FROM clause specifies the location of the load file or
directory of files. For example, this URI specifies a single file on the local
file system:

<file:/home/user/data/tickit.ttl>

This example specifies a directory of files:

<dir:/data/load-files/tickit.ttl.gz>

For example, the following query analyzes the tickit.ttl.gz directory to count the total number of

triples in the files:

SELECT (count (*) as ?triples)

FROM EXTERNAL <dir:/opt/anzograph/etc/tickit.ttl.gz>

WHERE { ?s ?p ?o . }

triples

5368800

1 rows

The example below analyzes the tickit.ttl.gz directory to count the total number of triples and the

number of distinct subjects and predicates:

SELECT

(count (*) as ?triples)

(count(distinct ?s) as ?subjects)

(count(distinct ?p) as ?preds)

FROM EXTERNAL <dir:/opt/anzograph/etc/tickit.ttl.gz>

WHERE { ?s ?p ?o . }

Sizing Guidelines for In-Memory Storage 35

triples | subjects | preds

--------+----------+-------

5368800 | 424319 | 45

1 rows

Estimating Memory Requirements Based on Data Characteristics

Although the memory required to load and perform queries on specific data sets will vary based on

the size and type of data contained in a data set, you can still obtain a reasonable estimate or

starting point for the amount of memory you will need to load any specific data set. Using the

method of pre-load analysis of load files described earlier (see Analyzing Data Characteristics in

Load Files), you can query the data set to calculate a rough estimate of the memory required to load

the data set in memory.

1. Calculate the number of triples the data set will generate when stored in Graph Lakehouse.

2. Multiply the number of triples by an average triple size.

3. Add the number of characters stored in all of the character strings contained in the data set.

Using the example of the Tickit data set provided with Graph Lakehouse, you can perform a query

like the following to calculate the number of triples the Tickit data set will contain when loaded into

memory:

SELECT (COUNT(*) as ?triple_count)

FROM EXTERNAL <dir:/opt/anzograph/etc/tickit.ttl.gz>

WHERE {?s ?p ?o}

triple_count

7696012

1 rows

Note
Queries run against files on disk will run significantly slower than they do when run against

data in memory. Also, note that pre-load analysis of data sets does not prune duplicate triples,

unlike data sets loaded in memory, so the calculation of the number of triples may differ

Sizing Guidelines for In-Memory Storage 36

somewhat from the number reported after the data set is loaded in memory.

Once you know the total number of triples, multiply the value by the average triple storage size. The

Memory usage depends on data characteristics section above shows some example triples and

their estimated size. If you are familiar with the data in the files, you may be able to determine the

average size based on the examples. Otherwise, Altair recommends using 30 bytes as the average

triple size. For example, using the triple count above and an average triple size of 30 bytes:

7696012 x 30 = 230,880,360 bytes

To calculate the additional memory required for in-memory storage of character string data, you can

run a query like the following:

SELECT

(SUM(IF(DATATYPE(?o)=<http://www.w3.org/2001/XMLSchema#string>,(STRLEN(?o)),0)) AS

?char_count)

FROM EXTERNAL <dir:/opt/anzograph/etc/tickit.ttl.gz>

WHERE {?s ?p ?o.}

char_count

4893660

1 rows

For ASCII characters, Graph Lakehouse requires a single byte of memory for each character, so

adding the total number of characters to the previous memory calculation for storing triples, the

result is the following:

230,880,360 + 4,893,660 = 235,774,020 total bytes

Note that the calculation of 235,774,020 total bytes (0.24 GB) provides an estimate for data set
storage "at rest" and takes into account only one data set stored in memory. When coming up with a

final recommendation for total memory requirements of an Graph Lakehouse deployment, account

for any other data sets you may want to load in memory at the same time. You also need to keep in

mind other memory sizing guidelines, for example, that all loaded data should not consume more

than 50% of all available RAM.

Sizing Guidelines for In-Memory Storage 37

Securing a Graph Lakehouse Environment

This topic lists the recommended procedures to follow to strengthen the security of Graph

Lakehouse environments.

l Set Up Firewall Rules

l Replace the Default Self-Signed Certificates with Trusted Certificates

l Configure File Access Policies

Set Up Firewall Rules

In order to protect the environment from malicious systems and prevent man-in-the-middle attacks

or leaking of data source credentials, firewall rules should be configured for the Graph Lakehouse

cluster network. Rules should allow outbound connections only to trusted data sources and

services. For information about the ports that need to be opened for inbound and outbound

connections to support normal operations, see Firewall Requirements.

Replace the Default Self-Signed Certificates with Trusted Certificates

Graph Lakehouse installations include self-signed certificates, serv.crt and ca.crt, and private

and public keys, serv.key serv.pub.key, in the <install_path>/config directory. The

certificates and keys are required for encrypted communication over gRPC protocol. You can follow

the steps below to replace the default certificates and keys with your own trusted files.

Important
Your certificates must meet the following requirements:

l All servers in the cluster must use the same certificates and keys.

l The DNS in the certificates must be localhost.

l Your certificates and keys must use the same file names as the default files that you are

replacing.

l The public key should be generated from the new private key.

Securing a Graph Lakehouse Environment 38

Note
The private and public keys are used to encrypt and decrypt the system manager password. If

you replace the keys and have enabled (or plan to enable) system manager authentication (as

described in Securing a Graph Lakehouse Environment below), you must also generate a new

azgmgrd password and re-authenticate azgmgrd as described in Securing a Graph

Lakehouse Environment.

1. On the leader server, run the following commands to stop the database and the system

manager, azgmgrd:

sudo systemctl stop anzograph

sudo systemctl stop azgmgrd

2. On the leader server, open the <install_path>/config/settings.conf file for

editing.

3. Uncomment the use_custom_ssl_files=false line and change the value to true.

4. Save and close settings.conf.

5. On each server in the cluster, replace the serv.crt, ca.crt, serv.key, and

serv.pub.key files in the <install_path>/config directory with your files. Make sure

that the new files have the same file names as the default files.

6. Restart Graph Lakehouse with the following commands. Run the first command on all

servers in the cluster. Then run the second command on the leader server:

sudo systemctl start azgmgrd

sudo systemctl start anzograph

Configure File Access Policies

Graph Lakehouse offers configuration options for ensuring that only certain files or directories on

the server are accessible during the execution of a query. These configuration settings specify

patterns that are used to determine whether a directory or file is accessible. When Graph

Lakehouse receives a request that includes a path to a file or directory, it checks that path against

Securing a Graph Lakehouse Environment 39

the allowed and denied access patterns. If the specified file or directory matches one of the allowed

access patterns and it is not matched to a deny pattern, the query is executed. If the specified path

is matched to a denied pattern or is not matched to any of the allowed patterns, the query is aborted

and Graph Lakehouse returns an access denied error message. For details and configuration

instructions, see Manage File Access Policies.

Securing a Graph Lakehouse Environment 40

Important
Altair recommends that you deploy Graph Lakehouse on a host server that has at least 16 GB

of RAM available. To request a license, contact Altair Customer Support. For more

information on licensing, see Licensing Methods and Install or Upgrade a License.

In this section:
Container Image Deployments 42

Kubernetes Deployments 56

Enterprise Linux 9 Deployments 65

IBM Cloud Pak Deployments 91

41

https://altair.com/customer-support

Container Image Deployments

The topics in this section help you get started quickly by deploying Graph Lakehouse as a single

server container image using a container engine such as Docker, Podman, or Rancher. The

following topics list server and software requirements, give guidance on configuring the container

engine environment for use with Graph Lakehouse, and provide instructions for deploying an Graph

Lakehouse container image.

In this section:
Container Engine Requirements 43

Deploy the Graph Lakehouse Container Image 46

Container Image Deployments 42

Container Engine Requirements

This topic lists the container engine requirements for running Graph Lakehouse container images.

Component Guidelines

Operating
Systems

MacOS, Linux, Windows 10 Professional or Enterprise edition.

Important
l Mac ARM: Mac ARM-based processors are not supported. The

Graph Lakehouse image will not run in Docker on an ARM-

based Mac, even if the --platform linux/amd64 flag is

used.

l Ubuntu: Graph Lakehouse is not supported on Ubuntu 16.04
LTS. To deploy an Graph Lakehouse container image on

Ubuntu, use Ubuntu 18.04 LTS or later.

l Windows: Container management applications use a
hypervisor with a VM, and the host server must support

virtualization. Since older Windows versions and Windows 10

Home edition do not support Hyper-V, Windows 10 Professional

or Enterprise is required.

Available RAM Minimum: 8 GB; Recommended: 16 GB. Graph Lakehouse needs enough
RAM to store data, intermediate query results, and run the server processes.
Altair recommends that you allocate 3 to 4 times as much RAM as the planned
data size. For guidance on sizing Graph Lakehouse servers, see Sizing
Guidelines for In-Memory Storage.

Available Disk
Space

Graph Lakehouse requires 30 GB for internal requirements. The amount of
additional disk space required for load file staging, persistence, or backups
depends on the size of the data to be loaded. For persistence, Altair
recommends that you have twice as much disk space available as RAM on the

Container Engine Requirements 43

Component Guidelines

server.

CPU Count Minimum: 2; Recommended 8+.

Intel x86-64 processors are recommended, but Graph Lakehouse is

supported on Epyc and later generation AMD processors. Graph Lakehouse

does not run on Opteron AMD processors or Mac ARM-based processors.

Adjusting Container Resources

If you use a desktop container application, you may need to adjust the resources that are available

to the Graph Lakehouse image. Graph Lakehouse requires at least 2 CPU, 10 GB of available disk

space, and 8 GB of available RAM to start the database. Altair recommends that you make at least

16 GB memory available to the image. For instructions on tuning resources, see the documentation

for your container engine.

For example, in Docker Desktop for Mac, click the Docker icon in the menu bar and select

Preferences. On the Settings screen, select Resources. For example:

Container Engine Requirements 44

Increase the CPUs, Memory, and Disk image size as needed to meet the Graph Lakehouse

requirements. Then click Apply & Restart to apply the changes and restart Docker.

For instructions on deploying the Graph Lakehouse image, see Deploy the Graph Lakehouse

Container Image.

Container Engine Requirements 45

Deploy the Graph Lakehouse Container Image

This topic provides instructions for downloading and deploying a Graph Lakehouse container image

using the command line. The steps include Docker commands that may need to be customized

depending on your application.

l Deploy Graph Lakehouse in a Mac Desktop Application

l Deploy Graph Lakehouse in a Linux Container Engine

l Deploy Graph Lakehouse in a Windows Desktop Application

Deploy Graph Lakehouse in a Mac Desktop Application

Follow the instructions below to deploy Graph Lakehouse on a Mac desktop container application.

1. If necessary, start the desktop application, and then open the Mac Terminal app.

2. Applications typically cache images on the host. If you have deployed an Graph Lakehouse

container previously, that image will be used to redeploy Graph Lakehouse. If you want to

deploy the latest release, first pull the latest image. To do so, run the following command:

docker pull cambridgesemantics/anzograph:latest

Tip
You can deploy alternate Graph Lakehouse versions by replacing the "latest" tag with

any of the tags that are available on the AnzoGraph Docker Hub site.

3. If you are deploying the Graph Lakehouse container for the first time, Altair recommends that

you create a directory on the local file system where load files, query files, and other files can

be staged and shared with the container file system. When you deploy Graph Lakehouse,

you map the directory on the local file system to a directory in the container. This way the files

are shared, and if you remove the Graph Lakehouse container, the local file system retains a

copy of the shared files. If you redeploy a new Graph Lakehouse image, the new container

can be mapped to the same local directory and access the existing files. To create the

directory, navigate to a location on the host and run the following command to create a

Deploy the Graph Lakehouse Container Image 46

https://hub.docker.com/r/cambridgesemantics/anzograph/tags

directory in the current directory:

mkdir <directory_name>

For example:

mkdir shared-files

Note
On Mac and Linux, Docker is configured by default to allow local directories to be

shared with containers. On Mac, the /Users, /Volumes, /private, and /tmp directories

are shared. If necessary, you can configure additional locations in Docker Preferences
> Resources > File Sharing.

4. In Terminal, run the following command to deploy the Graph Lakehouse image. The

command runs the Graph Lakehouse image and configures HTTP and HTTPS access by

mapping the container ports to the HTTP and HTTPS ports on the host:

docker run -d -p <host_http_port>:8080 -p <host_https_port>:8443 \

-v /<path>/<shared_directory>:/opt/<shared_directory> \

--name=<container_name> cambridgesemantics/anzograph:<tag>

The list below describes each of the parameters:

l host_http_port is the port on the local host to use for HTTP access to the Graph

Lakehouse user interface. In the container, the user interface binds to port 8080 for

HTTP access. Altair recommends that you specify 80 to map the container's HTTP port

to port 80 on the local host. If port 80 is in use, specify an alternate port for host_http_

port.

l host_https_port is the port on the local host to use for HTTPS access to the Graph

Lakehouse user interface. In the container, the user interface binds to port 8443 for

HTTPS access. Altair recommends that you specify 443 to map the container's HTTPS
port to port 443 on the local host. If port 443 is in use, specify an alternate port for host_

https_port.

Deploy the Graph Lakehouse Container Image 47

l /path/shared_directory: The path and directory name for the shared directory on the
local file system.

l shared_directory: The directory on the container file system to map to the shared

directory on the local file system. The directory is created when the container is

deployed.

Note
The command above lists /opt/ as a convenient path on the container file

system because the Graph Lakehouse path is /opt/anzograph. You can

specify a different path.

l container_name is the short name to use to identify the Graph Lakehouse container.
For example, anzograph.

l tag is the tag from the AnzoGraph Docker Hub site that identifies the version of Graph

Lakehouse to deploy. If you pulled an image in the first step, this tag should match the

tag from the pull command. Usually the latest tag is specified so the most recent
release is deployed.

For example:

docker run -d -p 80:8080 -p 443:8443 -v /Volumes/shared-files:/opt/shared-

files --name=anzograph cambridgesemantics/anzograph:latest

When the prompt returns the container ID, the container is running. For example:

c16b912a4a8944592297cf052f90447a5657c3362540334aba2195ae8941f1af

Graph Lakehouse is now installed and ready to use. You can access the user interface by opening a

browser and going to http://127.0.0.1. If you specified a port other than 80 for the host HTTP port,

specify that port in the URL. For example, http://127.0.0.1:8888.

Use the following credentials to log in to the user interface:

l Username: admin

l Password: Passw0rd1

Deploy the Graph Lakehouse Container Image 48

https://hub.docker.com/r/cambridgesemantics/anzograph/tags

For next steps, see Get Started, a brief tutorial designed to introduce you to the Graph Lakehouse

user interface and command line interface and get you started with loading data and running

SPARQL queries.

Deploy Graph Lakehouse in a Linux Container Engine

Follow the instructions below to deploy Graph Lakehouse on Linux.

1. If necessary, start the container application.

2. Applications typically cache images on the host. If you have deployed an Graph Lakehouse

container previously, that image will be used to redeploy Graph Lakehouse. If you want to

deploy the latest release, first pull the latest image. To do so, run the following command:

docker pull cambridgesemantics/anzograph:latest

Tip
You can deploy alternate Graph Lakehouse versions by replacing the "latest" tag with

any of the tags that are available on the AnzoGraph Docker Hub site.

3. If you are deploying the Graph Lakehouse container for the first time, Altair recommends that

you create a directory on the local file system where load files, query files, and other files can

be staged and shared with the container file system. When you deploy Graph Lakehouse,

you map the directory on the local file system to a directory in the container. This way the files

are shared, and if you remove the Graph Lakehouse container, the local file system retains a

copy of the shared files. If you redeploy a new Graph Lakehouse image, the new container

can be mapped to the same local directory and access the existing files. To create the

directory, navigate to a location on the host and run the following command to create a

directory in the current directory:

mkdir <directory_name>

For example:

mkdir shared-files

Deploy the Graph Lakehouse Container Image 49

https://hub.docker.com/r/cambridgesemantics/anzograph/tags

Note
On Mac and Linux, Docker is configured by default to allow local directories to be

shared with containers. On Mac, the /Users, /Volumes, /private, and /tmp directories

are shared. If necessary, you can configure additional locations in Docker Preferences
> Resources > File Sharing.

4. Run the following command to deploy the Graph Lakehouse image. The command instructs

Docker to start Graph Lakehouse and configure HTTP and HTTPS access to the application

by mapping the container ports to the HTTP and HTTPS ports on the local host:

docker run -d -p <host_http_port>:8080 -p <host_https_port>:8443 \

-v /<path>/<shared_directory>:/opt/<shared_directory> \

--name=<container_name> cambridgesemantics/anzograph:<tag>

The list below describes each of the parameters:

l host_http_port is the port on the local host to use for HTTP access to the Graph

Lakehouse user interface. In the container, the user interface binds to port 8080 for

HTTP access. Altair recommends that you specify 80 to map the container's HTTP port

to port 80 on the local host. If port 80 is in use, specify an alternate port for host_http_

port.

l host_https_port is the port on the local host to use for HTTPS access to the Graph

Lakehouse user interface. In the container, the user interface binds to port 8443 for

HTTPS access. Altair recommends that you specify 443 to map the container's HTTPS
port to port 443 on the local host. If port 443 is in use, specify an alternate port for host_

https_port.

l /path/shared_directory: The path and directory name for the shared directory on the
local file system.

l shared_directory: The directory on the container file system to map to the shared

directory on the local file system. The directory is created when the container is

deployed.

Deploy the Graph Lakehouse Container Image 50

Note
The command above lists /opt/ as a convenient path on the container file

system because the Graph Lakehouse path is /opt/anzograph. You can

specify a different path.

l container_name is the short name to use to identify the Graph Lakehouse container.
For example, anzograph.

l tag is the tag from the AnzoGraph Docker Hub site that identifies the version of Graph

Lakehouse to deploy. If you pulled an image in the first step, this tag should match the

tag from the pull command. Usually the latest tag is specified so the most recent
release is deployed.

For example:

docker run -d -p 80:8080 -p 443:8443 -v /opt/shared-files:/opt/shared-files --

name=anzograph cambridgesemantics/anzograph:latest

When the prompt returns the container ID, the container is running. For example:

c16b912a4a8944592297cf052f90447a5657c3362540334aba2195ae8941f1af

Tip
If you want to attach to the container and explore the Graph Lakehouse file system, you

can run the following command.

docker exec -it anzograph /bin/bash

Graph Lakehouse is now installed and ready to use. To open the user interface, open a browser and

go to the following URL:

https://<host_IP_address>

Where <host_IP_address> is the IP address of the host server where the container image is

installed. If you mapped the container's HTTPS port to port 443 on the host, you do not need to

specify a port. If you specified a port other than 443, include the port in the URL. For example,

https://10.100.0.1:8888.

Deploy the Graph Lakehouse Container Image 51

https://hub.docker.com/r/cambridgesemantics/anzograph/tags

Tip
If you are using Docker for Linux locally and need to know the IP address of the Graph

Lakehouse container, you can run the following command:

docker inspect <container_name> | grep '"IPAddress"' | head -n 1

For example:

docker inspect anzograph | grep '"IPAddress"' | head -n 1

"IPAddress": "172.17.0.2"

Use the following credentials to log in to the user interface:

l Username: admin

l Password: Passw0rd1

For next steps, see Get Started, a brief tutorial designed to introduce you to the Graph Lakehouse

user interface and command line interface and get you started with loading data and running

SPARQL queries.

Deploy Graph Lakehouse in a Windows Desktop Application

Follow the instructions below to deploy Graph Lakehouse on a Windows desktop container

application.

1. If necessary, start the desktop application, and then open the Windows PowerShell

application.

2. Applications typically cache images on the host. If you have deployed an Graph Lakehouse

container previously, that image will be used to redeploy Graph Lakehouse. If you want to

deploy the latest release, first pull the latest image. To do so, run the following command:

docker pull cambridgesemantics/anzograph:latest

Deploy the Graph Lakehouse Container Image 52

Tip
You can deploy alternate Graph Lakehouse versions by replacing the "latest" tag with

any of the tags that are available on the AnzoGraph Docker Hub site.

3. If you are deploying the Graph Lakehouse container for the first time, Altair recommends that

you create a directory on the local file system where load files, query files, and other files can

be staged and shared with the container file system. When you deploy Graph Lakehouse,

you map the directory on the local file system to a directory in the container. This way the files

are shared, and if you remove the Graph Lakehouse container, the local file system retains a

copy of the shared files. If you redeploy a new Graph Lakehouse image, the new container

can be mapped to the same local directory and access the existing files. To create the

directory, navigate to a location on the host and run the following command to create a

directory in the current directory:

mkdir <directory_name>

For example:

mkdir shared-files

4. In PowerShell, run the following command to deploy the Graph Lakehouse image. The

command runs Graph Lakehouse and configures HTTP and HTTPS access by mapping the

container ports to the HTTP and HTTPS ports on the local host:

docker run -d -p <host_http_port>:8080 -p <host_https_port>:8443 \

-v \<path>\<shared_directory>:/opt/<shared_directory> \

--name=<container_name> cambridgesemantics/anzograph:<tag>

The list below describes each of the parameters:

l host_http_port is the port on the local host to use for HTTP access to the Graph

Lakehouse user interface. In the container, the user interface binds to port 8080 for

HTTP access. Altair recommends that you specify 80 to map the container's HTTP port

to port 80 on the local host. If port 80 is in use, specify an alternate port for host_http_

port.

Deploy the Graph Lakehouse Container Image 53

https://hub.docker.com/r/cambridgesemantics/anzograph/tags

l host_https_port is the port on the local host to use for HTTPS access to the Graph

Lakehouse user interface. In the container, the user interface binds to port 8443 for

HTTPS access. Altair recommends that you specify 443 to map the container's HTTPS
port to port 443 on the local host. If port 443 is in use, specify an alternate port for host_

https_port.

l \path\shared_directory: The path and directory name for the shared directory on the
local file system.

l shared_directory: The directory on the container file system to map to the shared

directory on the local file system. The directory is created when the container is

deployed.

Tip
The command above lists /opt/ as a convenient path on the container file

system because the Graph Lakehouse path is /opt/anzograph. You can

specify a different path.

l container_name is the short name to use to identify the Graph Lakehouse container.
For example, anzograph.

l tag is the tag from the AnzoGraph Docker Hub site that identifies the version of Graph

Lakehouse to deploy. If you pulled an image in the first step, this tag should match the

tag from the pull command. Usually the latest tag is specified so the most recent
release is deployed.

For example:

docker run -d -p 80:8080 -p 443:8443 -v C:\shared-files:/opt/shared-files --

name=anzograph cambridgesemantics/anzograph:latest

When the prompt returns the container ID, the container is running. For example:

c16b912a4a8944592297cf052f90447a5657c3362540334aba2195ae8941f1af

Deploy the Graph Lakehouse Container Image 54

https://hub.docker.com/r/cambridgesemantics/anzograph/tags

Graph Lakehouse is now installed and ready to use. You can access the user interface by opening a

browser and going to http://127.0.0.1. If you specified a port other than 80 for the host HTTP port,

specify that port in the URL. For example, http://127.0.0.1:8888.

Use the following credentials to log in to the user interface:

l Username: admin

l Password: Passw0rd1

For next steps, see Get Started, a brief tutorial designed to introduce you to the Graph Lakehouse

user interface and command line interface and get you started with loading data and running

SPARQL queries.

Deploy the Graph Lakehouse Container Image 55

Kubernetes Deployments

Since Kubernetes has become the de facto package manager for Docker hosts, and Helm is

emerging as the de facto package manager for Kubernetes application architectures, Altair offers a

Graph Lakehouse for Kubernetes deployment that is managed by Helm. For instructions on quickly

deploying Graph Lakehouse in a test environment with another container engine, see Container

Image Deployments.

The topics in this section provide information about setting up a local machine so that you can

deploy Graph Lakehouse on a remote Kubernetes cluster; they include reference information and

examples for installing the Kubernetes command line client, configuring access to a Kubernetes

cluster, and installing Helm. In addition, this section provides detailed instructions for using Helm to

deploy and customize Graph Lakehouse on Kubernetes.

Note
To deploy Graph Lakehouse with Kubernetes Minikube, you must use Minikube Version
1.27 or later. The Linux kernel that ships with earlier Minikube versions is not sufficient for
running Graph Lakehouse.

In this section:
Install the Kubernetes Command Line Client 57

Configure Access to a Kubernetes Cluster 58

Install Helm 60

Deploy Graph Lakehouse with Helm 61

Kubernetes Deployments 56

Install the Kubernetes Command Line Client

The Kubernetes command line client, kubectl, enables users to deploy applications on Kubernetes.
Though Helm includes the Kubernetes API, the local host needs the kubectl client to access

Kubernetes clusters and display status and resource details.

The Kubernetes client that you install depends on your operating system or the vendor that hosts

your Kubernetes cluster. For example, if the Google Cloud Platform hosts your environment, you

can download kubectl as part of the Google Cloud SDK. For instructions, see Download as part of

the Google Cloud SDK in the Kubernetes documentation. For more information and instructions for

other operating systems, see Install and Set Up kubectl in the Kubernetes documentation.

This topic provides an example installation that downloads and configures the kubectl binary on a

Linux operating system.

1. Run the following cURL command to download the kubectl binary:

curl -LO "https://storage.googleapis.com/kubernetes-release/release/$(curl -s

https://storage.googleapis.com/kubernetes-

release/release/stable.txt)/bin/linux/amd64/kubectl"

2. Run the following command to make the binary executable:

chmod +x ./kubectl

3. Run the following command to move the binary to your PATH:

sudo mv ./kubectl /usr/local/bin/kubectl

4. To confirm that the binary is installed and that you can run kubectl commands, run the

following command to display the client version:

kubectl version --client

Now that the Kubernetes CLI is installed, you can use it to set up access to the Kubernetes cluster

to use for deploying Graph Lakehouse. See Configure Access to a Kubernetes Cluster for next

steps.

Install the Kubernetes Command Line Client 57

https://kubernetes.io/docs/tasks/tools/install-kubectl/#download-as-part-of-the-google-cloud-sdk
https://kubernetes.io/docs/tasks/tools/install-kubectl/#download-as-part-of-the-google-cloud-sdk
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl

Configure Access to a Kubernetes Cluster

After installing the Kubernetes command line client, kubectl, you can set up the default Kubernetes

configuration context that Helm uses to access the Kubernetes cluster and deploy Graph

Lakehouse. The method that you use to set up the configuration context depends on the vendor that

hosts the Kubernetes cluster. For information, see the configuration instructions for your vendor.

See Configure Access to Multiple Clusters in the Kubernetes documentation for more general

information about configuring access to clusters.

This topic provides example instructions that configure a local Linux environment to access a

Kubernetes cluster hosted on the Google Cloud Platform.

1. Run the following command to set the project to the Kubernetes cloud project:

gcloud config set project <k8s_project_name>

For example:

gcloud config set project cloud-kube-1111

Updated property [core/project]

2. Run the following command to set the compute zone for the Kubernetes cluster:

gcloud config set compute/zone <zone_name>

For example:

gcloud config set compute/zone us-central1

Updated property [compute/zone]

3. To confirm that you can access the cluster, you can run the following command to view

cluster details:

gcloud container clusters list

The command returns the information such as the name, location, number of nodes, and

status of the cluster. For example:

Configure Access to a Kubernetes Cluster 58

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE NODE_

VERSION NUM_NODES STATUS

cloud-k8s us-central1 1.23.17-gke.3600 10.100.10.10 n1-standard-1

1.23.17-gke.3600 27 RUNNING

4. Run the following command to fetch the credentials for the cluster:

gcloud container clusters get-credentials <cluster_name>

For example:

gcloud container clusters get-credentials cloud-k8s

Fetching cluster endpoint and auth data.

kubeconfig entry generated for cloud-k8s.

Once access to the Kubernetes cluster is configured, see Install Helm for next steps.

Configure Access to a Kubernetes Cluster 59

Install Helm

For instructions on downloading and installing Helm for your operating system, see Installing Helm

in the Helm documentation.

This topic provides example instructions that install Helm on Linux.

1. Run the following cURL command to download the installer script, get-helm.sh, from
GitHub:

curl -fsSL -o get_helm.sh

https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3

The script includes documentation so that you can review what it does.

2. Run the following command to set permissions for get_helm.sh:

chmod 700 get_helm.sh

3. Run the following command to install Helm:

./get_helm.sh

The command downloads the latest Helm tarball for your operating system and installs it. For

example:

Downloading https://get.helm.sh/helm-v3.11.3-linux-amd64.tar.gz

Verifying checksum... Done.

Preparing to install helm into /usr/local/bin

helm installed into /usr/local/bin/helm

Helm can now be used to deploy Graph Lakehouse. See Deploy Graph Lakehouse with Helm for

instructions.

Install Helm 60

https://helm.sh/docs/intro/install/

Deploy Graph Lakehouse with Helm

Follow the instructions below to deploy Graph Lakehouse using Helm.

1. Run the following command to add the Cambridge Semantics repository to Helm:

helm repo add csi-helm https://storage.googleapis.com/csi-helm/

2. Run the following command to update the metadata for the Helm repository.

helm repo update

3. Run the following command to find the available Graph Lakehouse Helm charts.

helm search repo anzograph

The command returns details about the two charts that are available, one for Graph

Lakehouse and one for the Cambridge Semantics Apache Zeppelin image (see Use Third-

Party Visualization Tools for information about the Zeppelin image).

NAME CHART VERSION APP VERSION DESCRIPTION

csi-helm/anzograph 2.0.20230427 3.1.5 CSI Anzograph deployment on

K8S

csi-helm/zeppelin 0.2.20191219 0.8.2 CSI Zeppelin deployment on

K8s that enables...

4. Run the following command to fetch and view the readme for the Graph Lakehouse Helm

chart:

helm inspect readme csi-helm/anzograph | tee Readme.md

5. Run the following command to fetch and view the Graph Lakehouse Helm chart values

(values.yaml):

helm inspect values csi-helm/anzograph | tee values.yaml

6. By default the Helm chart is configured to deploy a single Graph Lakehouse node with 2 CPU

and 8 GiB of RAM. If you want to customize the depolyment, such as to specify a larger

instance or create a cluster, customize values.yaml before you deploy Graph Lakehouse. In

addition, if you obtained a license key from Altair, add that key to values.yaml. The steps

Deploy Graph Lakehouse with Helm 61

below provide guidance for customizing node or cluster sizes and adding a license key to the

deployment. For more detailed information about all of the Graph Lakehouse Helm chart

options, view the readme, Readme.md.

a. Open values.yaml in a text editor. The file is in the $HELM_HOME directory that was

defined when you initialized Helm, usually your home directory. You can run helm

home to view the HELM_HOME location.

b. The option that controls the number of instances for the cluster is in the Values for

statefulset section of the file:

Values for statefulset

replicas: 1

To create a cluster, change the replicas value from 1 to the number of nodes that you

want to deploy. To achieve the best performance, specify a multiple of 4, i.e., 4, 8, 12,

etc. For guidance on sizing Graph Lakehouse servers and clusters, see Sizing

Guidelines for In-Memory Storage.

c. To increase the number of CPU or amount of memory on the instances that will be

deployed, change the values for the cpu andmemory settings under
database.resources.requests. Depending on the values that you specify for requests,
you might need to increase the values under limits.

For example, the following values create a cluster with instances that have 16 CPU and

120 GiB of RAM each. The upper limit are instances with 32 CPU and 160 GiB.

database:

image:

repository: "docker.io"

name: "cambridgesemantics/anzograph-db"

tag: "3.1.0"

pullPolicy: "IfNotPresent"

resources:

requests:

cpu: "16000m"

memory: "120000Mi"

limits:

cpu: "32000m"

Deploy Graph Lakehouse with Helm 62

memory: "160000Mi"

tolerations: []

d. When you have finished customizing the file, save and close values.yaml

7. Run the following command to deploy Graph Lakehouse:

helm install -f ~/values.yaml <deployment_name> csi-helm/anzograph

Where <deployment_name> is the unique name that you want to assign to this Graph

Lakehouse deployment. For example:

helm install -f ~/values.yaml anzograph-1 csi-helm/anzograph

Helm deploys Graph Lakehouse and displays the initial status. For example:

NAME: anzograph-1

LAST DEPLOYED: Fri May 12 22:32:12 2023

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/Pod(related)

NAME READY STATUS RESTARTS AGE

anzograph-anzograph-1-0 0/1 Pending 0 0s

==> v1/Secret

NAME AGE

anzograph-1-ui-secrets 1s

anzograph-1-license 1s

==> v1/ConfigMap

anzograph-1-configmap 1s

==> v1/Service

anzograph-1-ui 1s

anzograph-1-statefulset 1s

==> v1beta1/StatefulSet

anzograph-anzograph-1 1s

Deploy Graph Lakehouse with Helm 63

8. Run the following command to refresh the status and monitor the deployment:

helm status <deployment_name>

For example:

helm status anzograph-1

When the status says "Running," the deployment is complete. In the status output under

v1/Service, note the first service name (with -ui appended to the release name). In the
example above, the service name is anzograph-1-ui.

9. Using the service name for your deployment, run the following command to view the cluster

and endpoint information for Graph Lakehouse:

kubectl get service <service_name>

For example:

kubectl get service anzograph-1-ui

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

anzograph-1-ui LoadBalancer 10.47.254.111 35.225.23.113

443:30281/TCP,80:30704/TCP 1h

For next steps, see Get Started for brief tutorials that are designed to introduce you to the Graph

Lakehouse user interface and CLI and get you started with loading data and running SPARQL

queries.

Deploy Graph Lakehouse with Helm 64

Enterprise Linux 9 Deployments

This section provides instructions for using an installer to deploy Graph Lakehouse on a RHEL or

Rocky 9.3+ operating system.

In this section:
Pre-Installation Requirements 66

Install Graph Lakehouse 69

Post-Installation Configuration 78

Uninstalling and Updating Graph Lakehouse 88

Enterprise Linux 9 Deployments 65

Pre-Installation Requirements

This page describes the installation requirements and other important information to know before

you install Graph Lakehouse. The list below summarizes the requirements and recommendations:

1. Make sure that the host server operating system is RHEL or Rocky Linux 9.3+ and that the

server has at least 16 GB RAM and 40 GB disk space available for Graph Lakehouse. For

more information about the hardware, software, and firewall requirements, see Server and

Cluster Requirements.

2. Certain software packages are required to be installed before the Graph Lakehouse

installation. The installer will not run until these prerequisites are installed. See Prerequisite

Software for details and instructions.

3. Additional dependencies are required to be installed to support Graph Lakehouse extensions

like the remote read (load) and write service, the Data Science functions, and Apache Arrow

integration. However, Altair recommends that you deploy these dependencies after Graph

Lakehouse is installed because the installation includes a .repo file that can aid you in the

installing the packages. See Post-Installation C++ Dependencies for details.

4. When the installer is run with elevated privileges (sudo mode), the installer can complete the

Graph Lakehouse installation as well as the important post-installation configuration so that

Graph Lakehouse is running and ready to use when the installation is finished. See

Installation Modes and User Accounts for details about the installation modes and Graph

Lakehouse users.

Prerequisite Software

The following software must be installed on the host servers before Graph Lakehouse is installed.

l Install a Java 21 Virtual Environment

l Install the GNU C Devel Library

l Install the GNU Binutils Library

Pre-Installation Requirements 66

Install a Java 21 Virtual Environment

All Graph Lakehouse servers are required to include a Java 21 virtual environment. OpenJDK 21

and GraalVM 21 are supported. For example, you can run the following command to install

OpenJDK 21. Install the JVM on all servers in the cluster:

sudo dnf install java-21-openjdk

Note
You do not need to set the $JAVA_HOME variable to use the Java installation. Graph

Lakehouse's system management daemon (azgmgrd) requires JAVA_HOME, and it is set

when services are configured as part of the installation (see Configuring the Graph Lakehouse

Services and Starting the Database).

Install the GNU C Devel Library

All Graph Lakehouse servers are required to include the latest version of the GNU C glibc-devel

library for your operating system. On all servers in the cluster, run the following command to
install glibc-devel:

sudo dnf install glibc-devel

Install the GNU Binutils Library

All Graph Lakehouse servers are required to include the latest version of the GNU binutils library

for your operating system. On all servers in the cluster, run the following command to install
binutils:

sudo dnf install binutils

Post-Installation C++ Dependencies

Additional libraries are required to be installed on all servers in the cluster to support the C++

extensions that Graph Lakehouse offers, including the remote read (load) and write service, the

Data Science functions, and the integration with Apache Arrow. Though you can install the C++

dependencies before you install Graph Lakehouse, if you wait until after the installation you can use

Pre-Installation Requirements 67

the included csi-obs-cambridgesemantics-udxcontrib.repo file to enable the Cambridge

Semantics repository and install the C++ dependencies with or without internet access. For more

information, see Installing the C++ Dependencies in the post-installation instructions.

Installation Modes and User Accounts

There are two modes in which you can run the installer, root (sudo) or non-root (current user).
This section describes both modes and the user account and file ownership implications for each

mode.

Mode Description

Sudo
Mode

Running the installer in sudo mode is the preferred method of installation. In
sudo mode, the installer prompts you to enter the Graph Lakehouse service user name.
Systemd units for the systemmanagement daemon (azgmgrd) and database
(anzograph) processes are created in /etc/systemd/system. The units start
Graph Lakehouse as the specified user, and file system permissions for the
anzograph directory and any files that Graph Lakehouse writes are based on the
same user. The services also configure the appropriate resource limits (ulimits) for
Graph Lakehouse and set $JAVA_HOME for your Java or GraalVM installation.

Non-
Root
Mode

When running the installer as a non-root user, the installer does not create users and
file system permissions are based on the user account that performs the installation.
Example systemd units, in the <install_path>/examples directory, are provided
as a template for you to configure and enable manually. For more information, see
Configuring the Graph Lakehouse Services and Starting the Database in the post-
installation instructions.

Once the prerequisites are in place, proceed to Install Graph Lakehouse for instructions on

installing the software.

Pre-Installation Requirements 68

Install Graph Lakehouse

Before installing Graph Lakehouse, make sure that each host server meets the requirements in

Server and Cluster Requirements and that you have installed any prerequisite software (see Pre-

Installation Requirements).

Note
When deploying Graph Lakehouse in a cluster, run the installer on each server in the cluster.

Choose one server to be the leader node and designate all other servers as compute/worker

nodes.

The installer does support "silent" (unattended) operation in which no user interaction is

required and prompt answers are provided by a response file. After the Graph Lakehouse

installation, the response file (response.varfile) is generated in the <install_

path>/.install4j/ directory. After installing Graph Lakehouse on one compute/worker

node, for example, you could copy the response file to the other compute/worker servers and

then run the following command to silently run the installer with the same responses as the

first installation:

./<script_name>.sh -q -varfile /<path_to_file>/response.varfile

For more information about silent (unattended) installation and using response files, see

Generated Installers in the install4j Help.

To proceed with the installation, follow the steps below:

1. Go to the AnzoGraph Download page, which lists the Graph Lakehouse releases that are

available to download.

2. Download the Installer to each Graph Lakehouse host server. The installer is an interactive

shell script that prompts you to specify configuration options for your deployment.

3. Change directories to the location where you copied the script and run the following

command to make the script executable:

chmod +x <file_name>.sh

Install Graph Lakehouse 69

https://www.ej-technologies.com/resources/install4j/help/doc/installers/$folder$.html
https://info.cambridgesemantics.com/anzograph/download-center

4. Start the installer using root (sudo) permissions. For example:

sudo ./anzograph_linux_3_1_0_r202401232307.sh

The installer first verifies that the prerequisites listed in Prerequisite Software are installed

and presents a message if any are missing. For example, on a server where OpenJDK and

binutils are installed but the glibc-devel package is missing, the installer displays the

following message and the installation is canceled. In this case, the user would follow the

instructions in Install the GNU C Devel Library and then restart the installation.

Starting Installer ...

Prerequisite software packages

The following packages are missing on your system and are required to

be installed before proceeding with the Graph Lakehouse installation:

- glibc-devel

Canceling the installation, install the missing software, and then run

the installer again.

If the prerequisite software is installed, but the C++ dependencies are not, the installer

presents an informational message to let you know the dependencies are required but it is

recommended that you install them after the Graph Lakehouse installation. For example:

Starting Installer ...

Prerequisite software packages

INFO: The following C++ dependencies are also required and missing from your

system. However, Altair recommends that you install them after

the Graph Lakehouse installation is complete. Follow the Post-Installation

instructions in the online documentation.

libarchive

libarmadillo12

libboost_filesystem1_80_0

libboost_iostreams1_80_0

libboost_system1_80_0

libflatbuffers2

libhdfs3

libnfs13

libserd-0-0

Install Graph Lakehouse 70

libsmb2

shadow-utils

If all dependencies are installed or you proceed with the installation after getting the

informational message, the license agreement is displayed. Press Enter to scroll through the
text. At the end you are prompted to accept the agreement.

Starting Installer ...

Please read the following License Agreement. You must accept the terms of

this agreement before continuing with the installation.

ANZOGRAPH(R) DB

END USER LICENSE AGREEMENT

...

I accept the agreement

Yes [1], No [2]

5. Enter 1 to accept the license agreement and continue the installation. The installer prompts
you to specify the directory where Graph Lakehouse should be installed.

Where should Graph Lakehouse be installed?

[/opt/altair]

Note
Two subdirectories and an uninstall script are created inside the directory that you

specify in this prompt. One subdirectory is named anzograph and includes the

installation files. Several other directories are created and include files such as

systemd service files, a tuned profile, and a .repo file that can be used to install the

C++ extension dependencies. Because an anzograph directory will be created, you

may not want to specify /opt/anzograph as the install location because that will

result in an /opt/anzograph/anzograph directory.

6. Press Enter to select the default installation directory or specify an alternate location and
then press Enter.When deploying a cluster, make sure you install Graph Lakehouse in
the same location on each server in the cluster.

Next the installer asks if you are installing Graph Lakehouse on a single server or a cluster:

Install Graph Lakehouse 71

Type of server being installed.

Server Installation Type

Standalone [1, Enter], Cluster Leader [2], Cluster Compute/Worker [3]

7. If you are deploying Graph Lakehouse on a single server, press Enter or type 1 (the default)
and then press Enter. When deploying a cluster, specify whether the server you are currently

installing is the leader node or a compute/worker node.

Type 2 if the role of the server is the leader node, or type 3 if the role of the server is a
compute or worker node. Then press Enter to continue.

The installer now prompts you to set up the user credentials for the administrator:

Set up the Graph Lakehouse Admin user.

Graph Lakehouse Admin user

[admin]

8. Press Enter to accept the default user name, admin, or type another user name (case-
sensitive) and press Enter. The installer asks you to create a password for the Admin user.

Graph Lakehouse Admin password

9. Enter the case-sensitive password for the Admin user and then press Enter. It is
recommended that you create a non-trivial secure password that includes some combination

of upper and lower case letters and digits.

Important
There is no limitation placed on the length of the password you can specify. However,

some special characters, such as $ and *, have a specific meaning to the host server

operating system and should be avoided. For security purposes, the installer does not

echo characters entered as you type them.

Next, the installer asks if Graph Lakehouse will be used with Anzo:

Is this Graph Lakehouse installation intended for use with Anzo?

Yes [y, Enter], No [n]

Install Graph Lakehouse 72

10. Type n (No) to install Graph Lakehouse as a standalone deployment without Anzo and then
press Enter. Type y (Yes) or press Enter if the Graph Lakehouse installation will be used
with Anzo.

Note
Prompts differ based on whether the Graph Lakehouse installation will be used with or

without Anzo. The following instructions describe options for deployments that are not

integrated with Anzo. See Deploying a Static Graph Lakehouse Cluster in the Graph

Studio Documentation for installation instructions of Graph Lakehouse for use with

Graph Studio.

After specifying that Graph Lakehouse is not intended for use with Graph Studio, the installer

prompts you to specify the Graph Lakehouse service user name. The default name is

anzograph.

Setup Graph Lakehouse service user name

Graph Lakehouse service user

[anzograph]

11. Press Enter to accept the default name, anzograph, or type an alternate name and then
press Enter if a different name is used for the account.

Next, the installer asks which components to install. The first option, Graph Lakehouse,

installs only the backend graph database without the Jetty web-based frontend application.

The second option, Graph Lakehouse Frontend, only installs the frontend application.

Which components should be installed?

1: Graph Lakehouse

2: Graph Lakehouse Frontend

Please enter a comma-separated list of the selected values or press [Enter]

for

the default selection:

[1]

Install Graph Lakehouse 73

https://docs.cambridgesemantics.com/anzo/userdoc/deploy-anzograph.htm

Note
The instructions below describe the prompts that are displayed when both the backend

and frontend are installed.

12. Press Enter to accept the default, 1, if you do not want to install the user interface. Specify
1,2 and press Enter to install both Graph Lakehouse and the frontend application. Or specify
2 and press Enter to install the frontend only.

The installer now prompts you to set up the user credentials for the query user, a user without

administrative access:

Set up the Graph Lakehouse Query User

Graph Lakehouse Query User

[query]

13. Press Enter to accept the default user name, query, or type another user name (case-
sensitive) and press Enter. The installer asks you to create a password for the query user.

Graph Lakehouse Query password

14. Enter the case-sensitive password for the query user and then press Enter. It is
recommended that you create a non-trivial secure password that includes some combination

of upper and lower case letters and digits.

Next, the installer asks whether you want to enable access control (ACL) functionality:

ACL Configurations

Do you want to enable ACL?

Yes [y], No [n, Enter]

15. If you do not want to enable ACL, press Enter or type n and then press Enter. To enable the
functionality, type y (Yes) and press Enter. See Authentication and Access Control for
information.

16. If you chose to enable ACL, the installer prompts you to specify a password for the

superadmin user. This user has the permission to manage roles and grant or revoke
permissions to members in those roles.

Install Graph Lakehouse 74

Please enter ACL superadmin password

Enter the password (case-sensitive) you want to use for the superadmin user and then
press Enter.

17. Next, if you chose to install the frontend, the installer prompts you to specify the HTTP/S

ports to use for the application:

Choose the network HTTP/HTTPS ports and other configurations to use for the

Graph Lakehouse Frontend.

Graph Lakehouse Frontend HTTP Port

[8080]

18. Press Enter to select the default port, 8080, as the port to use for HTTP connections, or

specify another port if 8080 is in use. The installer prompts you to set the HTTPS port:

Graph Lakehouse Frontend HTTPS Port

[8443]

19. Press Enter to select the default, 8443, as the port to use for HTTPS connections, or specify

another port if 8443 is in use. Next the installer asks if you want to install the OData drivers.

The OData drivers are used for creating Data on Demand endpoints. See Access Data with

OData Protocol for information.

Install OData drivers?

Yes [y], No [n, Enter]

20. Press Enter or type n (No) to accept the default. Otherwise, type y (Yes) to install the OData
drivers. If you chose to install the frontend console, the installer asks if you want to be able to

connect to multiple Graph Lakehouse instances from the same user interface:

Enable ability to add and use multiple DB Contexts in the Frontend

(To be used without LDAP configuration)?

Yes [y], No [n, Enter]

21. Press y (Yes) if you want the frontend console to be allowed to access multiple Graph
Lakehouse instances. Otherwise, press Enter or type n (No) to disable the functionality.

Install Graph Lakehouse 75

If you specified that this is a cluster, the installer prompts you to specify the IP addresses of

all host servers in the cluster:

IP Address of nodes in cluster.

Comma separated list of Cluster Node IP Addresses. Leader node address is

always first. Order must be the same on all nodes in cluster.

[XXX.n.n.XXX]

22. Enter a comma-separated list of all server IP addresses in the cluster. The first IP address in

the list is the server designated as the leader node. Then press Enter.

Important
Specify the list of IP addresses in the same order on each server in the cluster. The

configuration of host servers is saved to the <install_path>/config/ip_

addrs.conf file on each server.

For standalone or leader node installations, the installer asks if you want to add any specific

configuration settings to use when Graph Lakehouse starts up:

Extra configuration settings for server

...

WARNING: Typically, additional settings should only be added

after consultation with Altair to address any

specific requirements for Graph Lakehouse deployment in your environment

or use for a specific application.

[]

23. If you have a custom setting=value to add, enter it in the prompt, and then press Enter.
The installer asks if you want to automatically start the Graph Lakehouse services after it

completes the installation. First it asks if you want to start the azgmgrd service. This service
provides system management and communication functions and is run on all host servers:

Start azgmgrd service?

Do you want to start the azgmgrd systemd service?

Yes [y], No [n, Enter]

24. Type y (Yes) and press Enter to start the system management service. If this is a single

server (standalone) or leader node install the installer prompts you to start the anzograph

Install Graph Lakehouse 76

service. This is the database service. In a cluster, only the leader node runs this service, and

the leader starts the database on the compute/worker nodes.

Start AnzoGraph service?

Do you want to start the AnzoGraph systemd service?

Yes [y], No [n, Enter]

25. Type y (Yes) and press Enter to start the database service. If you installed the frontend, the
installer asks if you want to start the jetty service. This service provides management
functions for the jetty frontend application.

Start Frontend/jetty service?

Do you want to start the AnzoGraph frontend systemd service?

Yes [y], No [n, Enter]

26. Type y (Yes) and press Enter to start the jetty service. The installer begins installing Graph
Lakehouse based on your responses.

Extracting files...

When the installer is finished, it displays the following message.

Setup has finished installing Graph Lakehouse on your computer.

Finishing installation...

The installer creates an anzograph subdirectory in the install location that you specified. That

directory contains the Graph Lakehouse executables, configuration, logs, and other program files.

The frontend, example systemd service and repo files, and the uninstall script are saved at the

same level as the anzograph directory. Next, complete the required and optional post-

configuration steps. See Post-Installation Configuration.

Install Graph Lakehouse 77

Post-Installation Configuration

This topic provides instructions for completing the required and optional post-installation

configuration of Graph Lakehouse.

l Installing the C++ Dependencies

l Optimizing the Linux Kernel Configuration for Graph Lakehouse

l Configuring the Graph Lakehouse Services and Starting the Database

Installing the C++ Dependencies

Dependencies are required to be installed on all servers in the cluster to support the C++ extensions

that Graph Lakehouse offers, including the remote read (load) and write service, the Data Science

functions, and the integration with Apache Arrow. The installer provides a .repo file to aid you in

configuring the Cambridge Semantics repository and installing the required software packages with

or without internet access.

Note
The ability to write to the /etc/yum.repos.d directory requires root access permissions.

See Adding, Enabling, and Disabling a YUM Repository in the Red Hat documentation for

more information on defining and using yum repositories.

The following packages need to be installed on each host server in the cluster:

libarchive

libarmadillo12

libboost_filesystem1_80_0

libboost_iostreams1_80_0

libboost_system1_80_0

libflatbuffers2

libhdfs3

libnfs13

libserd-0-0

libsmb2

shadow-utils

Post-Installation Configuration 78

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/sec-managing_yum_repositories

l Install Dependencies via Internet Access to the Cambridge Semantics Repository

l Install Dependencies without Internet Access via the Repository Mirror (tarball)

Install Dependencies via Internet Access to the Cambridge Semantics Repository

Follow the steps below if the Graph Lakehouse servers have external internet access and you want

to install the dependencies directly from the Cambridge Semantics repository.

1. Copy the csi-obs-cambridgesemantics-udxcontrib.repo file from the <install_

path>/pre-req/yum.repos.d directory to the /etc/yum.repos.d directory. For

example, the following command copies the file from the default installation path to

/etc/yum.repos.d:

sudo cp /opt/altair/pre-req/yum.repos.d/csi-obs-cambridgesemantics-

udxcontrib.repo /etc/yum.repos.d

2. Next, run the following command to enable the repository and install the required packages:

sudo dnf install --enablerepo=crb $(cat <install_path>/pre-req/rh9-anzograph-

requirements.txt)

For example, on a server where Graph Lakehouse is installed in the default location:

sudo dnf install --enablerepo=crb $(cat /opt/altair/pre-req/rh9-anzograph-

requirements.txt)

3. Repeat these steps on all servers in the cluster.

Install Dependencies without Internet Access via the Repository Mirror (tarball)

Follow the steps below if the Graph Lakehouse servers do not have external internet access and

you want to install the dependencies from the mirrored Cambridge Semantics repository. The steps

below give instructions for copying the repository to each Graph Lakehouse host server and

configuring the .repo file accordingly. You can also chose to set up the mirror on a remote server

that each of the Graph Lakehouse servers can access.

1. From a computer that does have internet access, download the dependency tarball, csi-obs-
cambridgesemantics-udxcontrib.rocky9.tar.xz, from the following Cambridge Semantics

Google Cloud Storage location: https://storage.googleapis.com/csi-anzograph/udx/csi-os-

Post-Installation Configuration 79

https://storage.googleapis.com/csi-anzograph/udx/csi-os-contrib/rocky9/2023-03/20230321945/csi-obs-cambridgesemantics-udxcontrib.rocky9.tar.xz

contrib/rocky9/2023-03/20230321945/csi-obs-cambridgesemantics-

udxcontrib.rocky9.tar.xz.

You can run the following cURL command to download the tarball:

curl -OL https://storage.googleapis.com/csi-anzograph/udx/csi-os-

contrib/rocky9/2023-03/20230321945/csi-obs-cambridgesemantics-

udxcontrib.rocky9.tar.xz(.sha512)

2. Also from the computer that has internet access, download the repomd.xml.key from the

following Cambridge Semantics Google Cloud Storage location:

https://storage.googleapis.com/csi-rpmmd-pd/CambridgeSemantics:/UDXContrib/ubi-

9/repodata/repomd.xml.key.

You can run the following cURL command to download the file:

curl -OL https://storage.googleapis.com/csi-rpmmd-

pd/CambridgeSemantics:/UDXContrib/ubi-9/repodata/repomd.xml.key

3. On each of the Graph Lakehouse servers, create a directory called /tmp/repo.

4. Copy csi-obs-cambridgesemantics-udxcontrib.rocky9.tar.xz to the /tmp/repo directory
on each server.

5. Then run the following command to unpack the tarball in the /tmp/repo directory:

tar -xvf csi-obs-cambridgesemantics-udxcontrib.rocky9.tar.xz

The files are unpacked into subdirectories under /tmp/repo/dl/rocky9/csi-obs-

cambridgesemantics-udxcontrib.

6. Next, copy the repomd.xml.key file to the /tmp/repo/dl/rocky9/csi-obs-
cambridgesemantics-udxcontrib directory on each of the Graph Lakehouse servers.

7. Now, open the csi-obs-cambridgesemantics-udxcontrib.repo file in the <install_
path>/examples/yum.repos.d directory. The contents of the file are shown below:

[csi-obs-cambridgesemantics-udxcontrib]

name=Contrib directory for CambridgeSemantics AnzoGraph UDX dependencies

baseurl=https://storage.googleapis.com/csi-rpmmd-

pd/CambridgeSemantics:/UDXContrib/ubi-9

Post-Installation Configuration 80

https://storage.googleapis.com/csi-anzograph/udx/csi-os-contrib/rocky9/2023-03/20230321945/csi-obs-cambridgesemantics-udxcontrib.rocky9.tar.xz
https://storage.googleapis.com/csi-anzograph/udx/csi-os-contrib/rocky9/2023-03/20230321945/csi-obs-cambridgesemantics-udxcontrib.rocky9.tar.xz
https://storage.googleapis.com/csi-rpmmd-pd/CambridgeSemantics:/UDXContrib/ubi-9/repodata/repomd.xml.key
https://storage.googleapis.com/csi-rpmmd-pd/CambridgeSemantics:/UDXContrib/ubi-9/repodata/repomd.xml.key

gpgkey=https://storage.googleapis.com/csi-rpmmd-

pd/CambridgeSemantics:/UDXContrib/ubi-9/repodata/repomd.xml.key

gpgcheck=1

enabled=1

8. Edit the csi-obs-cambridgesemantics-udxcontrib.repo file contents to replace the
baseurl and gpgkey values so that they point to the repo files that you unpacked in the
/tmp/repo directory. In addition, change the gpgcheck and enabled values from 1 to 0.
The contents of the updated file are shown below:

[csi-obs-cambridgesemantics-udxcontrib]

name=Contrib directory for CambridgeSemantics AnzoGraph UDX dependencies

baseurl=file:///tmp/repo/dl/rocky9/csi-obs-cambridgesemantics-udxcontrib

gpgkey=file:///tmp/repo/dl/rocky9/csi-obs-cambridgesemantics-

udxcontrib/repomd.xml.key

gpgcheck=0

enabled=0

9. Save and close the file.

10. Copy csi-obs-cambridgesemantics-udxcontrib.repo from <install_path>/pre-

req/yum.repos.d to the /etc/yum.repos.d directory. For example, the following

command copies the file from the default installation path to /etc/yum.repos.d:

sudo cp /opt/altair/pre-req/yum.repos.d/csi-obs-cambridgesemantics-

udxcontrib.repo /etc/yum.repos.d

11. Next, run the following command to enable the repository and install the required packages:

sudo dnf install --enablerepo=crb $(cat <install_path>/pre-req/rh9-anzograph-

requirements.txt)

For example, on a server where Graph Lakehouse is installed in the default location:

sudo dnf install --enablerepo=crb $(cat /opt/altair/pre-req/rh9-anzograph-

requirements.txt)

Repeat the steps above as needed to install the dependencies on all servers in the cluster.

Post-Installation Configuration 81

Optimizing the Linux Kernel Configuration for Graph Lakehouse

To streamline the configuration of the operating system for peak Graph Lakehouse performance,

the installer includes a tuned profile that you can activate. Tuned is a daemon program that uses

the udev device monitor to statically and dynamically tune operating system settings based on the

specified profile. It is highly recommended that you activate the Graph Lakehouse tuned profile.

Tip
Tuned and Performance Tuning with Tuned and Tuned-ADM in the RedHat Performance

Tuning Guide provide an overview of the tuned daemon and more information on using the

tuned service to improve performance of specific workloads.

Activating the Tuned Profile

The profile, called azg, is in the <install_path>/examples/tuned-profile directory and
consists of two files: tuned.conf and additional-tuneables.sh. For details about the files,

see Tuned Profile Reference below.

Note
The ability to write to the /etc/tuned directory and activate the tuned profile requires root

access permissions.

To activate the azg profile, follow the steps below. Complete these steps on all servers in the

cluster:

1. If you ran the installer with root (sudo) privileges, you can skip this step. The installer
copied the tuned profile to the etc/tuned directory but it did not automatically activate the

profile. If you ran the installer as a non-root user, copy the azg directory from <install_

path>/examples/tuned-profile to the /etc/tuned directory. For example, the

following command copies azg from the default installation path to /etc/tuned:

sudo cp -r /opt/altair/examples/azg /etc/tuned

Post-Installation Configuration 82

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/chap-red_hat_enterprise_linux-performance_tuning_guide-tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-performance_monitoring_tools-tuned_and_tuned_adm

2. Next, tuned is installed by default with RHEL 9. If you are using Rocky9, you may need to

installed tuned. You can run the following command to install the program:

sudo dnf install -y tuned

3. Run the following command to activate the azg profile:

sudo tuned-adm profile azg

The host servers are now configured to use the tuned profile that is optimal for Graph Lakehouse.

Tip
To disable tuned profiles, you can run the following command:

sudo tuned-adm off

After running the command, no tuned profiles will be active.

Tuned Profile Reference

This section describes the tuned Graph Lakehouse profile files and the kernel configuration

changes that they apply.

tuned.conf

The table below describes the Linux kernel configuration settings that are modified by tuned.conf.

Setting Description
AZG Profile
Change

vm.dirty_ratio Specifies the percentage of systemmemory that
can be occupied by "dirty" data before flushing the
cache to disk. Dirty data are pages in memory that
have been updated and do not match what is stored
on disk.

Reduces
vm.dirty_ratio

to 2% to increase the
frequency with which
the system cache is
flushed.

vm.swappiness Controls the tendency of the kernel to move
processes out of physical memory and onto the

Sets
vm.swappiness to

Post-Installation Configuration 83

Setting Description
AZG Profile
Change

swap disk. A value of 0means the kernel avoids
swapping processes out of physical memory for as
long as possible. A value of 100 tells the kernel to
aggressively swap processes out of physical
memory to the swap disk.

30.

vm.max_map_
count

Sets the limit on the maximum number of memory
map areas a process can use. Since Graph
Lakehouse is memory intensive, it may reach the
default maximummap count of 65535 and be shut
down by the operating system.

Increases vm.max_
map_count to
2097152.

net.ipv4.tcp_
rmem

Controls the size of the receive buffer for TCP
connections. It sets the minimum, default, and
maximum sizes of the buffer in bytes.

Sets tcp_rmem to
"4096 87380

16777216".

net.ipv4.tcp_
wmem

Controls the size of the send buffer for TCP
connections. It sets the minimum, default, and
maximum sizes of the buffer in bytes.

Sets tcp_wmem to
"4096 16384

16777216".

net.ipv4.udp_mem Controls the amount of memory that can be
allocated for the kernel's UDP buffer. It sets the
minimum, default, and maximum sizes of the buffer
in bytes.

Sets udp_mem to
"3145728

4194304

16777216".

transparent_
hugepages

Controls whether Transparent Huge Pages (THP)
is enabled or disabled system-wide. When THP is
enabled system-wide, it can dramatically degrade
Graph Lakehouse performance.

Disables THP by
setting
transparent_

hugepages to
never.

Post-Installation Configuration 84

additional-tunables.sh

The additional-tuneables.sh script is called by tuned.conf and configures the following Linux kernel

configuration settings so that they are optimal for Graph Lakehouse.

Setting Description AZG Profile Change

overcommit_
memory

Controls whether obvious
overcommits of the address space
are allowed.

Sets overcommit_memory to 0
to ensure that very large
overcommits are not allowed but
some overcommits can be used
to reduce swap usage.

overcommit_ratio Controls the percentage of memory
that is allowed to be used for
overcommits.

Sets overcommit_ratio to
50%.

transparent_
hugepage/defrag

Though the tuned profile disables
Transparent Huge Pages (THP)
system-wide, this setting controls
whether huge pages can still be
enabled on a per process basis
(inside MADV_HUGEPAGEmadvise
regions).

Sets transparent_
hugepage/defrag to madvise
so that the kernel only assigns
huge pages to individual process
memory regions that are
specified with the madvise()
system call.

tcp_timestamps Controls whether TCP timestamps
are enabled or disabled.

Sets tcp_timestamps to 0,
which disables TCP timestamps
in order to reduce performance
spikes related to timestamp
generation.

Post-Installation Configuration 85

Configuring the Graph Lakehouse Services and Starting the Database

Note
When running the installer as root (sudo), the installer automatically creates Graph
Lakehouse systemd services in the /etc/systemd/system directory for azgmgrd,

anzograph, and jetty (if the frontend is installed). In addition, the installer asks if you want to

automatically start the services at the end of the installation. If Graph Lakehouse is already

running, see Get Started for next steps.

When running the installer as a non-root user, the installer does not automatically create
systemd services in the /etc/systemd/system directory, but example service files are available

in the <install_path>/examples/systemd-services directory for you to customize and

enable manually. It is highly recommended that you implement the services because they are
configured to tune user resource limits (ulimits) for the Graph Lakehouse process as well as set

$JAVA_HOME to the JVM path.

Important
The azgmgrd service needs to be enabled on all host servers. But the anzograph and

jetty services should only be enabled on single server environments and on the leader node

if you have a cluster. The anzograph and jetty services should not be invoked on the

compute/worker nodes in a cluster.

After tailoring the service files to your environment, follow these steps to enable and start the

services:

1. Copy the azgmgrd service file from the <install_path>/examples/systemd-

services directory to the /etc/systemd/system directory on each server in the
cluster.

2. Then run the following commands on each server in the cluster to start the azgmgrd service

and enable the service to start automatically each time the host server is started.

sudo systemctl start azgmgrd.service

Post-Installation Configuration 86

sudo systemctl enable azgmgrd.service

3. For single server environments and on the leader node in a cluster, copy the anzograph and

jetty files from the <install_path>/examples/systemd-services directory to the

/etc/systemd/system directory. Do not copy these services on compute/worker
nodes.

4. Next, run the following commands to start the anzograph and jetty services and enable the

services to start automatically each time the host server is started.

sudo systemctl start anzograph.service

sudo systemctl enable anzograph.service

sudo systemctl start jetty.service

sudo systemctl enable jetty.service

Important
If you do not employ the systemd services, make sure that you manually set $JAVA_HOME to

the JVM installation path. If you set up a cluster, set $JAVA_HOME on each server in the

cluster.

For next steps, see Get Started.

Post-Installation Configuration 87

Uninstalling and Updating Graph Lakehouse

This topic provides instructions for uninstalling and updating Graph Lakehouse.

l Upgrading Graph Lakehouse

l Uninstalling Graph Lakehouse

Upgrading Graph Lakehouse

A key area of growth in Graph Lakehouse is the development and support of custom, user-managed

extensions, such as the Graph Data Interface for virtualization. Most Graph Lakehouse releases

include revisions to the API and prepackaged extensions. Because of the frequency of Graph

Lakehouse updates and because the extensions directory (<install_path>/lib/udx) is user-

managed rather than Graph Lakehouse- or installer-controlled, you must uninstall the existing

version of Graph Lakehouse and then install the new version. In-place upgrades are not
supported.

Follow the instructions below to back up any custom files and remove the installation directory

before installing the new version.

1. First, run the following commands to stop the database and the system management

daemon. On a cluster, run these commands on the leader node:

sudo systemctl stop anzograph

sudo systemctl stop azgmgrd

2. Next, if you have custom files, such as certificates in <install_path>/config or JDBC

drivers in the <install_path>/lib/udx directory, make a backup copy of those files.

Make sure that you choose a backup location that is outside of the Graph Lakehouse

installation path. After installing the new version of Graph Lakehouse, you can place the

custom files back into the appropriate directories.

Uninstalling and Updating Graph Lakehouse 88

Note
If you have modified the settings file, <install_path>/config/settings.conf,

Altair Engineering Inc. recommends that you make a backup copy of the file on the

leader server so that you can refer to it when configuring the new deployment. As a

best practice, however, do not overwrite settings.conf in the new version of Graph

Lakehouse with the backup copy from the previous version. Instead, Altair

recommends that you apply all changes to the new file. Since new releases may add or

remove settings or change the default value of certain settings, it is important to use the

version of the file that was installed with the release.

3. Remove the Graph Lakehouse installation directory from the file system. You can remove the

software by deleting the installation directory or by running the <install_

path>/uninstall script as described below in Uninstalling Graph Lakehouse. On a

cluster, uninstall Graph Lakehouse on all nodes.

4. Now that Graph Lakehouse is uninstalled, follow the instructions in Install Graph Lakehouse

to install the new version.

Uninstalling Graph Lakehouse

This section provides instructions for uninstalling Graph Lakehouse. On clusters, complete steps 2

through 4 below on each server in the cluster.

1. First, make sure the database and system management daemon processes are stopped.

Run the following commands to stop the services. On a cluster, run these commands on the

leader server:

sudo systemctl stop anzograph

sudo systemctl stop azgmgrd

2. Next, if you have custom files, such as JDBC drivers or user-defined extensions in the

<install_path>/lib/udx directory, make a backup copy of those files on the leader

node. Make sure that you choose a backup location that is outside of the Graph Lakehouse

Uninstalling and Updating Graph Lakehouse 89

installation path.

If you install a new version of Graph Lakehouse, you can place the custom files back into the

appropriate directory on the leader node.

3. Run the following command to begin the uninstall process:

sudo ./<install_path>/uninstall

The script asks if you want to proceed:

Do you want to proceed with Graph Lakehouse installation?

OK [o, Enter], Cancel [c]

4. Press Enter to confirm that you want to uninstall Graph Lakehouse.

The wizard asks if you want to clear the installation directory and user and configuration files:

Are you sure you want to completely remove Graph Lakehouse and all of its

components?

Yes [y, Enter], No [n]

5. Altair recommends that you remove all installation and configuration files. Press Enter to
remove the entire installation directory as well as all configuration and user files.

The wizard uninstalls Graph Lakehouse.

Uninstalling and Updating Graph Lakehouse 90

IBM Cloud Pak Deployments

This topic provides instructions for deploying Graph Lakehouse with IBM Cloud Pak.

Prerequisites

Before deploying Graph Lakehouse install the following applications on your workstation:

l Helm Version 2 or 3: See Installing Helm in the Helm documentation.

l Docker Engine: See the Docker documentation for instructions.

l OpenShift CLI: See the OpenShift documentation for installation instructions.

Deploying Graph Lakehouse with Cloud Pak

Follow the instructions below to deploy Graph Lakehouse.

1. Log in to the OpenShift client:

oc login openshiftURL:port

2. Run the following command to retrieve the internal registry information:

oc registry info

3. Add the internal registry to the insecure registry list in the Docker daemon. For instructions,

see Test an insecure registry in the Docker documentation.

4. Run the following command to log in to Docker:

docker login -u admin -p $(oc whoami -t) $(oc registry info)

5. To offer versatility for different types of environments and deployment preferences, Altair

provides three Graph Lakehouse DB container images:

l anzograph (all-in-one image): The all-in-one image includes the front end (user
interface) as well the back end (database) in one image.

IBM Cloud Pak Deployments 91

https://helm.sh/docs/intro/install/
https://docs.docker.com/engine/install/
https://docs.openshift.com/container-platform/4.2/cli_reference/openshift_cli/getting-started-cli.html
https://docs.docker.com/registry/insecure/

l anzograph-frontend (user interface): The front end image includes the user interface
only. One front end client can connect to multiple Graph Lakehouse DB instances, or

multiple users can deploy the front end locally and use it to access a central Graph

Lakehouse DB cluster.

l anzograph-db (back end/database): The back end image includes the database only.
If you have existing client applications to use with Graph Lakehouse DB and do not

need the front end, you can deploy the database by itself.

See Red Hat Container Registry Authentication for information about accessing the Red Hat

registry. Then run the following commands as needed to pull the desired Graph Lakehouse

DB images from registry.connect.redhat.com:

docker pull registry.connect.redhat.com/cambridgesemantics/anzograph

docker pull registry.connect.redhat.com/cambridgesemantics/anzograph-frontend

docker pull registry.connect.redhat.com/cambridgesemantics/anzograph-db

6. Run the following Docker commands to tag the images and push them to the internal

repository. Run the commands for each of the images that you want to push to the repository:

Note
Run the docker images command to return the list of images and view the image IDs,

image names, and tags.

docker tag image_id internal_repo/cambridgesemantics/image_name:tag

docker push internal_repo/cambridgesemantics/image_name:tag

7. Run the following command to create an OpenShift Service Account:

oc -n namespace create serviceaccount service_account_name

8. Run the following command to provide access to the service account to pull images from the

internal registry:

IBM Cloud Pak Deployments 92

https://access.redhat.com/RegistryAuthentication

oc policy add-role-to-user \

system:image-puller system:serviceaccount:namespace:service_account_name \

--namespace=cambridgesemantics

9. Create a Security Context Constraint (SCC) for the service account to be able to start the

Graph Lakehouse container as root. Note that the actual service in the container runs

unprivileged.

a. Create a file called scc.yml and add the following contents to the file:

apiVersion: security.openshift.io/v1

kind: SecurityContextConstraints

metadata:

name: csi-anyuid

namespace: namespace

priority: 10

runAsUser:

type: RunAsAny

seLinuxContext:

type: MustRunAs

supplementalGroups:

type: RunAsAny

fsGroup:

type: RunAsAny

users:

- system:serviceaccount:namespace:service_account_name

b. Save the file and then run the following command to give OpenShift the SCC resource

specification:

oc create -f scc.yml

10. Configure Helm for use with your version of Cloud Pak. First, change directories to the Helm

directory:

cd ~/.helm

Then run the appropriate commands below depending on your version of Cloud Pak:

Cloud Pak 2.5

IBM Cloud Pak Deployments 93

tiller_pod=$(oc get po | grep icpd-till | awk '{print $1}');

oc cp ${tiller_pod}:etc/certs/..data/helm.cert.pem cert.pem;

oc cp ${tiller_pod}:etc/certs/..data/helm.key.pem key.pem

Cloud Pak 3.0+

cd $HELM_HOME && ocget secret helm-secret -n $TILLER_NAMESPACE -o yaml|grep

-A3 '^data:'|tail -3 | awk -F: '{system("echo "$2" |base64 --decode >

"$1)}'

export HELM_TLS_CA_CERT=$HELM_HOME/ca.cert.pem

export HELM_TLS_CERT=$HELM_HOME/helm.cert.pem

export HELM_TLS_KEY=$HELM_HOME/helm.key.pem

export TILLER_NAMESPACE=zen

helm version --tls

11. Deploy Graph Lakehouse DB with Helm. See Deploy Graph Lakehouse with Helm for

instructions.

Important
The Graph Lakehouse Helm chart includes sample-values files. Use the values04-
ibm-cloud-pak-data.yaml sample file for your deployment and customize the values
as needed. In the .yaml file, make sure that you update the serviceAccountName
value with the OpenShift Service Acccount (service_account_name from the previous

steps).

12. When you have finished deploying Graph Lakehouse DB, run the following command to

create a route to expose the Graph Lakehouse DB service:

oc create route passthrough --service=anzograph-helm_release_name-frontend-lb

--port=https anzograph

13. (Optional) Create a route to expose the Graph Lakehouse DB Open Data Protocol (OData)

service. The OData service enables users to generate OData-based feeds that can be used

to access Graph Lakehouse programmatically via a RESTful API or from business

IBM Cloud Pak Deployments 94

intelligence tools such as TIBCO Spotfire, Tableau, and Microsoft Power BI. Run the

following command to create an OData route:

oc create route passthrough --service=anzograph-helm_release_name-frontend-lb

--port=http odata

IBM Cloud Pak Deployments 95

Get Started

After deploying Graph Lakehouse, you can get a quick start to loading data and running SPARQL

queries by using the GUI-based Query & Admin Console or the command line interface (CLI). The

topics in this section help you get started with Graph Lakehouse by providing five-minute tutorials

using the console and the CLI. This section also includes instructions for upgrading an Graph

Lakehouse license and offers sample data and tutorials.

In this section:
Quickstart with the Query Console 97

Quickstart with the CLI 103

Licensing Methods 105

Install or Upgrade a License 107

Learn SPARQL 117

Sample Data and Tutorials 148

Get Started 96

Quickstart with the Query Console

After deploying Graph Lakehouse, you can get a quick start to loading data and running SPARQL

queries by using the GUI-based Query & Admin Console. This brief tutorial introduces you to the

application and gets you started with loading data and running SPARQL queries.

1. Log in to the Console

2. Load and Query Sample Data

Log in to the Console

The Graph Lakehouse console supports the latest Safari, Google Chrome, Mozilla Firefox, and

Microsoft Edge browsers.

1. Depending on whether you deployed Graph Lakehouse using the RHEL/Rocky installer,

Docker, or Kubernetes with Helm, follow the appropriate instructions below to access the

user interface:

Deployment Instructions

Desktop
Container
Engine

You can use the desktop application to open the Graph Lakehouse
container in a browser, or open a browser and go to the following URL:
http://127.0.0.1.

If you specified a port other than 80 for the host HTTP port when you

deployed Graph Lakehouse, include that port in the URL. For

example, http://127.0.0.1:8888.

Linux
Container
Engine

If you are accessing a container image on a remote Linux host, note
the IP address of the host, and then open a browser and go to the
following URL: https://<host_IP_address>.

If you mapped the container's HTTPS (8443) port to port 443 on the

host when you deployed Graph Lakehouse, you do not need to specify

Quickstart with the Query Console 97

Deployment Instructions

a port. If you specified a port other than 443, include the port in the

URL. For example, https://10.100.0.1:8888.

Tip
If you are using Docker locally on a Linux machine and need to

know the IP address of the Graph Lakehouse container, you can

run the following command:

sudo docker inspect <container_name> | grep

'"IPAddress"' | head -n 1

For example:

sudo docker inspect anzograph | grep

'"IPAddress"' | head -n 1

"IPAddress": "172.17.0.2"

Kubernetes
with Helm

Using the Graph Lakehouse cluster or external IP obtained from the
kubectl get service command, open a browser and go to the
following URL: https://<IP_address>.

EL9 Installer Use the following URL to access the console: https://<host_IP_
address>:<https_port>.

Note
If you use the HTTPS endpoint, your browser may warn you that the connection is not

private. The warning is normal behavior. Graph Lakehouse servers use self-signed

certificates, and browsers automatically trust only the certificates from well-known

certificate authorities. For more information about certificate warnings, see Security

Quickstart with the Query Console 98

https://www.digicert.com/ssl-support/certificate-not-trusted-error.htm

Certificate Errors on the DigiCert website. Depending on your browser, follow the

appropriate instructions below to either bypass the warning and continue to the console

or configure the browser to trust the certificate:

l On Chrome, click the Advanced link at the bottom of the page and then click the

Proceed to ip (unsafe) link.

l On Safari, click the Show Details button and then click Visit Website to import
the certificate.

l On Firefox, click Advanced and then click Add Exception. On the next screen,
click Add Security Exception to confirm the exception for the endpoint.

The browser displays the login screen.

Quickstart with the Query Console 99

https://www.digicert.com/ssl-support/certificate-not-trusted-error.htm

2. On the login screen, type the username and password for the Admin user that was set up

during deployment. If you deployed Graph Lakehouse with Docker, use admin as the user
name and Passw0rd1 as the password.

3. Then click Sign In. The browser displays the Graph Lakehouse End User License
Agreement (EULA).

4. Review the agreement, and then click Accept to agree to the EULA terms and proceed to the

Query & Admin Console.

The left-side navigation pane of the Query Console shows two default queries, Count

Statements and Total Statements. The Count Statements query returns a list of each named

graph and the number of statements in the graph. The Total Statements query returns the

total number of statements in all named graphs. Click a query in the navigation pane to open

the query in the main window. You can edit or overwrite the default queries, or you can click
Add Query to create a new query from scratch. To run a query, click the Run button () at the

top of the screen. The results are displayed at the bottom of the screen.

Quickstart with the Query Console 100

Load and Query Sample Data

1. In the Query Console, click Add Query to add a new, blank query (or you can overwrite one
of the default queries). Copy the following query and then paste it into the query text box.

This query loads the sample Tickit data from the tickit.ttl.gz directory on the Graph
Lakehouse file system. This simple data set captures sales activity for a fictional Tickit

website where people buy and sell tickets for sporting events, shows, and concerts.

LOAD <dir:/<install_path>/etc/tickit.ttl.gz>

INTO GRAPH <http://anzograph.com/tickit>

2. Once you have pasted the query, replace the placeholder <install_path> with the path to

the Graph Lakehouse installation directory. With Kubernetes or Docker container

deployments, the installation path is /opt/anzograph:

LOAD <dir:/opt/anzograph/etc/tickit.ttl.gz>

INTO GRAPH <http://anzograph.com/tickit>

For RHEL/Rocky deployments, the installation path is specified during the installation. The

default path is /opt/altair/anzograph:

LOAD <dir:/opt/altair/anzograph/etc/tickit.ttl.gz>

INTO GRAPH <http://anzograph.com/tickit>

Modify the path as needed if an alternate path was chosen.

3. Click the Run button to run the query and load the data. When the load completes, the

console displays an Update Successful message.

4. In the console, replace the load statement with the following simple query that counts the

number of triples in the Tickit data set. Then click Run to run the query:

SELECT (count(*) as ?number_of_triples)

FROM <http://anzograph.com/tickit>

WHERE { ?s ?p ?o }

For example:

Quickstart with the Query Console 101

If you want to continue to work with the Tickit data and run more complex queries or view

explanations of the query syntax, see Working with SPARQL and the Tickit Data. For more

information about loading data and to review load file requirements and recommendations, see

Load RDF Data from Files.

Quickstart with the Query Console 102

Quickstart with the CLI

After deploying Graph Lakehouse, you can get a quick start to loading data and running SPARQL

queries by using the Graph Lakehouse command line interface (CLI). This brief tutorial introduces

you to the CLI and gets you started with loading data and running SPARQL queries.

1. Introduction to the CLI

2. Load and Query a Sample Data Set

Introduction to the CLI

The command line client, azgi, uses SSL protocol to interact with the database. The client exists in

the <install_path>/bin directory. In a container deployment, the installation path is

/opt/anzograph. On RHEL/Rocky deployments, the installation path is customizable. The default

path is /opt/altair/anzograph. In a cluster, use azgi on the leader node only.

Running the following command displays the options that azgi supports:

./<install_path>/bin/azgi -help

To get started, the following list describes the most frequently used azgi options:

l azgi -c "command": Runs the command enclosed within the quotation marks. For example,
the following command runs a SELECT query that returns the ?s ?p ?o triple patterns for a

graph named graph:

./<install_path>/bin/azgi -c "select * from <graph> where {?s ?p ?o}"

l azgi -f file.rq: Runs the query or queries saved in a file. For example, if a file called query.rq
existed in the /tmp directory, the following command would run the query or queries saved in

query.rq:

./<install_path>/bin/azgi -f /tmp/query.rq

The following examples guide you through using the azgi -c option to load RDF data. For more

information about the command line interface, see Use the Graph Lakehouse CLI.

Quickstart with the CLI 103

Load and Query a Sample Data Set

The instructions below guide you through using the CLI to load the sample Tickit data set from the

tickit.ttl.gz directory on the file system. This simple data set captures sales activity for a fictional
Tickit website where people buy and sell tickets for sporting events, shows, and concerts.

1. Run the following command to load the Tickit Turtle files:

azgi -c "load <dir:/<install_path>/etc/tickit.ttl.gz> into graph

<http://anzograph.com/tickit>"

Where <install_path> is the path to the anzograph installation directory. For example:

azgi -c "load <dir:/opt/altair/anzograph/etc/tickit.ttl.gz> into graph

<http://anzograph.com/tickit>"

Graph Lakehouse loads the data from the files into memory, and the prompt returns when the

load completes.

2. Run the following command to count the number of triples in the tickit graph:

azgi -c "select (count(*) as ?number) from <http://anzograph.com/tickit> where

{?s ?p ?o}"

number

5509095

1 rows

If you want to continue to work with the Tickit data and run more complex queries or view

explanations of the query syntax, see Working with SPARQL and the Tickit Data. For more detailed

information about loading RDF data and to review load file requirements and recommendations, see

Load RDF Data from Files.

Quickstart with the CLI 104

Licensing Methods

Two licensing methods are supported for Graph Lakehouse:

l Altair Units Licensing

l License Keys

Altair Units Licensing

Altair Units is a value-based license management system enabling metered usage of an entire suite

of products. All Altair Data Analytics products have the capability to use a single pool of recyclable

Altair Units. The license units consumption of Graph Lakehouse depends on the CPU resources

(the number of CPU cores on the host system). As of this version, Graph Lakehouse consumes 6

units per core.

Managed Altair Licensing

For Managed Altair Licensing, the License Server is hosted by Altair, and the application checks out

the required license units by contacting the license servers in the Altair One cloud via HTTPS. For

information on managing your licenses at the Altair One™ portal, see Administrator Dashboard
and Account Administration in the Altair One Documentation.

HTTPS connectivity must exist from the Graph Lakehouse host to four servers in the Altair cloud:

1. Managed Licensing Client: client.hhwu.altair.com

2. Managed Licensing Auth Sever1: auth.hhwu.altair.com

3. Altair License Activation System: alas.admin.altairone.com

4. Altair One Admin Portal: auth.admin.altairone.com

If you are using a proxy server for HTTPS connections, there is an option to specify a proxy in the

application settings if necessary. If you are using a Proxy Auto-Configuration script, you can add

exceptions for these servers in the proxy script to allow both inbound and outbound https traffic.

Licensing Methods 105

https://altair.com/altair-units
https://altairone.com/
https://help.altair.com/altairone/index.htm

Access to the Altair One portal https://altairone.com from the web browser is required for at least

one user to manage the account (authorize machine(s), add users, view the license usage,

download usage history logs, etc.) and access software downloads, documentation, resources

(videos, white papers, etc.), Customer Support portal and user community.

On-premises Altair License Server

If you opted for a self-hosted Altair License Server, the Graph Lakehouse application checks out the

required license units by connecting via TCP to a license server with Altair License Manager running

in your corporate network or in a cloud managed by your organization.

Altair License Manager is an LM-X license server built and distributed by Altair, which includes

features such as License Distribution Service, automatic heartbeats, license borrowing, and High

Availability Licensing. It uses a proprietary TCP/IP based protocol and uses port 6200 by default.

The license file, which defines the licensed features and the available number of Altair units in the

license pool, is tied to the MAC address of the license server host.

The Altair License Manager software installation & administration guide and release notes are

available on the Altair Documentation website (search for "Licensing" in the product filter and select

"Altair License Management System").

License Keys

Graph Lakehouse activation with a Cambridge Semantics license key is a legacy method supported

in parallel with the new Altair Units Licensing. To obtain and apply a license key, please refer to the

topic Install or Upgrade a License.

Licensing Methods 106

https://help.altair.com/

Install or Upgrade a License

For the information on the license types available for Graph Lakehouse, see Licensing Methods

If you intend to use Graph Lakehouse with a legacy license key, please contact Altair Engineering

Customer Support to request a new license key. This topic provides instructions for installing or

upgrading a legacy license using the Graph Lakehouse user interface and the command line

interface. It also provides instructions for activating an Altair Units License.

l Activate Graph Lakehouse with Altair Units Licensing

l Install or Upgrade a Legacy License from the User Interface

l Install or Upgrade a Legacy License from the Command Line

Activate Graph Lakehouse with Altair Units Licensing

Altair Units Licensing offers two methods - self-hosted Altair License Server (hosted on premises
or in a customer-managed cloud) and Managed Altair Licensing (with license servers hosted by
Altair and licenses managed through the Altair One portal). See Licensing Methods for details.

To enable Altair Units licensing in the Graph Lakehouse configuration, edit the <install_

path>/config/settings.conf file. See the topic Change System Settings for detailed

instructions on configuring Graph Lakehouse using this file.

1. In the settings.conf file, set the enable_altair_licensing value to true.

l If you are using a self-hosted Altair License Server, set the license_server configuration
setting in settings.conf to 6200@<license_server_name_or_IP>. The default

license server port is 6200. Change it if the license server is configured to use a different port.

Alternatively, set the ALTAIR_LICENSE_PATH environment variable to the same

port@server value.

l If you are using managed Altair Licensing, authorize the Graph Lakehouse host using the

Altair License Utility on the leader node of the cluster. The Altair License Utility (almutil)
is in the /usr/bin directory of the Graph Lakehouse container. It can also be found in the

Install or Upgrade a License 107

https://altair.com/customer-support
https://altair.com/customer-support
https://help.altair.com/altairone/index.htm

bin subdirectory of the Altair License Server program files

(/usr/local/altair/licensing2025.0/bin) if it is installed on the same host as

Graph Lakehouse.

First, generate an authorization code from your Altair One account. If you are not registered

on AltairOne, ask any registered user at your company to generate and send you an

authorization code.

From a web browser on any machine, sign in to Altair One and click on the menu next to your

name at the top-right corner. In the Manage Account section, click Managed Licenses.

In the left panel of the next screen, click User Profile.

Install or Upgrade a License 108

https://altairone.com/Dashboard
https://altairone.com/Dashboard

Click the Authorized Machines tab

In the Authorized Machines page, click the Generate Auth Code button.

The generated authorization code will be displayed. Copy the code to the clipboard. Note:

The code is valid for 15 minutes, so you must perform the next step within 15 minutes of

generating the code.

Change to the directory that contains almutil, for example cd /usr/bin.

Run the following command on the leader node of the cluster within 15 minutes of generating

the code:

./almutil -a1auth -system -code <auth_code>

This command authorizes the node for the use or your managed Altair license by generating

an encrypted token written to a configuration file altair_hostedhwu.cfg whose default

location is /usr/local/altair.

Install or Upgrade a License 109

If you are using an http(s) proxy, set the proxy configuration for almutil before running
almutil -a1auth:

./almutil -system -host <proxy_host> -port <proxy_port>

The proxy info is saved in altair_hostedhwu.cfg. If your proxy configuration requires a

proxy user ID and password, use the command:

./almutil -system -host <proxy_host> -port <proxy_port> -user <proxy_user> -

passwd <password>

The encrypted credentials of the proxy user will be saved in the file altair_hostedhwu_

ex.cfg in the same directory as altair_hostedhwu.cfg.

To test the connectivity with the Altair Cloud license servers, use the command:

./almutil -conntest

To print out the configuration information and test the validity of authorization token if found,

use the command

./almutil -a1auth -test

To display the current license statistics including current usage:

./almutil -licstat

Run the almutil command with no arguments to view the detailed usage help and

advanced options.

2. Reinitialize Graph Lakehouse for the new license configuration to take effect. Reinitializing the

database requires running the following system manager (azgctl) command on the file system.

How do I access the Graph Lakehouse file system with Docker? If you are using a cluster, run the

command on the leader node:

./<install_path>/bin/azgctl -restart -init

Install or Upgrade a License 110

Install or Upgrade a Legacy License from the User Interface

First, open the user interface by following the appropriate instructions below according to your

method of deployment:

Deployment Instructions

Desktop
Container
Engine

You can use the desktop application to open the Graph Lakehouse container in
a browser, or open a browser and go to the following URL:
http://127.0.0.1.

If you specified a port other than 80 for the host HTTP port when you

deployed Graph Lakehouse, include that port in the URL. For example,

http://127.0.0.1:8888.

Linux
Container
Engine

If you are accessing a container image on a remote Linux host, note the IP
address of the host, and then open a browser and go to the following URL:
https://<host_IP_address>.

If you mapped the container's HTTPS (8443) port to port 443 on the host

when you deployed Graph Lakehouse, you do not need to specify a port. If

you specified a port other than 443, include the port in the URL. For example,

https://10.100.0.1:8888.

Tip
If you are using Docker locally on a Linux machine and need to know

the IP address of the Graph Lakehouse container, you can run the

following command:

sudo docker inspect <container_name> | grep

'"IPAddress"' | head -n 1

For example:

sudo docker inspect anzograph | grep '"IPAddress"' |

head -n 1

Install or Upgrade a License 111

Deployment Instructions

"IPAddress": "172.17.0.2"

Kubernetes
with Helm

Using the Graph Lakehouse cluster or external IP obtained from the kubectl
get service command, open a browser and go to the following URL:
https://<IP_address>.

EL9 Installer Use the following URL to access the console: https://<host_IP_
address>:<https_port>.

1. On the login screen, type the username and password for the Admin user. If you deployed

Graph Lakehouse with a container engine like Docker, Podman, or Rancher, use admin as
the user name and Passw0rd1 as the password. Then click Sign In.

2. On the top right of the screen, click the User drop-down menu and select Product License.

The Product License screen is displayed. For example, if you are using a legacy license key

license, the screen is as follows:

Install or Upgrade a License 112

3. On the Product License screen, click License Requirements and copy them to the

clipboard. Click the Request License link to go to the Contact Altair Support web page.

4. Contact Altair Customer Support to request the license for your system, providing the

License Requirements copied at the previous step.

Install or Upgrade a License 113

https://web.altair.com/support-contact

5. Once you received the license key or file from Altair License Admin: Paste the license key in

the License Key field and click Apply. Alternatively, click the Upload button upload the file
with the license key information. Graph Lakehouse displays a "License was updated

successfully" message and the screen is refreshed to display the details for the new license.

6. Click Close to close the Product License dialog box and return to the General tab.

Important
Because Graph Lakehouse shards data across slices, and the number if slices is

determined by the number of available CPU allowed by the license, if your new license

allows for an increased number of CPU and/or nodes in the cluster, Graph Lakehouse

must be re-initialized to clear the existing persisted data and take advantage of the

increased resources.

7. Reintialize Graph Lakehouse to configure the database with the updated license.

Reinitializing the database requires running the following system manager (azgctl)

command on the file system. How do I access the Graph Lakehouse file system with Docker?

If you are using a cluster, run the command on the leader node:

./<install_path>/bin/azgctl -restart -init

Graph Lakehouse is now configured according to the specifications of the new license key.

Install or Upgrade a Legacy License from the Command Line

1. Run the following command to display your current deployment's license information:

<install_path>/bin/azgctl -getlicenseid

Note
If Graph Lakehouse is stopped, you can run the following command to return the server

ID:

<install_path>/bin/azg_get_server_id

Install or Upgrade a License 114

The command returns a number of attributes associated with the current license, including a

property_license.id value. The property_license.id value will be used as the Server ID when

upgrading your license. For example:

property_license.id: 2191-680E-178F-3D28-1535-D0F1

2. Copy the property_license.id value. This is your server ID. Contact Altair Support to request
a new license and provide the required license ID and the system properties (Server ID, CPU

Cores, Max RAM, and Max Nodes).

3. After receiving the new license key from Altair License Admin, apply the key to your

deployment using one of the following options:

l If Graph Lakehouse is stopped: Open in a text editor the license.pem file located in the

<install_path>/config directory on the leader node. In the license.pem file,

replace the existing contents with the new license key that you copied in the previous

step. Then save and close the file.

l If Graph Lakehouse is running, you can use the system manager to import the license

key. On the leader node, run the following command to import the key and update the

license.pem file:

<install_path>/azg/bin/azgctl -license <license_key_text>

For example:

/opt/anzograph/bin/azgctl -license

H4sIAAAAAAAAAG2RT0vDQBDF7/kUC54ELfsnu00LAaut...

Important
Because Graph Lakehouse shards data across slices, and the number if slices is

determined by the number of available CPU allowed by the license, if your

upgraded license allows for an increased number of CPU and/or nodes in the

cluster, Graph Lakehouse must be re-initialized to clear the existing persisted

data and take advantage of the increased resources.

Install or Upgrade a License 115

https://web.altair.com/support-contact

4. Reintialize Graph Lakehouse to configure the database with the updated license.

Reinitializing the database requires running the following system manager (azgctl)

command on the file system. If you are using a cluster, run the command on the leader node:

./<install_path>/bin/azgctl -restart -init

Graph Lakehouse is now configured to validate against the new license key. For information about

loading data, see Load & Manage Data.

Install or Upgrade a License 116

Learn SPARQL

The topics in this section introduce you to SPARQL and provide some best practices and tips. For

additional basic information about SPARQL, the semantic web, or RDF, see the Altair Semantic

University.

In this section:
SPARQL Query Basics 118

SPARQL Best Practices 134

SPARQL Tips and Tricks 137

Learn SPARQL 117

https://www.cambridgesemantics.com/blog/semantic-university/
https://www.cambridgesemantics.com/blog/semantic-university/

SPARQL Query Basics

SPARQL statements are constructed using the following basic query types, clauses, and other

solution modifiers.

Standard Query Types

l SELECT: Run SELECT queries when you want to find and return all of the data that matches

certain patterns.

l CONSTRUCT: Run CONSTRUCT queries when you want to create or transform data based

on the existing data.

l ASK: Run ASK queries when you want to know whether a certain pattern exists in the data.

ASK queries return only "true" or "false" to indicate whether a solution exists.

l DESCRIBE: Run DESCRIBE queries when you want to view the RDF graph that describes a

particular resource.

Query Clauses

All queries may also include one or more of the following clauses:

l PREFIX Clause: The optional PREFIX clause declares the abbreviations that you want to use

to reference URIs in the query.

l FROM Clause: The optional FROM clause defines the data sets or graphs to query. By

default, if you do not specify the FROM clause, the scope of a query is limited to the default

graph.

l WHERE Clause: The WHERE clause specifies the query pattern for data to match in the

graphs or data sets specified in the query.

Solution Modifiers

The following optional query modifiers enable you to restrict, group, sort, or further refine query

results:

SPARQL Query Basics 118

l ORDER BY: This modifier sorts the result set in a particular order. It sorts query solution
results based on the value of one or more variables.

l OFFSET: Using this modifier in conjunction with LIMIT and ORDER BY returns a slice of a

sorted solution set, for example, for paging.

l LIMIT: This modifier puts an upper bound on the number of results returned by a query.

l GROUP BY: This modifier is used with aggregate functions and specifies the key variables to
use to partition the solutions into groups. For information about the Graph Lakehouse

GROUP BY clause extensions, see Advanced Grouping Sets.

l HAVING: This modifier is used with aggregate functions and further filters the results after
applying the aggregates.

SELECT

Like SQL, SPARQL provides a SELECT query form for selecting or finding data. This section

describes the SELECT form.

Syntax

[PREFIX Clause]

SELECT [DISTINCT | REDUCED] result_expressions_and_variables

[FROM Clause]

WHERE Clause

[Solution Modifiers]

The optional DISTINCT solution sequence modifier eliminates duplicate results. The REDUCED

modifier permits duplicate solutions to be removed but does not guarantee that they are eliminated

from the results.

Examples

The following simple SELECT statement queries the sample Tickit data set to return all of the

predicates and objects for event100:

SELECT ?predicate ?object

FROM <http://anzograph.com/tickit>

WHERE {

SELECT 119

<http://anzograph.com/tickit/event100> ?predicate ?object

}

ORDER BY ?predicate

predicate | object

--+--------------------------------------

-

http://anzograph.com/tickit/catid | http://anzograph.com/tickit/category8

http://anzograph.com/tickit/dateid | http://anzograph.com/tickit/date2129

http://anzograph.com/tickit/eventname | Siegfried

http://anzograph.com/tickit/starttime | 2008-10-30T15:00:00Z

http://anzograph.com/tickit/venueid | http://anzograph.com/tickit/venue300

http://www.w3.org/1999/02/22-rdf-syntax-ns#type | http://anzograph.com/tickit/event

6 rows

This simple SELECT statement uses the DISTINCT modifier to list each distinct event name in the

Tickit data set:

SELECT DISTINCT ?name

FROM <http://anzograph.com/tickit>

WHERE {

?event <http://anzograph.com/tickit/eventname> ?name.

}

name

Adriana Lecouvreur

Eugene Onegin

La Cenerentola (Cinderella)

A Chorus Line

Hairspray

Le Reve

Hedda Gabler

Endgame

Othello

Miss Julie

...

576 rows

This example queries the sample Tickit data set to select the top 10 listings where the price per

ticket is greater than $500.00:

SELECT 120

SELECT ?listing ?priceperticket

FROM <http://anzograph.com/tickit>

WHERE {

?listing <http://anzograph.com/tickit/listtime> ?listtime .

?listing <http://anzograph.com/tickit/priceperticket> ?priceperticket .

FILTER(?priceperticket > 500.00)

}

ORDER BY desc(?priceperticket)

LIMIT 10

listing | priceperticket

--+----------------

http://anzograph.com/tickit/listing227412 | 2500

http://anzograph.com/tickit/listing222840 | 2500

http://anzograph.com/tickit/listing225362 | 2500

http://anzograph.com/tickit/listing214995 | 2500

http://anzograph.com/tickit/listing209658 | 2500

http://anzograph.com/tickit/listing211035 | 2500

http://anzograph.com/tickit/listing213613 | 2500

http://anzograph.com/tickit/listing215156 | 2500

http://anzograph.com/tickit/listing210898 | 2500

http://anzograph.com/tickit/listing224389 | 2500

10 rows

CONSTRUCT

Use the CONSTRUCT query form to create new data from your existing data.

Syntax

[PREFIX Clause]

CONSTRUCT { graph_or_triple_template }

WHERE Clause

[Solution Modifiers]

CONSTRUCT queries take each solution and substitute it for the variables in the graph or triple

template. Graph Lakehouse combines the triples into a single graph in N-Triple format. If you

specify a pattern that produces a triple that contains an unbound variable or an illegal RDF construct

such as a literal value in the subject or predicate position, these problematic triples are excluded

from the output graph.

CONSTRUCT 121

Note
CONSTRUCT query results are always returned in RDF format. They cannot be returned in

any other format and any options normally used to specify a result format, such as the

Accept, Content-Type, or format parameters, are ignored.

Example

The following example query specifies a triple template that constructs a new age predicate and

approximate age value for the person triples in the sample Tickit data set. The resulting age values

are approximations because the calculation excludes days and months.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX tickit: <http://anzograph.com/tickit/>

CONSTRUCT { ?person tickit:age ?age . }

WHERE { GRAPH <http://anzograph.com/tickit> {

SELECT ?person ((YEAR(?date))-(YEAR(xsd:dateTime(?birthdate))) AS ?age)

WHERE {

?person tickit:birthday ?birthdate .

BIND(xsd:dateTime(NOW()) AS ?date)

}

}

}

ORDER BY ?person

LIMIT 10

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

<http://anzograph.com/tickit/person1> <age>

"55"^^<http://www.w3.org/2001/XMLSchema#int> .

<http://anzograph.com/tickit/person10> <age>

"75"^^<http://www.w3.org/2001/XMLSchema#int> .

<http://anzograph.com/tickit/person100> <age>

"32"^^<http://www.w3.org/2001/XMLSchema#int> .

<http://anzograph.com/tickit/person1000> <age>

"38"^^<http://www.w3.org/2001/XMLSchema#int> .

<http://anzograph.com/tickit/person10000> <age>

"77"^^<http://www.w3.org/2001/XMLSchema#int> .

<http://anzograph.com/tickit/person10001> <age>

"27"^^<http://www.w3.org/2001/XMLSchema#int> .

<http://anzograph.com/tickit/person10002> <age>

"75"^^<http://www.w3.org/2001/XMLSchema#int> .

CONSTRUCT 122

<http://anzograph.com/tickit/person10003> <age>

"69"^^<http://www.w3.org/2001/XMLSchema#int> .

<http://anzograph.com/tickit/person10004> <age>

"50"^^<http://www.w3.org/2001/XMLSchema#int> .

<http://anzograph.com/tickit/person10005> <age>

"72"^^<http://www.w3.org/2001/XMLSchema#int> .

ASK

Use the ASK query form to determine whether a particular triple pattern exists in the specified data

set. ASK returns true or false, depending on whether the solution or match exists.

Syntax

[PREFIX Clause]

ASK

[FROM Clause]

{ triple_template }

Examples

The following example ASK statement queries the sample Tickit data set to ask whether data exists

for the event named Wicked:

ASK FROM <http://anzograph.com/tickit> { ?s <http://anzograph.com/tickit/eventname>

"Wicked" . }

true

DESCRIBE

Use the DESCRIBE query form to return all triples that are associated with a specified resource, not

just the triples that are bound to any variables that you specify. Running a DESCRIBE query can be

helpful when learning about the data that exists without having to know the structure of the data.

Like CONSTRUCT, DESCRIBE returns results in RDF format.

Syntax

[PREFIX Clause]

DESCRIBE <resource>

ASK 123

[FROM Clause]

[WHERE Clause]

Examples

The following simple DESCRIBE example queries the sample Tickit dataset to describe all of the

resources that are associated with person2:

DESCRIBE <http://anzograph.com/tickit/person2>

FROM <http://anzograph.com/tickit>

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

<http://anzograph.com/tickit/listing160217> <http://anzograph.com/tickit/sellerid>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/listing30988> <http://anzograph.com/tickit/sellerid>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/listing43813> <http://anzograph.com/tickit/sellerid>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/listing52091> <http://anzograph.com/tickit/sellerid>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/listing54017> <http://anzograph.com/tickit/sellerid>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/listing86046> <http://anzograph.com/tickit/sellerid>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person1099> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person1268> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person12847> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person12996> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person13112> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person15212> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person15323> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person15929> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person16636> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person17109> <http://anzograph.com/tickit/friend>

DESCRIBE 124

<http://anzograph.com/tickit/person2> .

<http://anzograph.com/tickit/person2> <http://anzograph.com/tickit/birthday> "1979-09-

21"^^<http://www.w3.org/2001/XMLSchema#date> .

<http://anzograph.com/tickit/person2> <http://anzograph.com/tickit/card>

"6614771532725111"^^<http://www.w3.org/2001/XMLSchema#long> .

<http://anzograph.com/tickit/person2> <http://anzograph.com/tickit/city> "Murfreesboro"

.

<http://anzograph.com/tickit/person2> <http://anzograph.com/tickit/dislike> "broadway"

.

<http://anzograph.com/tickit/person2> <http://anzograph.com/tickit/email>

"Suspendisse.tristique@nonnisiAenean.edu" .

<http://anzograph.com/tickit/person2> <http://anzograph.com/tickit/firstname>

"Vladimir" .

...

PREFIX Clause

The PREFIX clause declares any abbreviations for URIs that you want to reference in a query. You

can declare prefixes to simplify query text if your data includes long URI names. If you do not

declare prefixes, you must include the full URI names in the query.

Syntax

PREFIX uri_abbreviation: <uri_to_substitute_for_abbreviation>

[PREFIX uri_abbreviation: <uri_to_substitute_for_abbreviation>]

[...]

URIs can be well-formed and absolute, such as <http://www.w3.org/1999/02/22-rdf-

syntax-ns> or relative, such as <http://cambridgesemantics.com/property#> or

<tickit/sales/>.

Note
Graph Lakehouse places no special restrictions on URIs, only that you place the URI text

between < > characters, for example, <sales>.

Examples

The following example query declares a prefix and then uses the declared URI abbreviation in place

of full the URI names in the query.

PREFIX Clause 125

PREFIX t: <http://anzograph.com/tickit/>

SELECT ?eventname ?location

FROM <http://anzograph.com/tickit>

WHERE {

?eventid t:venueid ?venueid .

?venueid t:venuename ?location .

?eventid t:dateid ?dateid .

?eventid t:eventname ?eventname .

}

ORDER BY ?location

FROM Clause

The optional FROM clause defines the data sets or graphs to query. You can include any number of

FROM or FROM NAMED statements.

Important
By default, if a query omits FROM clauses, the scope of the query is limited to the default

graph (DEFAULTSET). Triples in named graphs will not be included in the scope of the query.

The default behavior is controlled by the sparql_spec_default_graph configuration setting. To

configure Graph Lakehouse to conform to the SPARQL specification and include the default

graph and all named graphs in the scope of a query that omits the FROM clause, change the

value of sparql_spec_default_graph to true. For more information, see Change the Default
FROM Clause Behavior.

Syntax

FROM [NAMED | EXTERNAL] <graph_uri>

Option Description

FROM Use FROM <graph_uri> when you want to query for the same triple
pattern match against one or more graphs.

For example, the statement FROM <graphA> means that Graph

Lakehouse takes all of the triples that belong to graphA and adds them

to the default graph (called DEFAULTSET). For the following FROM

FROM Clause 126

Option Description

clause:

FROM <graphA>

FROM <graphB>

Graph Lakehouse takes all of the triples associated with graphA and

graphB and adds them to the default graph. The triple patterns in the

query's WHERE clause are matched against all of the graphA and

graphB triples in the default graph. For example, the following query

looks for the ?s ?p ?o triple pattern match in graphA and graphB:

SELECT *

FROM <graphA>

FROM <graphB>

WHERE {

?s ?p ?o .

}

FROM NAMED Use FROM NAMED <graph_uri> when you want to query multiple
graphs and specify which patterns to match against which graph by
naming the graphs in the WHERE clause.

For example, the statement FROM NAMED <graphA> means that the

graphA triples are not added to the default graph. Patterns in the

WHERE clause are only matched against graphA when a graph pattern

is specified (such as GRAPH <graphA> { triple_patterns } or

GRAPH ?g { triple_patterns}). Triple patterns without a

GRAPH clause are still matched against the default graph.

For example, the following query only finds matches in graphA

because graphB is not named in the WHERE clause:

SELECT *

FROM <graphA>

FROM NAMED <graphB>

WHERE {

FROM Clause 127

Option Description

?s ?p ?o .

}

To match the ?s ?p ?o triple pattern against graphA and graphB, the

query needs to name graphB using a GRAPH clause. For example:

SELECT *

FROM <graphA>

FROM NAMED <graphB>

WHERE {

?s ?p ?o .

{ GRAPH <graphB> { ?s ?p ?o . } }

}

When using FROM NAMED, triple patterns that are outside of a

GRAPH clause are matched against the default graph. Triple patterns

that are included in a GRAPH clause are matched against that named

graph. You can also use the GRAPH ?variable construct (such as

GRAPH ?g) to allow a pattern to match against one of the named

graphs in the query. The URI of the matching graph is bound to the

variable.

FROM EXTERNAL Use FROM EXTERNAL to run queries against files on disk. See Analyzing
Data Characteristics in Load Files for more information.

Example

The FROM clause in the following example query includes two FROM NAMED statements. The

WHERE clause includes two graph patterns to find the events in the Tickit graph and the movies in

the Movies graph.

SELECT (COUNT(?eventid) as ?tickit_events) (COUNT(?movieid) as ?num_movies)

FROM NAMED <tickit>

FROM NAMED <movies>

WHERE {

{ GRAPH <tickit> { ?event <eventid> ?events . } }

FROM Clause 128

{ GRAPH <movies> { ?film <movieid> ?movieid . } }

}

WHERE Clause

The WHERE clause defines the query patterns to look for in the specified graphs or data sets.

WHERE clauses can include graph and triple templates, subqueries, and the following clauses:

l BIND: Assigns the results of an expression to a new variable.

l FILTER: Applies boolean conditions or tests to constrain results and filter out values that do

not meet the specified conditions.

l MINUS, OPTIONAL, UNION: MINUS subtracts matches from the query result based on the

evaluation of the pattern that you specify. OPTIONAL tries to match a graph pattern but does

not fail to return results is the optional match fails. UNION Includes results from either of two

graph patterns with solutions to both sides of the union are included in the results.

l SERVICE: Queries remote data at a SPARQL endpoint.

l VALUES: Enables users to include data in a graph pattern to filter results on more specific

requirements. The data is joined with the results of the query evaluation.

BIND

Use the following syntax when incorporating BIND in the WHERE clause:

BIND(expression AS ?variable)

Where expression evaluates to the values that you want to bind to the variable.

FILTER

Use the following syntax when incorporating filters in WHERE clauses:

FILTER(expression [logical_operator expression] [...])

Where expression is the condition to test for. You can also use the logical operators && (AND), ||
(OR), or ! (NOT) to combine filter expressions. For information about using logical operators and
functions in filters, see Logical Functions.

WHERE Clause 129

MINUS, OPTIONAL, UNION

Use the following syntax when incorporating MINUS, OPTIONAL, or UNION statements in WHERE

clauses:

KEYWORD { triple_patterns }

SERVICE

Use the following syntax when incorporating SERVICE statements in WHERE clauses. SERVICE

statements have the same structure as named graph statements:

SERVICE{ <endpoint_URL> { triple_patterns } }

Where endpoint_URL is the URL for accessing the remote SPARQL endpoint, and triple_patterns

define the patterns to look for in the remote data.

For example, the following query uses a SERVICE call to retrieve data from the DBpedia SPARQL

endpoint.

SELECT *

WHERE {

SERVICE <http://dbpedia.org/sparql> {

<http://dbpedia.org/resource/Keanu_Reeves> <http://dbpedia.org/ontology/abstract>

?o.

FILTER LANGMATCHES(LANG(?o), "en")

}

}

The query returns an abstract about Keanu Reeves:

o

Keanu Charles Reeves (/keɪˈɑːnuː/ kay-AH-noo; born September 2, 1964) is a Canadian

actor...

VALUES

Use the following syntax when incorporating VALUES statements in WHERE clauses:

VALUES ?variable { value_for_variable [another_possible_value] [...] }

WHERE Clause 130

Where ?variable is the node that you want to find values for, and value_for_variable is the value to

look for.

To further constrain the results by specifying multiple variables and possible values, use the

following syntax:

VALUES (?variable1 ?variable2 [...]) {

([UNDEF] | value_for_variable1 [UNDEF] | value_for_variable2 [...])

([UNDEF] | another_value_for_variable1 [UNDEF] | another_value_for_variable2 [...])

([...])

}

The UNDEF keyword acts as a wildcard instead of a specific value. For example, the following

VALUES clause states: "Include matches when ?b =n regardless of the value for ?a, and include

matches when ?a=x regardless of the value for ?b."

VALUES (?a ?b) {

(UNDEF "n")

("x" UNDEF)

}

WHERE Clause Examples

The WHERE clause in the example query below uses triple patterns and a filter to query the sample

Tickit data set and return a list of all of the musicals that occur on a holiday.

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT DISTINCT ?event ?category

FROM <http://anzograph.com/tickit>

WHERE {

?s tickit:eventid ?eventid .

?eventid tickit:dateid ?dateid .

?dateid tickit:caldate ?date .

?eventid tickit:eventname ?event .

?eventid tickit:catid ?cat .

?cat tickit:catname ?category .

?dateid tickit:holiday ?holiday .

FILTER(?holiday=true && ?category="Musicals")

}

ORDER BY ?event

WHERE Clause 131

event | category

-------------------------+----------

A Catered Affair | Musicals

Chicago | Musicals

Curtains | Musicals

Dirty Dancing | Musicals

Folies Bergere | Musicals

Grease | Musicals

High Society | Musicals

Legally Blonde | Musicals

Mamma Mia! | Musicals

Oliver! | Musicals

Phantom of the Opera | Musicals

Spamalot | Musicals

The King and I | Musicals

The Phantom of the Opera | Musicals

West Side Story | Musicals

15 rows

The WHERE clause in the query below includes a subquery that joins sales and event data to return

ticket, commission, and price paid information for each event. The top-level result clause uses the

subquery results to subtract the commission paid from the total price paid to calculate the profit for

each event.

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?event ?tickets ((?total_paid - ?commission_paid) as ?profit)

FROM <http://anzograph.com/tickit>

WHERE {

SELECT ?event (sum(?qty) as ?tickets) (sum(?comm) as ?commission_paid) (sum(?price)

as ?total_paid)

WHERE {

?sales tickit:qtysold ?qty .

?sales tickit:eventid ?eventid .

?eventid tickit:eventname ?event .

?sales tickit:commission ?comm .

?sales tickit:pricepaid ?price .

}

GROUP BY ?event

}

ORDER BY desc(?profit)

LIMIT 10

WHERE Clause 132

event | tickets | profit

-----------------+---------+--------

Mamma Mia! | 3658 | 965136

Spring Awakening | 3025 | 826927

The Country Girl | 2871 | 773979

Macbeth | 2733 | 733193

Jersey Boys | 2781 | 690095

Legally Blonde | 2272 | 683896

Chicago | 2535 | 672344

Spamalot | 2199 | 607161

Hedda Gabler | 1891 | 561865

Thurgood | 1894 | 543895

10 rows

WHERE Clause 133

SPARQL Best Practices

When compared with SQL, SPARQL's syntax and grammar is less enforceable. In a graph

database, since the data defines the schema, the data cannot be evaluated against the schema. In

addition, since RDF graphs typically contain semi-structured data, the database can include data

that is incomplete or unknown. This topic provides tips to help you avoid getting unexpected results

when running SPARQL queries.

l Look for Typos

l Make Some Triple Patterns Optional

l Avoid Unexpected Results When Constructing Data

Look for Typos

Mistyping a predicate, for example, does not produce an error such as "predicate does not exist."

Instead the query might not produce any results.

Example

The following query counts the distinct number of likes in the sample Tickit data. As shown in the

WHERE clause, the predicate in the tickit graph is "<like>". The results show that there are 10

distinct likes, or 10 distinct objects for the <like> predicate:

SELECT (count(?o) as ?numberOfLikes)

FROM <http://anzograph.com/tickit>

WHERE { {

SELECT DISTINCT ?o

WHERE { ?s <http://anzograph.com/tickit/like> ?o }

}

}

numberOfLikes

10

1 rows

Misspelling "like" as "likes" does not produce an error, but the query returns no results:

SPARQL Best Practices 134

SELECT (count(?o) as ?numberOfLikes)

FROM <http://anzograph.com/tickit>

WHERE { {

SELECT DISTINCT ?o

WHERE { ?s <http://anzograph.com/tickit/likes> ?o }

}

}

numberOfLikes

0

1 rows

Make Some Triple Patterns Optional

Some queries might need to account for missing or incomplete data. To ensure that triples are not

excluded from the results because they follow some of the query's triple patterns but not all, you can

use the OPTIONAL keyword to make certain triple patterns optional.

For example, the sample Tickit dataset includes person graphs. These graphs contain triples with a

person subject and predicates such as first name, last name, birthday, credit card number, like, and

dislike. Some person graphs are missing like or dislike predicates, so querying for person data

using like or dislike in the pattern may produce unexpected results.

Example

The following example queries the Tickit dataset to find the first and last name and likes and dislikes

for all of the people who have bought tickets:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?fname ?lname ?like ?dislike

FROM <http://anzograph.com/tickit>

WHERE {

?sale tickit:buyerid ?person .

?person tickit:firstname ?fname .

?person tickit:lastname ?lname .

?person tickit:like ?like .

?person tickit:dislike ?dislike .

}

GROUP BY ?fname ?lname ?like ?dislike

SPARQL Best Practices 135

The patterns in the WHERE clause ask for person data where the triples include firstname,

lastname, like, and dislike. Any person triples that are missing any of the patterns are excluded from

the results. This query returns 188536 rows.

Using OPTIONAL clauses in the query changes the criteria so that all of the first and last names are

returned and like or dislike data is returned if it exists. This query makes like and dislike optional:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?fname ?lname ?like ?dislike

FROM <http://anzograph.com/tickit>

WHERE {

?sale tickit:buyerid ?person .

?person tickit:firstname ?fname .

?person tickit:lastname ?lname .

OPTIONAL { ?person tickit:like ?like }

OPTIONAL { ?person tickit:dislike ?dislike }

}

GROUP BY ?fname ?lname ?like ?dislike

This query returns 202862 rows because it includes person triples with first and last names and
does not exclude triples that are missing like or dislike predicates.

Avoid Unexpected Results When Constructing Data

CONSTRUCT queries return a single RDF graph specified by the template that you supply. The

result takes each query solution and substitutes for the variables in the template and then combines

the triples into a graph. If you specify a pattern that produces a triple that contains an unbound

variable or an illegal RDF construct such as a literal value in the subject or predicate position, then

you may get unexpected results because the problematic triples are excluded from the output

graph.

SPARQL Best Practices 136

SPARQL Tips and Tricks

The topics in this section describe SPARQL patterns that are frequently used for managing,

understanding, and analyzing data. For example, this topic provides details about how to delete all

data associated with an object and how to perform a cascaded delete. It also provides tips for

understanding your data as a graph by analyzing social networks to find the most connected people

and the size of their network out to one or two degrees.

In this section:
Managing Your Data 137

Exploring Your Data 140

Understanding Your Data as a Graph 144

Managing Your Data

This topic provides information about common questions to ask when managing your data.

l How do I list all of the graphs in the database?

l How do I find all of the triples that reference a resource?

l How do I perform a cascaded delete to remove all triples associated with a resource?

l How do I delete a predicate and all of its values?

How do I list all of the graphs in the database?

The following query returns a list of all of the named graphs in Graph Lakehouse:

SELECT DISTINCT ?graph

WHERE {

GRAPH ?graph { ?s ?p ?o . }

}

graph

http://anzograph.com/tickit

1 rows

SPARQL Tips and Tricks 137

How do I find all of the triples that reference a resource?

A common task is to find all of the triples in a graph that refer to a particular resource. That resource

might be a subject in one triple and an object in another. For example, the person2 resource in the

sample tickit graph is referenced as the subject in some triples and the object in other triples. For

example:

<http://anzograph.com/tickit/person2> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person12595>

<http://anzograph.com/tickit/person12595> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person2>

To find all of the triples that reference person2, the following example query returns all of the triples

where person2 is the subject or object:

SELECT ?s ?p ?o

FROM <http://anzograph.com/tickit>

WHERE {

{ BIND (<http://anzograph.com/tickit/person2> AS ?s) ?s ?p ?o . }

UNION

{ BIND (<http://anzograph.com/tickit/person2> AS ?o) ?s ?p ?o . }

}

s | p

| o

--+--

-----+---

http://anzograph.com/tickit/person2 | http://anzograph.com/tickit/friend

| http://anzograph.com/tickit/person49923

http://anzograph.com/tickit/person2 | http://anzograph.com/tickit/friend

| http://anzograph.com/tickit/person6671

http://anzograph.com/tickit/person2 | http://anzograph.com/tickit/friend

| http://anzograph.com/tickit/person48422

http://anzograph.com/tickit/person2 | http://anzograph.com/tickit/friend

| http://anzograph.com/tickit/person32005

http://anzograph.com/tickit/person2 | http://anzograph.com/tickit/friend

| http://anzograph.com/tickit/person48156

...

http://anzograph.com/tickit/person2 | http://anzograph.com/tickit/dislike

| broadway

http://anzograph.com/tickit/person2 | http://anzograph.com/tickit/state

| WI

Managing Your Data 138

http://anzograph.com/tickit/person2 | http://anzograph.com/tickit/city

| Murfreesboro

http://anzograph.com/tickit/person2 | http://anzograph.com/tickit/like

| musicals

...

http://anzograph.com/tickit/person32064 | http://anzograph.com/tickit/friend

| http://anzograph.com/tickit/person2

http://anzograph.com/tickit/person41654 | http://anzograph.com/tickit/friend

| http://anzograph.com/tickit/person2

http://anzograph.com/tickit/person48892 | http://anzograph.com/tickit/friend

| http://anzograph.com/tickit/person2

http://anzograph.com/tickit/person6048 | http://anzograph.com/tickit/friend

| http://anzograph.com/tickit/person2

http://anzograph.com/tickit/person15323 | http://anzograph.com/tickit/friend

| http://anzograph.com/tickit/person2

...

100 rows

How do I perform a cascaded delete to remove all triples associated with a resource?

The example above demonstrates how to find all of the triples that reference a resource. This

example shows how to delete the resource and all of the triples that refer to it. The query below

deletes person2 and all associated triples from the tickit graph:

DELETE { GRAPH <http://anzograph.com/tickit> { ?s ?p ?o . } }

WHERE {

GRAPH <http://anzograph.com/tickit> { ?s ?p ?o .

filter(?s=<http://anzograph.com/tickit/person2> ||

?o=<http://anzograph.com/tickit/person2>)

}

}

To confirm that person2 and the related triples no longer exist, you can run the query from the first

example:

SELECT ?s ?p ?o

FROM <http://anzograph.com/tickit>

WHERE {

{ BIND (<http://anzograph.com/tickit/person2> AS ?s) ?s ?p ?o . }

UNION

{ BIND (<http://anzograph.com/tickit/person2> AS ?o) ?s ?p ?o . }

}

Managing Your Data 139

s | p | o

--+---+---

0 rows

How do I delete a predicate and all of its values?

You might need to remove a predicate and all of the associated objects from a graph. For example,

the sample Tickit dataset includes person subjects with an ssn predicate whose objects are social

security numbers for each person. The following query deletes the ssn predicate and the social

security numbers from the tickit graph:

DELETE { GRAPH <http://anzograph.com/tickit> { ?person

<http://anzograph.com/tickit/ssn> ?ssn . } }

WHERE { GRAPH <http://anzograph.com/tickit> { ?person <http://anzograph.com/tickit/ssn>

?ssn . } }

Exploring Your Data

This topic provides information about common questions to ask when getting to know your data.

l How do I find out which predicates (keys) a data set uses?

l How do I determine the frequency of a predicate's use?

l How do I find symmetric predicates?

How do I find out which predicates (keys) a data set uses?

When you receive a new dataset, one of the first things to understand about the new dataset is what

predicates are used. The following query lists the predicates used in the sample Tickit dataset.

SELECT DISTINCT ?predicates

FROM <http://anzograph.com/tickit>

WHERE {

?subject ?predicates ?object .

}

ORDER BY ?predicates

predicates

http://anzograph.com/tickit/birthday

http://anzograph.com/tickit/buyerid

Exploring Your Data 140

http://anzograph.com/tickit/caldate

http://anzograph.com/tickit/card

http://anzograph.com/tickit/catdesc

http://anzograph.com/tickit/catgroup

http://anzograph.com/tickit/catid

http://anzograph.com/tickit/catname

http://anzograph.com/tickit/city

http://anzograph.com/tickit/commission

http://anzograph.com/tickit/dateid

http://anzograph.com/tickit/day

http://anzograph.com/tickit/dislike

http://anzograph.com/tickit/email

http://anzograph.com/tickit/eventid

http://anzograph.com/tickit/eventname

http://anzograph.com/tickit/firstname

http://anzograph.com/tickit/friend

http://anzograph.com/tickit/holiday

http://anzograph.com/tickit/lastname

http://anzograph.com/tickit/like

http://anzograph.com/tickit/listid

http://anzograph.com/tickit/listtime

http://anzograph.com/tickit/month

http://anzograph.com/tickit/numtickets

http://anzograph.com/tickit/phone

http://anzograph.com/tickit/pricepaid

http://anzograph.com/tickit/priceperticket

http://anzograph.com/tickit/qtr

http://anzograph.com/tickit/qtysold

http://anzograph.com/tickit/saletime

http://anzograph.com/tickit/sellerid

http://anzograph.com/tickit/ssn

http://anzograph.com/tickit/starttime

http://anzograph.com/tickit/state

http://anzograph.com/tickit/totalprice

http://anzograph.com/tickit/venuecity

http://anzograph.com/tickit/venuecitypop

http://anzograph.com/tickit/venueid

http://anzograph.com/tickit/venuename

http://anzograph.com/tickit/venueseats

http://anzograph.com/tickit/venueseatspct

http://anzograph.com/tickit/venuestate

http://anzograph.com/tickit/week

http://anzograph.com/tickit/year

Exploring Your Data 141

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

46 rows

How do I determine the frequency of a predicate's use?

Once you determine what predicates a new data set uses, you might want to see how frequently the

predicates are used. Frequency counts can give you an indication of which predicates the data set

uses together, which helps to identify objects in the graph. The following query lists the predicates in

the sample Tickit data set ordered by the frequency in which they appear.

SELECT ?predicate (COUNT (?predicate) AS ?count)

FROM <http://anzograph.com/tickit>

WHERE {

?s ?predicate ?o .

}

GROUP BY ?predicate

ORDER BY DESC(?count)

predicate | count

--+---------

http://anzograph.com/tickit/friend | 1445832

http://www.w3.org/1999/02/22-rdf-syntax-ns#type | 424319

http://anzograph.com/tickit/dateid | 373751

http://anzograph.com/tickit/sellerid | 364953

http://anzograph.com/tickit/eventid | 364953

http://anzograph.com/tickit/numtickets | 192497

http://anzograph.com/tickit/listtime | 192497

http://anzograph.com/tickit/priceperticket | 192497

http://anzograph.com/tickit/totalprice | 192497

http://anzograph.com/tickit/qtysold | 172456

http://anzograph.com/tickit/buyerid | 172456

http://anzograph.com/tickit/listid | 172456

http://anzograph.com/tickit/commission | 172456

http://anzograph.com/tickit/saletime | 172456

http://anzograph.com/tickit/pricepaid | 172456

http://anzograph.com/tickit/dislike | 121038

http://anzograph.com/tickit/like | 120911

http://anzograph.com/tickit/city | 49990

http://anzograph.com/tickit/phone | 49990

http://anzograph.com/tickit/state | 49990

http://anzograph.com/tickit/email | 49990

http://anzograph.com/tickit/lastname | 49990

Exploring Your Data 142

http://anzograph.com/tickit/ssn | 49990

http://anzograph.com/tickit/firstname | 49990

http://anzograph.com/tickit/card | 49990

http://anzograph.com/tickit/birthday | 49990

http://anzograph.com/tickit/starttime | 8798

http://anzograph.com/tickit/venueid | 8798

http://anzograph.com/tickit/catid | 8798

http://anzograph.com/tickit/eventname | 8798

http://anzograph.com/tickit/year | 365

http://anzograph.com/tickit/week | 365

http://anzograph.com/tickit/holiday | 365

http://anzograph.com/tickit/caldate | 365

http://anzograph.com/tickit/day | 365

http://anzograph.com/tickit/qtr | 365

http://anzograph.com/tickit/month | 365

http://anzograph.com/tickit/venuecitypop | 202

http://anzograph.com/tickit/venuestate | 202

http://anzograph.com/tickit/venuecity | 202

http://anzograph.com/tickit/venuename | 202

http://anzograph.com/tickit/venueseatspct | 58

http://anzograph.com/tickit/venueseats | 58

http://anzograph.com/tickit/catdesc | 11

http://anzograph.com/tickit/catgroup | 11

http://anzograph.com/tickit/catname | 11

46 rows

How do I find symmetric predicates?

Another part of analyzing a new data set is understanding how the predicates are used. Predicates

can be used in a symmetric way, for example, Ted knows Bob and Bob knows Ted. The following

query finds the predicates in the sample Tickit data set that have symmetry and returns a count of

the number of times that predicate is used symmetrically:

SELECT ?symmetricPredicate (COUNT (?symmetricPredicate) AS ?count)

FROM <http://anzograph.com/tickit>

WHERE {

?s ?symmetricPredicate ?o .

?o ?symmetricPredicate ?s .

}

GROUP BY ?symmetricPredicate

Exploring Your Data 143

symmetricPredicate | count

-----------------------------------+---------

http://anzograph.com/tickit/friend | 1293290

1 rows

Understanding Your Data as a Graph

This topic provides information about common questions to ask when getting to know your data as a

graph.

l How do I find the most connected people?

l What is the size of a person's network?

l What is the density of the social network?

l Who has the most friends who know each other?

How do I find the most connected people?

Graphs are often used to represent social behavior and social relationships. For example, the

following triple represents that person12595 is a friend of person2:

<http://anzograph.com/tickit/person2> <http://anzograph.com/tickit/friend>

<http://anzograph.com/tickit/person12595>

A common task in social network analytics is to find out how connected are people in the social

graph and who is the most connected. These questions are answered by computing the social

network degree. People who have high network degree are the hubs of the social network. The

following query demonstrates this by counting the number of friend relationships each person has in

the sample Tickit data set. This query lists the top ten most connected people in the tickit graph:

SELECT ?person (COUNT(?friend) AS ?friendDegree)

FROM <http://anzograph.com/tickit>

WHERE {

?person <http://anzograph.com/tickit/friend> ?friend

}

GROUP BY ?person

ORDER BY DESC(?friendDegree)

LIMIT 10

Understanding Your Data as a Graph 144

person | friendDegree

--+--------------

http://anzograph.com/tickit/person34862 | 59

http://anzograph.com/tickit/person12763 | 57

http://anzograph.com/tickit/person7815 | 56

http://anzograph.com/tickit/person30165 | 56

http://anzograph.com/tickit/person16101 | 55

http://anzograph.com/tickit/person33352 | 55

http://anzograph.com/tickit/person29660 | 54

http://anzograph.com/tickit/person32511 | 54

http://anzograph.com/tickit/person17806 | 54

http://anzograph.com/tickit/person23501 | 53

10 rows

What is the size of a person's network?

The size of a person's network is usually computed out to two generations: the people a person

knows and the people who those people know. The following query computes the size of person2's

network in the sample Tickit data set. The COUNT expression subtracts 1 to remove person2 from

the count:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT (COUNT(?friend)-1 AS ?networkSize)

FROM <http://anzograph.com/tickit>

WHERE {

{ SELECT DISTINCT ?friend

WHERE {

{ tickit:person2 tickit:friend ?friend . }

UNION

{ tickit:person2 tickit:friend ?friend1 .

?friend1 tickit:friend ?friend . }

}

}

}

networkSize

969

1 rows

Understanding Your Data as a Graph 145

What is the density of the social network?

Network density measures whether a network is well-connected. When the network density equals

1, it indicates a clique: everyone is connected to everyone else. Compute network density by finding

the ratio of the number of edges to the number of possible edges in a graph. You can use density for

comparing different social networks or different regions within a social network.

The following example uses the friend relationships in the sample Tickit data set to determine the

social graph density of the tickit graph. The number of edges is the number of triples that contain

friend as a predicate. The number of possible friend relationships is n(n-1) where n is the number of

people in Tickit.

SELECT (?nrEdges/(?nrNodes *(?nrNodes - 1.0)) AS ?graphDensity)

FROM <http://anzograph.com/tickit>

WHERE {

{ SELECT (COUNT (*) AS ?nrEdges) (COUNT (DISTINCT ?person) AS ?nrNodes)

WHERE { ?person <http://anzograph.com/tickit/friend> ?anotherPerson . }

}

}

graphDensity

0.000578576

1 rows

Who has the most friends who know each other?

To find the most important people in a network, you can analyze how well-connected each person

is. People are well-connected when their friends know each other. This is called a clique-to-triad.

The following example identifies and counts triads to find the people in the sample Tickit data set

who have the most friends who know each other. This query uses the friend relationship to rank the

top ten people by the number of triads:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?person (COUNT (*) AS ?triads)

FROM <http://anzograph.com/tickit>

WHERE {

{ SELECT DISTINCT ?person ?anotherPerson ?yetAnotherPerson

WHERE { ?person tickit:friend ?anotherPerson .

?person tickit:friend ?yetAnotherPerson .

Understanding Your Data as a Graph 146

?anotherPerson tickit:friend ?yetAnotherPerson .

}

}

}

GROUP BY ?person

ORDER BY desc(?triads)

LIMIT 10

person | triads

--+--------

http://anzograph.com/tickit/person44119 | 10

http://anzograph.com/tickit/person11134 | 9

http://anzograph.com/tickit/person43985 | 9

http://anzograph.com/tickit/person38821 | 8

http://anzograph.com/tickit/person24700 | 8

http://anzograph.com/tickit/person20029 | 8

http://anzograph.com/tickit/person13256 | 8

http://anzograph.com/tickit/person20305 | 8

http://anzograph.com/tickit/person29822 | 8

http://anzograph.com/tickit/person29184 | 8

10 rows

Understanding Your Data as a Graph 147

Sample Data and Tutorials

The topics in this section describe the sample data sets and provide tutorials to help familiarize you

with Graph Lakehouse and the SPARQL and Cypher query languages.

In this section:
Working with SPARQL and the Tickit Data 149

Working with Cypher and the Movie Data 166

Sample Data and Tutorials 148

Working with SPARQL and the Tickit Data

This topic provides information about loading the Tickit demo data and running the example queries.

You can also load the data and run queries using the interactive Graph Lakehouse Tutorial

notebook as described in Zeppelin Notebook Integration or you can copy the queries in this topic

and run them in the Graph Lakehouse Query Console, command line interface, or another interface.

l Loading the Tickit Data

l Getting to Know the Tickit Data

l Running the Tickit Queries

Loading the Tickit Data

The Tickit data set captures sales activity for a fictional Tickit website where people buy and sell

tickets for sporting events, shows, and concerts. The example queries for this data set include

detailed explanations of the query syntax. The goal is to help guide you through learning about the

SPARQL language and concepts as well as demonstrate different analytic use cases.

The following query loads the files in the tickit.ttl.gz directory that is included with your deployment

on the Graph Lakehouse file system.

LOAD <dir:/<install_path>/etc/tickit.ttl.gz>

INTO GRAPH <http://anzograph.com/tickit>

Where <install_path> is the path to the Graph Lakehouse installation directory. For example, in a

container deployment, the install path is /opt/anzograph:

LOAD <dir:/opt/anzograph/etc/tickit.ttl.gz>

INTO GRAPH <http://anzograph.com/tickit>

The default installation path for a RHEL/Rocky deployment with the installer is

/opt/altair/anzograph. If you specified a different install location, change the following query

as needed.

LOAD <dir:/opt/altair/anzograph/etc/tickit.ttl.gz>

INTO GRAPH <http://anzograph.com/tickit>

When the load completes, you can run this query to return the total number of triples in the data set:

Working with SPARQL and the Tickit Data 149

SELECT (count(*) as ?number_of_triples)

FROM <http://anzograph.com/tickit>

WHERE { ?s ?p ?o }

For more information about loading data from RDF files, see Load RDF Data from Files.

Getting to Know the Tickit Data

The Tickit data set captures sales activity for the fictional Tickit website where people buy and sell

tickets for sporting events, shows, and concerts. The data consists of person, venue, category,

date, event, listing, and sales information. By identifying ticket movement over time, success rates

for sellers, the best-selling events and venues, and the most profitable times of the year, analysts

can use this data to determine what incentives to offer, how to attract new people, and how to drive

advertising and promotions.

To help familiarize you with the data set, the following diagram shows the model or ontology for the

tickit graph. Circles represent subjects or classes of data and rectangles represent properties.

To help familiarize you with the triples in the tickit graph, the diagram below shows an instance of a

subset of the triples in the graph.

Working with SPARQL and the Tickit Data 150

Running the Tickit Queries

This section describes each of the Tickit queries and includes detailed explanations of the query

syntax. Queries are grouped into categories such as "The Basics," which covers introductory

SPARQL concepts, and "Marketing," "Social Graph," and "Fraud," which demonstrate analytic use

cases.

l The Basics

l Marketing

l Social Graph

l Fraud

l Finance

The Basics

The basic queries provide guidance for users who are new to the SPARQL query language. These

queries demonstrate introductory SPARQL concepts such as fetching and filtering, traversing

graphs by joining data, using aggregate functions, and writing subqueries.

Working with SPARQL and the Tickit Data 151

l Fetching and Filtering

l Graph Traversal

l Aggregation

l Subqueries

Fetching and Filtering

The query below fetches the predicates and objects for a specific person.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?predicate ?object

FROM <http://anzograph.com/tickit>

WHERE {

tickit:person49158 ?predicate ?object .

}

ORDER BY ?predicate

l The SELECT list asks for all of the predicates and objects: SELECT ?predicate

?object.

l The WHERE clause narrows the results to return just the predicates and objects that are

related to person49158: WHERE { tickit:person49158 ?predicate ?object }.

l The ORDER BY clause orders the results by predicate name. By default ORDER BY lists

results in ascending order. Since the results for ?predicate are string values, the results are

in alphabetical order. To reverse the results to descending order, you can change ORDER BY

?predicate to ORDER BY DESC(?predicate).

Graph Traversal

The query below reports where and when events take place by traversing the tickit graph and

creating joins between different classes in the tickit model.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?eventname ?location ?date

FROM <http://anzograph.com/tickit>

WHERE {

?eventid tickit:venueid ?venueid .

?venueid tickit:venuename ?location .

Working with SPARQL and the Tickit Data 152

?eventid tickit:dateid ?dateid .

?dateid tickit:caldate ?date .

?eventid tickit:eventname ?eventname .

}

ORDER BY ?date ?eventname ?location

LIMIT 100

Since the location information for events exists in the venue class and the date data for events

exists in the date class, the event, venue, and date data are joined to report on the location and date

for the events.

For example, the following two triples join event ID to location using the venue ID for each event:

?eventid tickit:venueid ?venueid .

?venueid tickit:venuename ?location .

And these triples join the event ID to the calendar date using the date ID:

?eventid tickit:dateid ?dateid .

?dateid tickit:caldate ?date .

Aggregation

The query below uses the COUNT SPARQL aggregate function to count the number of times each

event occurs.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?event_name (count(*) as ?count)

FROM <http://anzograph.com/tickit>

WHERE {

?event tickit:eventname ?event_name

}

GROUP BY ?event_name

ORDER BY desc(?count) ?event_name

LIMIT 10

l The aggregate function in the SELECT list ((count(*) as ?count)) counts the event

names (?event_name) produced by the WHERE clause.

Working with SPARQL and the Tickit Data 153

l Since the query includes an aggregate function, a GROUP BY statement (GROUP BY

?event_name) is required to specify any variables in the SELECT list that are not

aggregated.

l By using a LIMIT clause (LIMIT 10), the query reports only the 10 events that occurred

most frequently.

Subqueries

The query below uses a subquery to find the total number of tickets sold, price paid, and

commission paid for each event and then determine profit for each event.

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?event ?tickets ((?total_paid - ?commission_paid) as ?profit)

FROM <http://anzograph.com/tickit>

WHERE {

SELECT ?event (sum(?qty) as ?tickets) (sum(?comm) as ?commission_paid) (sum(?price)

as ?total_paid)

WHERE {

?sales tickit:qtysold ?qty .

?sales tickit:eventid ?eventid .

?eventid tickit:eventname ?event .

?sales tickit:commission ?comm .

?sales tickit:pricepaid ?price .

}

GROUP BY ?event

}

ORDER BY desc(?profit)

LIMIT 10

l The subquery is processed first. The WHERE clause in the subquery joins sales and event

data to return ticket, commission, and price paid information for each event.

l The SELECT list for the subquery then calculates the sums of the total tickets, commission,

and price paid for each event.

l Because the subquery uses aggregate functions, it requires a GROUP BY statement to

group on the non-aggregate variable (?event) in the SELECT list.

l The top-level SELECT list for the query uses the subquery results to subtract the commission

paid from the total price paid to calculate the profit for each event.

Working with SPARQL and the Tickit Data 154

Marketing

The marketing queries provide analytics that answer questions a user might ask when making event

marketing decisions.

l Most Popular States

l Least Popular Events

l Inventory Aging

Most Popular States

The query below reports on the most popular state to host events based on the number of venues

per state.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?state (count(?venue) as ?total)

FROM <http://anzograph.com/tickit>

WHERE {

?venue tickit:venuestate ?state .

}

GROUP BY ?state

ORDER BY desc(?total) ?state

l The aggregate function in the SELECT list ((count(?venue) as ?count)) counts the

venues (?venue) produced by the WHERE clause.

l Since the query includes an aggregate function, a GROUP BY statement (GROUP BY

?state) is required to group the non-aggregate variable in the SELECT list (?state).

l By ordering the results by total venues in decending order (ORDER BY desc(?total)

?state), the most popular state becomes the first state in the results.

Least Popular Events

The query below determines the most unpopular events by returning the 10 events with the least

number of ticket sales. It also returns the event category.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?event ?category (sum(?qty) as ?total_tickets)

FROM <http://anzograph.com/tickit>

Working with SPARQL and the Tickit Data 155

WHERE {

?sales tickit:qtysold ?qty .

?sales tickit:eventid ?eventid .

?eventid tickit:eventname ?event .

?eventid tickit:catid ?catid .

?catid tickit:catname ?category .

}

GROUP BY ?event ?category

ORDER BY ?total_tickets

LIMIT 10

Like the "Most Popular States" query, this examples uses an aggregate function ((sum(?qty) as

?total_tickets)) to calculate the total tickets for each event.

In the WHERE clause, the following triples join the sales data and event name using the event ID:

?sales tickit:eventid ?eventid .

?eventid tickit:eventname ?event .

And these triples join the event with the category name on category ID:

?eventid tickit:catid ?catid .

?catid tickit:catname ?category .

Since the query uses the SUM aggregate function, the query includes a GROUP BY clause to group

on the non-aggregate variables, ?event and ?category.

Inventory Aging

The query below reports on the 20 events for which tickets took the longest to sell.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?location ?kind ?name ?list_date (((?selldate - ?list_date)) as ?sale_age)

FROM <http://anzograph.com/tickit>

WHERE {

?sale tickit:saletime ?selldate .

?sale tickit:eventid ?event .

?listing tickit:eventid ?event .

?listing tickit:listtime ?list_date .

?event tickit:eventname ?name .

?event tickit:venueid ?venue .

?event tickit:catid ?cat .

?cat tickit:catname ?kind .

Working with SPARQL and the Tickit Data 156

?venue tickit:venuename ?location .

}

ORDER BY desc(?selldate) desc(?list_date) ?location ?kind ?name

LIMIT 20

l In the WHERE clause, the query traverses the sales, listing, event, category, and venue

classes.

l In the SELECT list, the query calculates the duration of the sale time by subtracting the listing

date from the sale date: ((?selldate - ?list_date) as ?sale_age).

Social Graph

The social graph queries focus on finding connections between the people (buyers and sellers) in

the tickit graph.

l Event Partners

l Potential Event Partners

Event Partners

The query below finds 20 pairs of friends who went to the same event most often.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT (count(*) as ?gone_together) ?name1 ?name2

FROM <http://anzograph.com/tickit>

WHERE {

?sale1 tickit:buyerid ?person1 .

?sale1 tickit:eventid ?event .

?person1 tickit:friend ?person2 .

?person1 tickit:firstname ?first1 .

?person1 tickit:lastname ?last1 .

BIND(CONCAT(?first1, " ", ?last1) AS ?name1)

?sale2 tickit:buyerid ?person2 .

?sale2 tickit:eventid ?event .

?person2 tickit:firstname ?first2 .

?person2 tickit:lastname ?last2 .

BIND(CONCAT(?first2, " ", ?last2) AS ?name2)

FILTER (?name2 > ?name1)

}

GROUP BY ?name1 ?name2

Working with SPARQL and the Tickit Data 157

ORDER BY desc(?gone_together) ?name1 ?name2

LIMIT 20

l In the WHERE clause, the query traverses the sales, event, and person classes. The

following triples find the events for which person1 bought tickets:

?sale1 tickit:buyerid ?person1 .

?sale1 tickit:eventid ?event .

l The ?person1 <friend> ?person2 triple narrows the results to people who are friends of

person2.

l To simplify the query's resulting columns, the CONCAT function is used to concatenate the

first and last name of person1: BIND(CONCAT(?first1, " ", ?last1) AS ?name1).

It also adds a space between the first and last name. And the BIND function binds the

concatenated name to the variable name1.

l Similar to the first group of triples for person1, the triples for person2 find the events for which

person2 bought tickets.

l The FILTER (FILTER (?name2 > ?name1)) is also used to simplify or clean the results

to do an ASCII comparison of name1 and name2 to omit duplicate pairs such the following

examples:

"Joe Smith" <http://anzograph.com/tickit/friend> "Bob Jones"

"Bob Jones" <http://anzograph.com/tickit/friend> "Joe Smith"

Since the filter states that name2 is greater than name1, the results will list only one version

of the triple, the one where name2 comes later in the alphabet than name1.

l Finally, the SELECT list uses the COUNT aggregate function to count the number of times

person1 and person2 bought tickets to the same event. Use of the aggregate function

requires the GROUP BY clause to group on name1 and name2.

Potential Event Partners

The query below reports on people who might attend musicals together. This query uses the same

concepts as the previous query, "Event Partners." The query also traverses the sales, event, and

person classes, but finds pairs of friends who know someone who bought tickets to one or more

Working with SPARQL and the Tickit Data 158

musicals.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT (count(*) as ?know_buyer) ?name1 ?name2

FROM <http://anzograph.com/tickit>

WHERE {

?sale1 tickit:buyerid ?buyer .

?sale1 tickit:eventid ?event .

?buyer tickit:friend ?person2 .

?buyer tickit:friend ?person1 .

?person1 tickit:firstname ?first1 .

?person1 tickit:lastname ?last1 .

BIND(CONCAT(?first1, " ", ?last1) AS ?name1)

?person2 tickit:firstname ?first2 .

?person2 tickit:lastname ?last2 .

BIND(CONCAT(?first2, " ", ?last2) AS ?name2)

?event tickit:catid ?cat .

?cat tickit:catname "Musicals" .

FILTER (?name2 > ?name1)

}

GROUP BY ?name1 ?name2

ORDER BY desc(?know_buyer) ?name1 ?name2

LIMIT 20

l In the WHERE clause, the first 8 triples find the person (?buyer) who bought tickets to events

and the names of two people who are friends of the buyer.

l The last 2 triples narrow the results to list only the events in the category "Musicals":

?event tickit:catid ?cat .

?cat tickit:catname "Musicals" .

l Like the Event Partners query, the FILTER eliminates duplicate but reversed triples from the

results.

l In the SELECT list, the COUNT function counts the number of times person1 and person2

knew the person who bought tickets to an event.

Fraud

The fraud queries focus on finding problematic sales or people in the tickit graph, such as identity

thieves and ticket scalpers.

Working with SPARQL and the Tickit Data 159

l Possible Ticket Scalpers

l People with the Same SSN

l Tickets Sold by Possible Identity Thieves

l Tickets Sold by Friends of Possible Identity Thieves

Possible Ticket Scalpers

The query below identifies possible ticket scalpers by calculating the average price per ticket for

events and then finding cases where tickets are listed for a higher price.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?sellername ?avg_price ?priceperticket ?eventname ?listtime

FROM <http://anzograph.com/tickit>

WHERE {

{ SELECT ?eventname (avg(?priceperticket) as ?avg_price)

WHERE {

?listing tickit:eventid ?eventid .

?eventid tickit:eventname ?eventname .

?listing tickit:priceperticket ?priceperticket .

}

GROUP BY ?eventname

}

?listing tickit:listtime ?listtime .

?listing tickit:priceperticket ?priceperticket .

?listing tickit:sellerid ?seller .

?seller tickit:firstname ?firstname .

?seller tickit:lastname ?lastname .

BIND(CONCAT(?firstname, " ", ?lastname) AS ?sellername)

FILTER (?priceperticket > ?avg_price)

}

ORDER BY desc(?priceperticket) ?sellername ?eventname

LIMIT 1000

l The WHERE clause includes a subquery to calculate the average price of tickets for each

event listing. Since subqueries are processed first, that calculation (?avg_price) becomes

available to use for comparing with all of the prices listed by sellers.

l Below the subquery, the other triples in the WHERE clause return the price per ticket and

seller name for each listing. The FILTER (FILTER (?priceperticket > ?avg_price))

Working with SPARQL and the Tickit Data 160

narrows the results to return just the listings where the price per ticket is greater than the

average price for that listing.

People with the Same SSN

The query below reveals potential identity thieves by reporting on people who have the same social

security number but different names.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?first1 ?last1 ?sameSSN ?first2 ?last2

FROM <http://anzograph.com/tickit>

WHERE {

?person1 tickit:ssn ?sameSSN .

?person1 tickit:firstname ?first1 .

?person1 tickit:lastname ?last1 .

?person2 tickit:ssn ?sameSSN .

?person2 tickit:firstname ?first2 .

?person2 tickit:lastname ?last2 .

FILTER (str(?person1) > str(?person2))

}

ORDER by ?sameSSN

LIMIT 100

l The WHERE clause includes triples to compare the first name, last name, and social security

number for the people in the person class. Using the same variable, sameSSN, for person1

and person2 limits the results to people who have the same SSN.

l The FILTER, like other queries, eliminates duplicate rows in the results. Since this filter

performs the comparison on person1 and person2, which are subjects (URIs) in the tickit

graph, the person URIs are converted to strings using the STR function.

Tickets Sold by Possible Identity Thieves

The query below builds on the previous query, "People with the Same SSN," by reporting on events

where the seller who sold tickets is one of the people who has the same SSN as someone else.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?firstname ?lastname ?eventname ?location ?pricepaid ?date

FROM <http://anzograph.com/tickit>

WHERE {

get all event info

Working with SPARQL and the Tickit Data 161

?eventid tickit:venueid ?venueid .

?venueid tickit:venuename ?location .

?eventid tickit:dateid ?dateid .

?dateid tickit:caldate ?date .

?eventid tickit:eventname ?eventname .

note the sellers

?sales tickit:eventid ?eventid .

?sales tickit:pricepaid ?pricepaid .

?sales tickit:sellerid ?thief .

limit to thieves

?person tickit:ssn ?sameSSN .

?thief tickit:ssn ?sameSSN .

?thief tickit:firstname ?firstname .

?thief tickit:lastname ?lastname .

FILTER (?person != ?thief)

}

ORDER BY ?date ?eventname ?location ?firstname ?lastname ?pricepaid

LIMIT 50

l In the WHERE clause, the first group of triples traverses the venue, event, and date data to

find the location and date for each event.

l The second group of triples joins in the sales data to find the people who sold the tickets to

the events.

l The third group of triples compares people's social security numbers and narrows the list of

sellers to return only the people who have the same SSN.

Tickets Sold by Friends of Possible Identity Thieves

The query below takes the "Tickets Sold by Possible Identity Thieves" query one step further to

report on whether any friends of a possible identity thief sold tickets to events.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?thief_name ?friend_name ?eventname ?location ?pricepaid ?date

FROM <http://anzograph.com/tickit>

WHERE {

get all ticket sales info

?eventid tickit:venueid ?venueid .

?venueid tickit:venuename ?location .

?eventid tickit:dateid ?dateid .

?dateid tickit:caldate ?date .

Working with SPARQL and the Tickit Data 162

?eventid tickit:eventname ?eventname .

limit to thieves

?person tickit:ssn ?sameSSN .

?thief tickit:ssn ?sameSSN .

?thief tickit:firstname ?thief_first .

?thief tickit:lastname ?thief_last .

BIND(CONCAT(?thief_first, " ", ?thief_last) AS ?thief_name)

note thieves friends

?friend tickit:friend ?thief .

?friend tickit:firstname ?friend_first.

?friend tickit:lastname ?friend_last .

BIND(CONCAT(?friend_first, " ", ?friend_last) AS ?friend_name)

note the sellers

?sales tickit:eventid ?eventid .

?sales tickit:pricepaid ?pricepaid .

?sales tickit:sellerid ?friend .

FILTER (?person != ?thief)

}

ORDER BY ?date ?eventname ?location ?thief_name ?friend_name ?pricepaid

LIMIT 500

l In the WHERE clause, the first group of triples traverses the venue, event, and date data to

find the location and date for each event.

l The second group of triples compares people's social security numbers to find the names of

people who have the same SSN. To simplify the query's resulting columns, the CONCAT

function is used to concatenate the first and last name of "thief": BIND(CONCAT(?thief_

first, " ", ?thief_last) AS ?thief_name). It also adds a space between the first

and last name. And the BIND function binds the concatenated name to the variable thief_

name.

l The third group of triples finds a list of the friends of people who have the same SSN.

l And the fourth group of triples finds any sales where the seller is one of the friends found by

the third group of triples.

Finance

The finance queries focus on analyzing the financial data in the tickit graph.

Working with SPARQL and the Tickit Data 163

l Big Spenders

l Top Sales People

Big Spenders

The query below finds the 100 people who spent the most on tickets for events.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?first ?last (sum(?dollars) as ?spent)

FROM <http://anzograph.com/tickit>

WHERE {

?person tickit:firstname ?first .

?person tickit:lastname ?last .

?sale tickit:buyerid ?person .

?sale tickit:pricepaid ?dollars

}

GROUP BY ?first ?last

ORDER BY desc(?spent) ?first ?last

LIMIT 100

l The triples in the WHERE clause traverse the person and sales classes, joining on the buyer

ID, to list all of the people who bought tickets and the amount they spent per sale.

l The aggregate function in the SELECT list ((sum(?dollars) as ?spent)) calculates the

sum of all the dollars spent by each person.

l Since the query uses the SUM aggregate function, the query includes a GROUP BY clause to

group on the non-aggregate variables, ?first and ?last.

l To sort the results to list the biggest spenders first, the ORDER BY statement (ORDER BY

desc(?spent) ?first ?last) lists the amount spent in descending order.

Top Sales People

The query below finds the 100 people who made the most money selling tickets.

PREFIX tickit: <http://anzograph.com/tickit>

SELECT ?first ?last ?category (sum(?dollars) as ?earned)

FROM <http://anzograph.com/tickit>

WHERE {

?person tickit:firstname ?first .

?person tickit:lastname ?last .

Working with SPARQL and the Tickit Data 164

?sale tickit:sellerid ?person .

?sale tickit:pricepaid ?dollars .

?sale tickit:eventid ?event .

?event tickit:catid ?cat .

?cat tickit:catname ?category

}

GROUP BY ?first ?last ?category

ORDER BY desc(?earned) ?first ?last ?category

LIMIT 100

l The triples in the WHERE clause traverse the person, event, category, and sales classes to

list all of the people who sold tickets, the amount they earned per sale, and the category of

the events.

l The aggregate function in the SELECT list ((sum(?dollars) as ?earned)) calculates

the sum of all the dollars earned by each person.

l Since the query uses the SUM aggregate function, the query includes a GROUP BY clause to

group on the non-aggregate variables, ?first, ?last, and ?category.

l To sort the results to list the biggest earners first, the ORDER BY statement (ORDER BY

desc(?earned) ?first ?last ?category) lists the amount spent in descending

order.

Working with SPARQL and the Tickit Data 165

Working with Cypher and the Movie Data

This topic provides information about loading the Movies demo data and running example Cypher

queries such as those described in the Neo4j sandbox environment (where the Movies database

originated). The Movies data set is based on the graph database provided in the Neo4j sandbox

environment. For users already familiar with Cypher, using this data set previews Graph Lakehouse

support of the Cypher language. You can run many of the same Cypher commands and queries as

you would in other environments that support Cypher.

This topic demonstrates how you can run Graph Lakehouse queries using Cypher language syntax

if you prefer using Cypher instead of SPARQL.

l Using the Cypher CLI (AZGBOLT)

l Using Bolt Protocol

l Loading Data with Cypher CREATE

l Getting to Know the Movies Data

l Running Cypher Queries

Note
Cypher language support in Graph Lakehouse follows the open Cypher language

specification as described in this Adobe Acrobat PDF document:

https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

Refer to the Cypher Query Language Reference for a complete description of Graph

Lakehouse Cypher language compatibility with the open Cypher language specification.

Cypher® is a registered trademark of Neo4j, Inc.

Using the Cypher CLI (AZGBOLT)

Graph Lakehouse uses the Bolt protocol to provide a client application interface and CLI, azgbolt, to

run Cypher commands and queries. To view the syntax and command line arguments allowed with

the Cypher CLI, simply type azgbolt on a new line and press Enter.

$./<install_path>/bin/azgbolt

Working with Cypher and the Movie Data 166

https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

The azgbolt CLI returns command line syntax and available arguments, along with a sampling of

commonly-used commands and queries:

azgbolt (Bolt CLI) [-c "command"] [-f file] [-h hosturl] [-p port] [-nohead]

[-o outputfile][--help display this message]

For example, the following syntax runs a Cypher query:

azgbolt -c "any query"

Note
When running Cypher commands or queries from the azgbolt CLI, you can use the standard

Linux shell method of escaping any embedded single or double quote characters . For

example, with a character string such as "John Smith", contained within a Cypher query, you

would escape each quotation mark character with the backslash (\) character, for example:

\"John Smith\"

The following example shows the syntax used to run a Cypher query in a file:

azgbolt -f /home/user/match.cql

Using Bolt Protocol

In addition to the azbolt CLI, users can also connect other applications that support the Bolt

protocol to run Cypher queries against Graph Lakehouse data by specifying the Cypher Bolt

protocol port (default 7088) following the Graph Lakehouse host server's IP address. That is:

<host_IP>:<Cypher_port>

Similarly, those same applications can run SPARQL commands and queries by specifying the

SPARQL port (default 7098) following the Graph Lakehouse host server's IP address. That is:

<host_IP>:<SPARQL_port>

Loading Data with Cypher CREATE

Cypher CREATE statements to replicate the original Neo4j Movie dataset in Graph Lakehouse are

available in a file you can download from the following location:

Working with Cypher and the Movie Data 167

movies.cql

After saving the movies.cql file to an accessible location on your Graph Lakehouse server, you

can run the following command to create the Movies dataset in Graph Lakehouse. The

movies.cql file contains a single Cypher statement that includes multiple CREATE IN

<dataset> commands.

azgbolt -f /<filepath>/movies.cql

Note
The IN <dataset> clause is an Graph Lakehouse extension that was added to the standard

Cypher language syntax to allow ingestion of data into a named dataset.

Getting to Know the Movies Data

The Movies dataset captures information about movies and the actors and directors involved with

each of these films. To familiarize you with the Movies dataset, the following diagram shows the

model or ontology for the Movies dataset.

The Movies database has two primary nodes Person and Movie with a number of different

relationship types such as ACTED_IN, WROTE, DIRECTED, and REVIEWED. You can write

Cypher queries to traverse the relationships between Node and Movie instances to retrieve node

property values such as an actor's name or a specific movie's title, its director(s), and other

information.

Working with Cypher and the Movie Data 168

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/movies.cql

Running Cypher Queries

This section provides a brief introduction to the Cypher language. It also demonstrates execution of

some basic sample Cypher queries run against Movie data stored in Graph Lakehouse. Like

SPARQL, the Cypher language is especially designed for working with graph data and shares some

similarities with SQL, with many SQL-like clauses and operations. The primary method of querying

data with Cypher uses the MATCH command keyword.

This first query simply returns all nodes with a specified label (people). In this case, it returns the

name of all people in the Movies dataset.

MATCH (people:Person)RETURN people.name ;

Note
Cypher keywords are case-insensitive, however, relationship types and property value are

case-sensitive.

A second simple query returns all movie titles in the Movies dataset.

MATCH (films:Movie)RETURN films.title ;

Of course, Cypher supports more complex query operations that take full advantage of the

relationships between entities or nodes that graph databases are able to capture. These capabilities

involve fetching and filtering data, traversing graphs by joining data, using aggregate functions, and

writing subqueries.

In addition, you may include any of the standard Graph Lakehouse built-in functions in Cypher

queries.

Like SPARQL, MATCH statements provides options to specify patterns that Cypher will search for

in the database. You can use labels and specify pattern restrictions based on specific relationship

types and direction and use a WHERE clause to further filter results that a query returns. For

example, using Tom Hanks as an example, you could run the following query to return a list of

movies in which Tom acted in.

Working with Cypher and the Movie Data 169

MATCH (actor:Person)-[:ACTED_IN]-(film:Movie) WHERE actor.name='Tom Hanks' RETURN

actor.name, film.title ;

The following diagram shows a graphic representation of nodes and relationship types in the Movies

dataset using Tom Hanks, both an actor and director, as an example:

To further traverse the relationship between nodes in the Movies dataset, you could run the

following query.

MATCH (actor:Person)-[:ACTED_IN]-(film:Movie), (director:Person)-[:DIRECTED]-

(film:Movie)

WHERE actor.name='Tom Hanks' RETURN actor.name, film.title, director.name ;

In this example, the MATCH pattern identifies and returns all the directors of Movies in which Tom

Hanks acted.

Working with Cypher and the Movie Data 170

Note
For more information on the Cypher language, see the opencypher.org project web site and

the Cypher Query Language Reference available at

https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf. Refer to the Cypher

Query Language Reference for a complete description of Graph Lakehouse Cypher language

compatibility with the open Cypher language specification.

Working with Cypher and the Movie Data 171

http://opencypher.org/
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

Load & Manage Data

Graph Lakehouse supports loading data from RDF and non-RDF files, HTTP/REST endpoints, and

relational databases via JDBC connections. The topics in this section describe the ways to load and

manage your data.

In this section:
Load RDF Data from Files 173

Load or Virtualize Non-RDF Sources with SPARQL Queries 187

Use a Query Context 401

Create a Labeled Property Graph (RDF-star) 405

Infer New Data (RDFS+ Inferencing) 424

Validate Data with SHACL (Preview) 436

Copy Graphs to Files 465

Schedule Automated Data Updates 468

Load & Manage Data 172

Load RDF Data from Files

The topics in this section provide instructions for loading data to Graph Lakehouse from files that

are in RDF format: Turtle, N-Triple, N-Quad, TriG, or JSON-LD. RDF files are loaded in parallel

using Graph Lakehouse's IO Load service, which enables Graph Lakehouse to read (and write)

encrypted or non-encrypted data from remote file storage systems like Amazon, Google, and Azure

object stores as well as web servers and network file systems. If you have local triple or quad files,

you can also load data using the native SPARQL LOAD query. This section also includes

information about file system and directory requirements as well as details about data type

handling.

Note
For information about loading data from non-RDF data sources, see Load or Virtualize Non-

RDF Sources with SPARQL Queries.

In this section:
RDF Load File Requirements 174

Data Type Handling 177

Load RDF Files with the IO Load Service 179

Load Local RDF Files with SPARQL LOAD 183

Load RDF Data from Files 173

RDF Load File Requirements

Graph Lakehouse supports loading RDF data from files on the Graph Lakehouse file system, on a

remote web server or object store, or on a mounted file system. You can load data from a single file

or multiple files in a directory. This topic provides details about the supported load file types, file

storage systems, and load directory requirements.

l Supported RDF File Types

l Supported File Systems

l Directory Name Requirements

l Note on URI Limitations

Supported RDF File Types

Graph Lakehouse supports the following RDF load file types. See Introduction to the Graph Data

Interface for information about supported non-RDF data sources.

l Turtle (.ttl file type): Terse RDF Triple Language that writes an RDF graph in compact form.

l N-Triple (.n3 and .nt file types): A subset of Turtle known as simple triples.

l N-Quad (.nq and .quads file types): N-Triples with a blank node or graph designation.

l TriG (.trig file type): An extension of Turtle that supports representing a complete RDF data

set.

l JSON-LD (.jsonld file type): A method of encoding linked data using JSON. JSON-LD files

are supported for loading via the IO services. JSON-LD is not supported by SPARQL LOAD

queries.

You can compress any of the supported file types and load the compressed files into the database.

The supported compression types are GZIP and ZST when using the IO services or GZIP when

using SPARQL LOAD.

RDF Load File Requirements 174

The Graph Lakehouse IO Load service supports decryption of load files using the Advanced

Encryption Standard (AES). Cipher Block Chaining (CBC) and Galois/Counter Mode (GCM) with

standard key sizes 128, 192, and 256 bits are supported.

Supported File Systems

When you have multiple files, Graph Lakehouse loads the files in parallel, using all available cores

on all servers in the cluster. While you can load files stored on the leader node's local file system, for

optimal performance, it is important to use a shared file system to ensure that all servers in the

cluster have access to the files. In a Docker or Kubernetes container environment, the storage

system should also be shared with the container file system.

The list below describes the supported file storage systems:

l Network File Systems (NFS) Version 4 or later

l Amazon Simple Cloud Storage Service (S3) object store

l Google Cloud Platform (GCP) object store

l Microsoft Azure Blob Storage

l Microsoft Azure WebDAV

l Web Server

Directory Name Requirements

In order to load a directory of files, the files must be organized in directories by file extension type,

and the file type extension must be included in the name of the directory. For example, place TTL

files in a <name>.ttl directory, place TRIG files in a <name>.trig directory, place NQ files in a

<name>.nq directory, and so on. If the files in the directory are compressed (gzipped), add .gz to
the directory name. For example, for a directory of gzipped TTL files, <name>.ttl.gz.

RDF Load File Requirements 175

Note on URI Limitations

Important
Graph Lakehouse supports a maximum URI length of 16K characters. In addition, there is a

limit of 64K on the number of unique predicate and graph URIs that can be stored in Graph
Lakehouse. If the total number of unique predicate and graph URIs exceeds the 64K limit, the

load operation that exceeds the limit will fail and Graph Lakehouse returns the message m_

lowest_unused_index <= a_max_value().

RDF Load File Requirements 176

Data Type Handling

Graph Lakehouse natively supports the following RDF data types. Literal values with types that are

not included in the table below are treated as "user-defined" types. User-defined types are stored as

strings and can be cast to supported types as needed to perform analytic operations.

Data Type Description

xsd:boolean For true or false values. Regardless of whether the input value is "true" or
"false" or "0" or "1," Graph Lakehouse stores and displays "t" for true and "f" for
false.

Note
To use 1 and 0 for true and false, you must specify the xsd:boolean

type in the load file. Otherwise the system assumes these values are

integers.

xsd:byte For 1-byte integers from -128 to 127.

xsd:date For date values that follow a format such as YYYY-MM-DD. You can also
include timezone indicators in xsd:date values.

xsd:dateTime 8-byte date and time values that follow a format such as YYYY-MM-
DDThh:mm:ss. You can also include timezone indicators in xsd:dateTime
values.

xsd:double 8-byte double floating point values.

Note
Decimal values are converted to xsd:double in Graph Lakehouse.

xsd:duration Duration of time expressed as a number of years, months, days, hours,
minutes, and seconds in a format such as PnYnMnDTnHnMnS.

Data Type Handling 177

Data Type Description

xsd:float 4-byte floating point values with potential decimal places.

xsd:int 4-byte integers for values from -2,147,483,648 to 2,147,483,647.

xsd:long 8-byte integers for values from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

xsd:short 2-byte integers for values from -32,768 to 32,767.

xsd:string Character values of varying length, up to 2 MB in size. 2 MB holds
approximately 2 million characters.

Note
To load data that contains strings that are longer than 2 MB, enable the

truncate_clob setting. When this setting is enabled, strings that are

larger than 2 MB are automatically truncated to 2 MB.

xsd:time Time values that follow a format such as hh:mm:ss.

Data Type Handling 178

Load RDF Files with the IO Load Service

This topic provides instructions for loading locally- or remotely-stored RDF files to Graph Lakehouse

using the IO Load service. See RDF Load File Requirements for details about the supported file

types, encryption, storage systems, and the directory naming requirements.

For instructions on loading files with SPARQL LOAD queries, see Load Local RDF Files with

SPARQL LOAD.

l Load Service Query Syntax

l Load Service Query Examples

Load Service Query Syntax

The following query syntax shows the structure of a load service query. The clauses, patterns, and

placeholders that are links are described below.

PREFIX io: <http://cambridgesemantics.com/anzograph/io#>

INSERT {

[GRAPH <graph_name> {]

?sub ?pred ?obj

[}]

}

WHERE {

{ SELECT ?sub ?pred ?obj .

WHERE {

SERVICE io:load('<protocol://path_to_files[,protocol://path_to_files][,...]>'){}

.

}

}

}

Option Description

GRAPH
<graph_
name>

This clause is optional. When loading files such as Turtle or N-Triple files without
graph specifications, include this optional clause to specify the graph to load data
into. If the graph does not exist, Graph Lakehouse automatically creates it and then
loads the data into it. If you do not specify a graph, the data is loaded to the default

Load RDF Files with the IO Load Service 179

Option Description

graph.

You can also include the GRAPH clause when loading quad files. If the quad

files contain a mixture of quads and triples, Graph Lakehouse loads the triples

into the specified graph. Quads are still loaded according to their graph

specification. If you omit this option for quad files, any triples without graph

specifications are loaded into the default graph.

?sub ?pred
?obj

This triple pattern is required and the variable names must be ?sub ?pred ?obj.
The WHERE clause requires a subquery that selects the same triple pattern.

SERVICE
io:load

This is the required call to the IO load service. If your query omits the PREFIX
clause, include the full URI in the call: SERVICE
<http://cambridgesemantics.com/anzograph/io#load>.

protocol The service call includes a URI that specifies the load protocol to use and the path
to the load file or directory of files. The protocol that you specify depends on the
type of file system that hosts the files:

l Local File System: Specify file to access files that are stored on the
local Graph Lakehouse file system or a file system that is mounted to the

Graph Lakehouse servers. Including the file:// protocol is optional.

When files are locally accessible, you can omit the protocol and specify

only the path to the file or directory.

l NFS: Specify nfs to access files on an NFS that is not mounted to the

Graph Lakehouse servers.

l Web Server: Specify http or https (for SSL connections) to access files
on a web server.

l Amazon S3: Specify s3 or s3crt to access files on S3. Using s3crt is
recommended when loading extremely large files. The S3CrtClient

Load RDF Files with the IO Load Service 180

Option Description

improves the throughput for transfers of large files to and from Amazon

S3. For more information about s3crt, see Using S3CrtClient for Amazon

S3 operations in the AWS documentation.

l Google Storage: Specify gs to access files on Google storage.

l Azure Storage: Specify az to access files on Azure blob storage.

l Azure WebDAV: Specify webdav or webdavs (for SSL connections) to
access files on Azure WebDAV.

path_to_
files

After the protocol in the service call URI, specify server connection details, if
necessary, and the path to the load file or directory of files. When loading a
directory of files, make sure the directory name includes the same file type
extension as the files in the directory (see Directory Name Requirements for more
information).

Graph Lakehouse loads all valid files in that directory as well as any

subdirectories. Hidden files that are named with a leading period, such as

.file.ttl, are not loaded. See Protocol and Path Examples below for

example URIs.

Protocol and Path Examples

The following example URI, loads a directory of compressed TTL files from Amazon S3:

<s3://shared-data/load-files/emr.ttl.gz>

The example below connects to an NFS that is not mounted and loads a single NT file:

<nfs://10.10.100.10/shared-data/load-files/rdf/sales-2022.nt>

This example loads a TTL file from a Google object store and another TTL file from a web server:

<gs://shared-data/load-files/emr-

data.ttl/patients.ttl,https://10.30.103.3/emr/medications.ttl>

Load RDF Files with the IO Load Service 181

https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/examples-s3-crt.html
https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/examples-s3-crt.html

The following two examples load a directory of compressed TTL files from the Graph Lakehouse file

system. The second example omits the file:// protocol since it is optional:

<file:///opt/data/airlines/airline-data.ttl.gz>

</opt/data/airlines/airline-data.ttl.gz>

Load Service Query Examples

The example query below loads a directory of compressed TTL files from an Azure blob store:

PREFIX io: <http://cambridgesemantics.com/anzograph/io#>

INSERT {

GRAPH <http://anzograph.com/emr> {

?sub ?pred ?obj

}

}

WHERE {

{ SELECT ?sub ?pred ?obj .

WHERE {

SERVICE io:load('<az://shared-data/load-files/emr.ttl.gz>'){} .

}

}

}

This query loads a directory of compressed N3 files from Amazon S3:

PREFIX io: <http://cambridgesemantics.com/anzograph/io#>

INSERT {

GRAPH <http://anzograph.com/sales> {

?sub ?pred ?obj

}

}

WHERE {

{ SELECT ?sub ?pred ?obj .

WHERE {

SERVICE io:load('<s3://shared-data/load-files/sales.ttl.n3>'){} .

}

}

}

Load RDF Files with the IO Load Service 182

Load Local RDF Files with SPARQL LOAD

If you have Turtle, N-Triple, N-Quad, or TriG files on the local Graph Lakehouse file system or a

mounted NFS, you have the option to load the data by running a native SPARQL LOAD query. For

instructions on loading RDF files from a remote store, such as cloud object storage or a web server,

see Load RDF Files with the IO Load Service.

This topic lists the syntax to use for SPARQL LOAD queries and provides some examples to follow.

l LOAD Syntax

l LOAD Examples

LOAD Syntax

Run the following query to load data from Turtle, N-Triple, N-Quad, or TriG files. The options that

are links are described below.

LOAD [SILENT] [WITH 'global' | 'leader' | 'compute'] <URI> [...<URIn>] [INTO GRAPH

<graph_uri>]

Option Description

SILENT Include this optional keyword if you want Graph Lakehouse to ignore "bad
data" errors during the load. Data issues are problems such as dateTime
values that are incorrectly formatted or strings that are tagged as double data
types. The SILENT keyword does not silence syntax errors in the files. If a file
is ill-formed, such as if it includes invalid characters in place of URIs, Graph
Lakehouse cannot parse the data and the file must be corrected.

When SILENT is omitted, Graph Lakehouse aborts the load upon hitting a

data or syntax error and reports the error to the client. When SILENT is

included and Graph Lakehouse encounters an error with the data, it logs the

error to a graph and proceeds with the load. By default, any errors are

captured in the <load_errors> graph. After a load completes, you can

query the graph to review errors. To customize the load error graph, you can

change the load_errors_graph system setting. See Change System

Load Local RDF Files with SPARQL LOAD 183

Option Description

Settings for instructions.

Important
When SILENT is specified, the load will still be aborted if there are

syntax errors in the files. Graph Lakehouse cannot parse the data if

there are syntax errors. The file or files must be corrected and loaded

again.

WITH The optional WITH clause can be used to specify which servers in the cluster
have access to the load files. You can choose one of the following options:

l global: Include WITH 'global' when all servers in the cluster will

load a subset of the same files or directories on a mounted file

system. Include this option when every Graph Lakehouse server in

the cluster has visibility to the entire data set. Graph Lakehouse

automatically divides file selection among the servers.

l leader: Include WITH 'leader' when loading files that only the

leader server can access. WITH 'leader' is the default value for

the LOAD query. When the WITH clause is omitted, the load

proceeds as if WITH 'leader' was specified.

l compute: Include WITH 'compute' when all servers will load files

from their local file systems. Use this option if you have arranged the

files so that each Graph Lakehouse server has a unique subset of

files on its local file system.

Note
The leader, compute, and global keywords are case-sensitive. Type

the terms using lower case letters.

Load Local RDF Files with SPARQL LOAD 184

Option Description

URI Required clause that specifies the absolute path to the load file or files. To load
a single file, the scheme of the URI should be file:. To load a directory of
files, the scheme of the URI should be dir:. When loading a directory, make
sure the directory name includes the same file type extension as the files in the
directory, i.e., a directory of TTL files is named name.ttl, a directory of TriG
files is named name.trig, and a directory of NQ files is named name.nq.
When you specify a directory, Graph Lakehouse loads all valid files in that
directory as well as any subdirectories. Graph Lakehouse does not load any
hidden files that are named with a leading period, such as .file.ttl.

For example, the following URI loads a single file from a shared directory:

<file:/shared-files/data/tickit.ttl>

This example URI loads a directory of .ttl.gz files:

<dir:/global/nfs/vpc_nfs_server/data/tickit_all.ttl.gz>

And this example URI statement loads multiple directories of .ttl.gz files:

<dir:/global/nfs/data/tickit_all.ttl.gz>

<dir:/global/nfs/data/movies.ttl.gz>

Note
If you specify more than one URI to load from, each URI must target

the same file type, such as .ttl, .trig, etc. Also each URI must

specify the same scheme, file: or dir:.

INTO GRAPH
<graph_uri>

When loading files such as Turtle or N-Triple files without graph specifications,
include this optional clause to specify the graph to load data into. If the graph
does not exist, the system automatically creates it and then loads the data into
it. If you do not specify a graph, Graph Lakehouse loads data into the default
graph.

Load Local RDF Files with SPARQL LOAD 185

Option Description

Tip
You can also include INTO GRAPH when loading N-Quad files. If the

N-Quad files contain a mixture of quads and triples, Graph Lakehouse

loads the triples into the specified graph. Quads are still loaded

according to their graph specification. If you omit this option for N-

Quad files, any triples without graph specifications are loaded into the

default graph.

LOAD Examples

The following example query loads data from gzipped TTL files in a directory on a mounted file

system. Since all servers in the cluster have access to the file system, WITH 'global' is

specified. The data is loaded into a graph named http://anzograph.com/sales:

LOAD WITH 'global' <dir:/global/nfs/data/sales_data.ttl.gz> INTO GRAPH

<http://anzograph.com/sales>

The example query below loads a shared directory of N-Quad files. Since the files include graph

specifications, the INTO GRAPH clause is omitted:

LOAD WITH 'global' <dir:/global/nfs/data/employees.nq>

Load Local RDF Files with SPARQL LOAD 186

Load or Virtualize Non-RDF Sources with SPARQL Queries

The topics in this section provide information about exploring, analyzing, virtualizing, and loading

non-RDF data by writing federated SPARQL queries that invoke the Graph Data Interface (GDI), a

plugin that enables you to connect directly to sources and control all aspects of the extract, load,

and transform process. Depending on the type of query you write, you can load data into Graph

Lakehouse or create a virtual graph that accesses the source only when it is needed without

ingesting the data.

In this section:
Introduction to the Graph Data Interface 188

GDI Concepts and Basic Usage 191

Options for Data Types, Data Connections, and Models 256

Advanced Usage by Data Source Type 272

GDI Property Reference 385

Load or Virtualize Non-RDF Sources with SPARQL Queries 187

Introduction to the Graph Data Interface

The Graph Data Interface (GDI) is an extremely flexible and configurable plugin that enables users

to access a variety of data sources via federated SPARQL queries. Depending on the type of query

you write, i.e., whether it is an INSERT query against the GDI service or a CONSTRUCT query

against the view or virtualized service, you can load source data into Graph Lakehouse or create a

virtual graph that accesses the source only when it is needed without ingesting the data into Graph

Lakehouse.

The GDI has built-in, native support for various file format types, HTTP/REST endpoints, and

common database types. Internally, the GDI API has a records-oriented view of data. This view

enables the GDI to bridge graph operations to operations for data in other formats. Though the GDI

views the source as rows in a table, ultimately it has the capability to convert the records to graph

format, enabling the data to be incorporated into data layers to augment existing data.

Tip
When you query a source such as a database, the GDI service leverages that source to

retrieve only the data that it needs for the query. Unlike a JDBC driver, the GDI service does

not need to retrieve all values and then complete an often time-consuming step to filter the

results.

l Supported Data Sources

l Data Source Connections and Authentication

Supported Data Sources

This table below lists the data sources, file systems, and applications that the GDI supports.

Source Description

HTTP/REST
Endpoints

The GDI natively supports reading or ingesting data from HTTP/REST
endpoints.

Databases Altair supplies JDBC drivers for the following databases. For information about

Introduction to the Graph Data Interface 188

Source Description

acquiring additional JDBC drivers for connecting to other databases, contact
your Altair Customer Success manager.

l Databricks

l H2

l IBM DB2

l Microsoft SQL Server

l MariaDB

l Oracle

l PostgreSQL

l SAP Sybase (jTDS)

l Snowflake

File Formats The following file types are supported:

l CSV and TSV

l JSON and NDJSON

l Parquet

l SAS (SAS Transport XPT and SAS7BDAT formats)

l XML

l Raw text format

File Systems The following types of file storage systems are supported:

l Amazon S3

l FTP & FTPS

l Google Cloud Storage

Introduction to the Graph Data Interface 189

Source Description

l HDFS (Kerberized HDFS is not supported at this time.)

l NFS

l SFTP

l WebDAV

Applications Queries against Elasticsearch and Kafka applications are supported.

Data Source Connections and Authentication

When connecting to data sources, connection parameters like keys, tokens, and user credentials

are provided as part of the query that you run against that source. To avoid including sensitive

information in each request, however, Graph Lakehouse provides the option to create and manage

Query Contexts. A context specifies all of the connection details for a source. Queries simply

reference the context so that sensitive information is abstracted from the request. For more

information about contexts, see Use a Query Context.

Introduction to the Graph Data Interface 190

GDI Concepts and Basic Usage

The topics in this section help you get to know the Graph Data Interface (GDI) by introducing you to

the main concepts and giving a general overview of the query syntax, available properties, and

functionality that is applicable across query and data source types.

In this section:
Getting Started with GDI Queries 191

Generating a Knowledge Graph 207

Reading Data Source Metadata 222

Pagination Options 239

Binding and Hierarchy Concepts 243

Incremental Load Concepts 251

Getting Started with GDI Queries

This topic provides details about the structure to use when writing GDI queries. It focuses on the

properties that are common to all types of data sources. It also includes example queries that

demonstrate the data integration capabilities for different types of sources.

Tip
Rather than manually writing complex queries, you can use the GDI to automatically generate

graphs and ontologies by including a few key statements in a relatively simple query. For

information, see Generating a Knowledge Graph.

l GDI Query Syntax

l GDI Query Examples

GDI Query Syntax

The following query syntax shows the structure of a GDI query. The clauses, patterns, and

placeholders that are links are described below.

GDI Concepts and Basic Usage 191

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH <target_graph> {]

triple_patterns

[}]

}

[FROM Clause]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(<target_graph>)

{

?data a s:source_type ;

Based on the source_type, additional connection and input parameters are

available. The options below are valid for all sources. For source-related

options, see the GDI Property Reference.

s:url "string" ;

[s:username "string" ;]

[s:password "string" ;]

[s:timeout int ;]

[s:maxConnections int ;]

[s:batching boolean | int ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

Getting Started with GDI Queries 192

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;]

Mapping variables

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Graph
Lakehouse (INSERT).

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When

Getting Started with GDI Queries 193

Option Type Description

creating a view, use the DataToolkitView service call, as
described below in View SERVICE Clause.

Include the optional TOPDOWN keyword when you want to

pass input values from Graph Lakehouse to the data source.

When you include TOPDOWN in the service call, it indicates

that the rest of the query produces values to send to the source.

In this case, the GDI makes repeated calls to pass in each of the

specified values and retrieve the data that is based on those

values.

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the
data, include the following SERVICE call: SERVICE
<http://cambridgesemantics.com/services/DataTool

kitView>(<target_graph>). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect
the query and determine which filters to push to the data source. It
also limits the result set and retrieves only the data that is needed,
i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

source_type object The ?data a s:source_type triple pattern specifies the type
of data source that the query will run against. For example, ?data
a s:DbSource, specifies that the source type is a database. The
list below describes the available types:

l DbSource to connect to any type of database.

l FileSource for flat files. The supported file types are CSV
and TSV, JSON, NDJSON, XML, Parquet, and SAS (SAS

Transport XPT and SAS7BDAT formats). The GDI

automatically determines the file type from the file

extensions.

Getting Started with GDI Queries 194

Option Type Description

l HttpSource to connect to HTTP endpoints.

l ElasticSource to connect to Elasticsearch indexes on an
Elasticsearch server.

l KafkaSource to connect to Kafka streaming sources.

l MetadataSource for metadata discovery.

Tip
Certain connection and input parameters are available

based on the specified source type. For details about the

options for your source, see GDI Property Reference.

url string This property specifies the URL for the data source, such as the
database URL, Elasticsearch URL, or HTTP endpoint URL. For
file-based sources, the url property specifies the file system
location of the source file or directory of files. When specifying a
directory (such as s:url "/opt/shared-files/loads/"),
the GDI loads all of the file formats it recognizes. To specify a
directory but limit the number or type of files that are read, you can
include the pattern and/or maxDepth properties described in
FileSource Properties.

Important
For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across

queries. See Use a Query Context for more information.

For example, the triple patterns below reference keys from

Getting Started with GDI Queries 195

Option Type Description

a Query Context:

?data a s:DbSource ;

s:url "{{@Somedb.url}}" ;

s:username "{{@Somedb.user}}" ;

s:password "{{@Somedb.password}}" ;

username string If authentication is required to access the source, include this
property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

maxConnection
s

int This property can be used to set a limit on the maximum number of
active connections to the source. For example,
s:maxConnections 16 sets the limit to 16 connections. When
not specified, the default value is 10.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

concurrency int or This property can be included to configure the maximum level of

Getting Started with GDI Queries 196

Option Type Description

RDF list concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more flexibility
in configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Getting Started with GDI Queries 197

Option Type Description

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and
times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees
and Selector Paths.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however, and
you want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for
each source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For

Getting Started with GDI Queries 198

Option Type Description

example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the
foreign key column. For more information about reference, see
Data Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the
formats property, see Data Type Formatting Options.

normalize boolean
and/or
RDF list

To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization
Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

Getting Started with GDI Queries 199

Option Type Description

mapping_
variable

variable The mapping variables, in ?mapping_variable
(["binding"] [datatype] ["datetime_format"])

format, define the triple patterns to output. When the specified
?variablematches the source column name, the GDI uses the
variable as the source data selector. If you specify an alternate
variable name, a binding needs to be specified to map the new
variable to the source. You also have the option to transform the
data using the datatype and datetime_format options.

Note
The parentheses around the binding, data type, and

format specifications are not required but are included in

this document for readability.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,
then the binding is needed to map the new variable to that source
column.

For example for a flat source like CSV, the following pattern

simply binds the source column AIRLINE to the lowercase

variable ?airline: ?airline ("AIRLINE"). For a database

source, this example binds the ?subject variable by navigating

to the SUBJECT column in the FILM table in the dbo schema:

?subject ("dbo.FILM.SUBJECT"). And for an HTTP

source, this example binds the ?time variable to the time object

under the minutely data path: ?time

("minutely.data.time").

Getting Started with GDI Queries 200

Option Type Description

Note
For FileSource and HttpSource, periods (.), forward
slashes (/), and brackets ([]) are parsed as path notation.

Therefore, if a source column name includes any of those

characters they must be escaped in the binding. Use two

backslashes (\\) as an escape character. For example, if a

column name is average/day, the variable and binding
pattern could be written as ?averagePerDay

("average\\/day").

For DbSource, database, schema, and table names in
bindings are parsed according to the specific rules for that

database type. You do not need to escape characters in

database names. However, database names with

characters that do not match (_|A-Z|a-z)(_|A-Z|a-

z|0-9)* should be quoted, such as

("'Adventure.Works'.Sales.'Daily.Totals'").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify

Getting Started with GDI Queries 201

Option Type Description

days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data
has years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed
to 02-04-2099. To specify an alternate base year to use

for two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

"dd-MMM-yy^1990". When one of those values is

specified, 02-04-99 is parsed to 02-04-1999.

GDI Query Examples

The query below reads data from a sample HTTP source that compiles worldwide weather statistics.

The source has several models available for retrieving data that is current, daily, historical, etc. To

target current data, the query includes s:selector "currently" as an input parameter. In

addition, the query demonstrates the use of the "topdown" functionality, where the query sends

values to the source to narrow the results. The query includes the TOPDOWN keyword in the GDI

service call, and the VALUES clause specifies the latitude and longitude values for the cities to

return data for. In addition, since this sample source requires parameters to be specified in the

connection URL, the s:url value includes ?lat and ?long as parameters as part of the value.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

Getting Started with GDI Queries 202

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ex: <http://example.org/ontologies/City#>

SELECT

?city ?state ?summary ?temp ?rainChance

?humidity ?pressure ?windSpeed

WHERE

{

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource ;

s:url "https://sampleEndpoint.com/forecast/{{?lat}},{{?long}}" ;

s:selector "currently" ;

?lat ("latitude") ;

?long ("longitude") ;

?temp ("temperature") ;

?rainChance ("precipProbability") ;

?humidity () ;

?pressure () ;

?windSpeed () .

}

VALUES(?city ?state ?lat ?long)

{

("Lakeway" "TX" 30.374563 -97.975892)

("Boston" "MA" 42.358043 -71.060415)

("Seattle" "WA" 47.590720 -122.307053)

("Chicago" "IL" 41.837741 -87.823296)

("Hilo" "HI" 19.702040 -155.090312)

}

}

ORDER BY ?city

The query returns the following results:

city | state | summary | temp | rainChance | humidity | pressure | windSpeed

--------+-------+---------------+-------+------------+----------+----------+-----------

Boston | MA | Overcast | 79.81 | 0 | 0.6 | 1018.7 | 7.71

Chicago | IL | Clear | 81.7 | 0 | 0.52 | 1021.1 | 5.13

Hilo | HI | Partly Cloudy | 72.6 | 0.13 | 0.79 | 1018.6 | 4.86

Lakeway | TX | Partly Cloudy | 92.43 | 0 | 0.48 | 1013.3 | 10.85

Getting Started with GDI Queries 203

Seattle | WA | Mostly Cloudy | 61.82 | 0 | 0.76 | 1018.2 | 4.57

5 rows

The example below ingests data from a database source using an INSERT query.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX : <http://example.com/ontologies/kl_hosp#>

INSERT

{

GRAPH <http://anzograph.com/orders>

{

?InputEvent_cv a :InputEvent_cv ;

:row_id ?row_id ;

:subject_id ?subject_id ;

:hadm_id ?hadm_id ;

:icustay_id ?icustay_id ;

:charttime ?charttime ;

:itemid ?itemid ;

:amount ?amount ;

:amountuom ?amountuom ;

:rate ?rate ;

:rateuom ?rateuom ;

:storetime ?storetime ;

:cgid ?cgid ;

:orderid ?orderid ;

:linkorderid ?linkorderid ;

:stopped ?stopped ;

:newbottle ?newbottle ;

:originalamount ?originalamount ;

:originalamountuom ?originalamountuom ;

:originalroute ?originalroute ;

:originalrate ?originalrate ;

:originalrateuom ?originalrateuom ;

:originalsite ?originalsite .

}

Getting Started with GDI Queries 204

}

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:DbSource ;

s:url "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.url}}" ;

s:username "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.user}}"

s:password "{{@db.eca4bfa83481f3638b93ab5fdf93ff9a.password}}"

s:selector "kl_hosp_schema.inputevents_cv" ;

?row_id (xsd:int) ;

?subject_id (xsd:int) ;

?hadm_id (xsd:int) ;

?icustay_id (xsd:int) ;

?charttime (xsd:dateTime) ;

?itemid (xsd:int) ;

?amount (xsd:float) ;

?amountuom (xsd:string) ;

?rate (xsd:float) ;

?rateuom (xsd:string) ;

?storetime (xsd:dateTime) ;

?cgid (xsd:int) ;

?orderid (xsd:int) ;

?linkorderid (xsd:int) ;

?stopped (xsd:string) ;

?newbottle (xsd:int) ;

?originalamount (xsd:float) ;

?originalamountuom (xsd:string) ;

?originalroute (xsd:string) ;

?originalrate (xsd:float) ;

?originalrateuom (xsd:string) ;

?originalsite (xsd:string) ;

BIND(IRI("http://example.com/inputevent_cv/{{?row_id}}") AS ?InputEvent_cv)

BIND(IRI("http://example.com/patients/{{?subject_id}}") AS ?patient)

BIND(IRI("http://example.com/admissions/{{?hadm_id}}") AS ?admission)

}

}

The following query ingests airport-related data from a CSV file.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Getting Started with GDI Queries 205

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT

{

GRAPH <http://anzograph.com/airports>

{

?code a <http://anzograph.com/airport> ;

<http://anzograph.com/airport/name> ?name ;

<http://anzograph.com/airport/city> ?city ;

<http://anzograph.com/airport/state> ?state ;

<http://anzograph.com/airport/latitude> ?lat;

<http://anzograph.com/airport/longitude> ?long.

}

}

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/opt/shared-files/airports.csv" ;

?iata_code ("IATA_CODE" xsd:string) ;

?name ("AIRPORT" xsd:string) ;

?city ("CITY" xsd:string) ;

?state ("STATE" xsd:string) ;

?lat ("LATITUDE" xsd:double) ;

?long ("LONGITUDE" xsd:double).

BIND(IRI("http://anzograph.com/airport/{{?iata_code}}") as ?code)

}

}

The query below creates a view of a database source.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

Getting Started with GDI Queries 206

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ont: <http://cambridgesemantics.com/ont/autogen/Rh/MIMIC-III-Data_Source/mimic_

iii_schema#>

CONSTRUCT

{

?caregiversURI a ont:caregivers ;

ont:caregivers_cgid ?cgid ;

ont:caregivers_description ?description ;

ont:caregivers_label ?label .

}

WHERE

{

GRAPH ?g

{

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>

(<http://anzograph.com/caregivers>) {

{

?data a s:DbSource ;

s:url "{{@mimicdb.url}}" ;

s:username "{{@mimicdb.user}}"

s:password "{{@mimicdb.password}}"

s:selector "mimic_iii_schema.caregivers" ;

?row_id (xsd:int) ;

?cgid (xsd:int) ;

?label (xsd:string) ;

?description (xsd:string) .

BIND(IRI("http://anzograph.com/class/caregivers/{{?row_id}}") AS ?caregiversURI)

}

}

}

}

Generating a Knowledge Graph

With no mapping required, the Graph Data Interface (GDI) can automatically generate a graph and

an ontology for a non-RDF data source. By running a relatively simple SPARQL query to invoke the

RDF and Ontology Generators, the GDI determines the structure of a data source and automatically

generates the necessary RDF statements.

Generating a Knowledge Graph 207

Invoking the Generators is preferable to producing a hand-written query, especially when the

structure of the data is very complex, such as a JSON data source with many inner repeating

structures or a database with many tables and keys. When the source contains complex structures,

the GDI will generate only the required statements and avoid cross-products, optimizing query

execution and memory usage. In addition, the GDI Generator parallelizes the load across the Graph

Lakehouse cluster so that a data source (such as a database) can be ingested with a single query.

This topic provides details about invoking the GDI RDF and Ontology Generators. The Generators

can be used with all of the supported data source types.

l GDI Generator Query Syntax

l GDI Generator Example Queries

GDI Generator Query Syntax

The following query syntax shows the structure of a GDI Generator query. The clauses, patterns,

and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

#Result Clause

INSERT {

GRAPH <target_graph> {

?s ?p ?o .

}

}

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:source_type ;

Based on the source_type, additional connection and input parameters are

available. The options below are valid for all sources. For source-related

options, see the GDI Property Reference.

s:url "string" ;

Generating a Knowledge Graph 208

[s:model "class_name_for_this_source" ;]

[s:username "string" ;]

[s:password "string" ;]

[s:timeout int ;]

[s:maxConnections int ;]

[s:batching boolean | int ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [source_normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;] .

Multiple data sources can be merged if they project a similar set

of output variables. Make sure each source has a unique subject variable.

[?unique_variable a s:source_type ;

...

.]

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o);

s:ontology ontology_uri ;

s:base base_uri ;

[s:normalize boolean | [global_normalization_rules] ;]

.

Additional clauses such as BIND, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

Generating a Knowledge Graph 209

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom
prefixes for GDI service queries. Generally, queries
include the prefixes from the query template (or a subset
of them) plus any data-specific declarations.

Result Clause N/A The result clause for GDI Generator queries is typically
an INSERT query with the graph pattern in the template
above.

source_type object The ?data a s:source_type triple pattern specifies
the type of data source that the query will run against. For
example, ?data a s:DbSource, specifies that the
source type is a database. The list below describes the
available types:

l DbSource to connect to any type of database.

l FileSource for flat files. The supported file types
are CSV and TSV, JSON, NDJSON, XML,

Parquet, and SAS (SAS Transport XPT and

SAS7BDAT formats). The GDI automatically

determines the file type from the file extensions.

l HttpSource to connect to HTTP endpoints.

l ElasticSource to connect to Elasticsearch
indexes on an Elasticsearch server.

l KafkaSource to connect to Kafka streaming
sources.

Generating a Knowledge Graph 210

Option Type Description

Tip
Certain connection and input parameters are

available based on the specified source type. For

details about the options for your source, see GDI

Property Reference.

url string This property specifies the URL for the data source, such
as the database URL, Elasticsearch URL, or HTTP
endpoint URL. For file-based sources, the url property
specifies the file system location of the source file or
directory of files. When specifying a directory (such as
s:url "/opt/shared-files/loads/"), the GDI
loads all of the file formats it recognizes. To specify a
directory but limit the number or type of files that are read,
you can include the pattern and/or maxDepth
properties described in FileSource Properties.

Important
For security, it is a best practice to reference

connection information (such as the url,

username, and password) from a Query Context

so that the sensitive details are abstracted from

any requests. In addition, using a Query Context

makes connection details reusable across

queries. See Use a Query Context for more

information. For example, the triple patterns

below reference keys from a Query Context:

?data a s:DbSource ;

s:url "{{@Somedb.url}}" ;

Generating a Knowledge Graph 211

Option Type Description

s:username "{{@Somedb.user}}" ;

s:password "{{@Somedb.password}}" ;

model string This property defines the class (or table) name for the
type of data that is generated from the specified data
source. For example, s:model "employees". Model
is optional when querying a single source. If your query
targets multiple sources, however, and you want to
define resource templates (primary keys) and object
properties (foreign keys), you must specify the model
value for each source.

username string If authentication is required to access the source, include
this property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in
milliseconds) to use for requests against the source. For
example, s:timeout 5000 configures a 5 second
timeout.

maxConnections int This property can be used to set a limit on the maximum
number of active connections to the source. For example,
s:maxConnections 16 sets the limit to 16
connections. When not specified, the default value is 10.

batching boolean or
int

This property can be used to disable batching, or it can
be used to change the default the batch size. By default,
batching is set to 5000 (s:batching 5000). To disable
batching, you can include s:batching false in the

Generating a Knowledge Graph 212

Option Type Description

query. Typically users do not change the batching size.
However, it can be useful to control the batch size when
performing updates. To configure the size, include
s:batching int in the query. For example,
s:batching 3000.

concurrency int or RDF
list

This property can be included to configure the maximum
level of concurrency for the query. The value can be an
integer, such as s:concurrency 8. If the value is an
integer, it configures a maximum limit on the number of
slices that can execute the query. For finer-grained
control over the number of nodes and slices to use,
concurrency can also be included as an object with
limit, nodes, and/or executorsPerNode properties.
For example, the following object configures a
concurrency model that allows a maximum of 24
executors distributed across 4 nodes with 8 executors
per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or string This property can be included to control the frequency
with which a request is sent to the source. The limit
applies to the number of requests a single slice can
make. If you specify an integer for the rate, then the value
is treated as the maximum number of requests to issue
per minute. If you specify a string, you have more
flexibility in configuring the rate. The sample values

Generating a Knowledge Graph 213

Option Type Description

below show the types of values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep

between requests that is equal to the rate delay. The

more executing slices, the longer the rate delay needs

to be to enforce the limit in aggregate.

Given the example of s:rate "90/minute", the GDI

would optimize the concurrency and only use 1 slice for

execution with a rate delay of 666ms between

requests. If s:rate "240/minute", the GDI would

use 3 executors with a rate delay of 750ms between

requests.

locale string This property can be used to specify the locale to use
when parsing locale-dependent data such as numbers,
dates, and times.

sampling int This property can be used to configure the number of
records in the source to examine for data type
inferencing.

selector string or
RDF list

This property can be used as a binding component to
identify the path to the source objects. For example,
s:selector "Sales.SalesOrderHeader" targets
the SalesOrderHeader table in the Sales schema. For
more information about binding components and the
selector property, see Using Binding Trees and Selector

Generating a Knowledge Graph 214

Option Type Description

Paths.

key string This property can be used to define the primary key
column for the source file or table. This column is
leveraged in a resource template for the instances that
are created from the source. For example, s:key
("EMPLOYEE_ID"). For more information about key,
see Data Linking Options.

reference RDF list This property can be used to specify a foreign key
column. The reference property is an RDF list that
includes the model property to list the target table and a
using property that defines the foreign key column. For
more information about reference, see Data Linking
Options.

formats RDF list To give users control over the data types that are used
when coercing strings to other types, this property can be
included in GDI queries to define the desired types. In
addition, it can be used to describe the formats of date
and time values in the source to ensure that they are
recognized and parsed to the appropriate date, time,
and/or dateTime values. For details about the formats
property, see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are
generated, the GDI offers several options for normalizing
the model and/or the fields that are created from the
specified data source(s). For details about the
normalize property, see Model Normalization Options.

count variable If you want to turn the query into a COUNT query, you

Generating a Knowledge Graph 215

Option Type Description

can include this property with a ?variable to perform a
count. For example, s:count ?count.

offset int This property can be used to offset the data that is
returned by a number of rows.

limit int You can include this property to limit the number of
results that are returned. s:limitmaps to the SPARQL
LIMIT clause.

RdfGenerator object Include this property to invoke the RDF Generator. If you
only want to generate a model without RDF, you can
exclude RdfGenerator.

OntologyGenerator object Include this property to invoke the Ontology Generator. If
you only want to generate RDF without a model, you can
exclude OntologyGenerator.

as N/A This property provides the variable bindings for the RDF
Generator's projection to RDF. Typically the value is
s:as (?s ?p ?o) to match the variables in the result
clause.

ontology URI This property specifies the URI to use as the base URI for
any generated ontology artifacts. For example,
s:ontology

<http://abc.com/ontologies/MyOntology>.

base URI This property specifies the base URI for instance data.
The base value should NOT end in #. The Generator will
add a trailing slash (/) if one does not exist. For example,
s:base <http://abc.com/>.

Generating a Knowledge Graph 216

GDI Generator Example Queries

This section includes sample queries that may be useful as a starting point for writing your own RDF

and Ontology Generator queries.

l Basic Query that Generates RDF and Ontology for a JSON File

l Basic Query that Generates an Ontology for a Directory of CSV Files

l Query that Normalizes and Generates RDF and Ontology for a Database

l Query with Query Context that Normalizes and Generates RDF and Ontology for a Database

l Query for Multiple Sources that Generates RDF and Ontology with Resource Templates and

Object Properties

Basic Query that Generates RDF and Ontology for a JSON File

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH <http://anzograph.com/people> {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:model "People" ;

s:url "/opt/shared-files/json/people.json" .

?rdf a s:RdfGenerator , s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/ontologies/People> ;

s:base <http://anzograph.com/data/> .

}

}

Basic Query that Generates an Ontology for a Directory of CSV Files

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

Generating a Knowledge Graph 217

GRAPH <http://anzograph.com/sales> {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:model "Sales" ;

s:url "/opt/shared-files/csv/sales" ;

s:format [

s:delimiter "," ;

s:headers true ;

s:comment "#" ;

s:quote "\"" ;

s:maxColumns 22 ;

] .

?rdf a s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/ontologies/Sales> ;

s:base <http://anzograph.com/data/> .

}

}

Query that Normalizes and Generates RDF and Ontology for a Database

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH <http://anzograph.com/emr> {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:DbSource ;

s:url "jdbc:mysql://10.11.12.9/emrdbbig" ;

s:username "root" ;

s:password "sql1@#" ;

s:normalize [

s:model [

Generating a Knowledge Graph 218

s:removeStart "emr_" ;

s:words "activity 'patient complaint' medication observation patient

specialty study" ;

] ;

s:field [

s:removePartialPrefix true ;

s:words "provider description start end drug complaint date medication

normal code

observation product active dose generic route admin strength

collection

activity home first last status first year birth death directed

complex

period age flag gender language" ;

] ;

] .

?rdf a s:RdfGenerator , s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/ontologies/EMR> ;

s:base <http://anzograph.com/EMR> .

}

}

Query with Query Context that Normalizes and Generates RDF and Ontology for a Database

The query below references a Query Context to supply the username and password for the

database connection.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH <http://anzograph.com/adventureworks> {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:DbSource ;

s:url "jdbc:sqlserver://localhost;databaseName=AdventureWorks2012" ;

s:username "{{@adventureworksdb.username}}" ;

s:password "{{@adventureworksdb.password}}" ;

s:schema "Production", "HumanResources", "Person", "Sales", "Purchasing" ;

Generating a Knowledge Graph 219

s:normalize [

s:model [

s:localNamePrefix "C_" ;

s:localNameSeparator "_" ;

s:match [s:pattern "(.+)Enlarged" ; s:replace "$1"] ;

] ;

s:field [

s:localNamePrefix "P_" ;

s:localNameSeparator "_" ;

s:ignore "rowguid ModifiedDate" ;

s:match (

[s:pattern "(.+)GUID$" ; s:replace "$1"]

[s:pattern "(.+)ID$" ; s:replace "$1"]

) ;

] ;

] .

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/ontologies/AdventureWorks> ;

s:base <http://anzograph.com/AdventureWorks> .

}

}

Query for Multiple Sources that Generates RDF and Ontology with Resource Templates and
Object Properties

This query also includes global normalization rules for normalizing the data across all sources.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH <http://anzograph.com/tickets> {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?event a s:FileSource ;

s:model "event" ;

s:url "/opt/shared-files/csv/events.csv" ;

s:key ("EVENT_ID") .

Generating a Knowledge Graph 220

?listing a s:FileSource ;

s:model "listing" ;

s:url " /opt/shared-files/csv/listings.csv" ;

s:key ("LIST_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?date a s:FileSource ;

s:model "date" ;

s:url "/opt/shared-files/csv/event_dates.csv" ;

s:key ("DATE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?venue a s:FileSource ;

s:model "venue" ;

s:url " /opt/shared-files/csv/venues.csv" ;

s:key ("VENUE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?sale a s:FileSource ;

s:model "sale" ;

s:url " /opt/shared-files/csv/sales.csv" ;

s:key ("SALE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] ;

s:reference [s:model "listing" ; s:using ("LIST_ID") ; s:key ("LIST_ID")] .

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/tickets> ;

s:base <http://anzograph.com/data> ;

s:normalize [

s:all [

s:casing s:UPPER ;

s:localNameSeparator "_" ;

] ;

] .

}

}

Generating a Knowledge Graph 221

Reading Data Source Metadata

If you want to retrieve instance data from a source but are unsure about the data model, schema, or

the exact names of columns and their data types, you can use the Graph Data Interface (GDI) to

explore the source's metadata. The GDI can be used to return a list of the catalogs (schemas),

models, columns, data types, and other data source information.

This topic describes the metadata query syntax and provides several example queries.

l Metadata Query Syntax

l Metadata Query Examples

Metadata Query Syntax

The following query syntax shows the structure of a metadata query. The clauses, patterns, and

placeholders in blue are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

SELECT *

WHERE

{

SERVICE Clause: Include the following service call

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:source_type ;

s:url "string" ;

[s:username "string" ;]

[s:password "string" ;]

Reading Data Source Metadata 222

?metadata a s:MetadataSource ;

s:from ?data ;

The metadata selector below specifies the type of metadata to return.

?catalogs | ?fields | ?models [

?metadata_type datatype ;

... ;

] .

}

}

Option Type Description

PREFIX
Clause

N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result
Clause

N/A The result clause defines the results to return. For metadata
queries, the result clause is typically SELECT *.

SERVICE
Clause

Include the required GDI SERVICE call in the WHERE clause. The
rest of the WHERE clause defines the patterns to look for in the
source.

[] s:select
?metadata

N/A Include this required triple pattern in metadata queries. The select
property specifies the source that should be used to return data.

source_type object The ?data a s:source_type triple pattern specifies the type of
data source that the query will run against. For example, ?data a

s:DbSource, specifies that the source type is a database. The list
below describes the available types:

l DbSource to connect to any type of database.

l FileSource for flat files. The supported file types are CSV
and TSV, JSON, NDJSON, XML, Parquet, and SAS (SAS

Reading Data Source Metadata 223

Option Type Description

Transport XPT and SAS7BDAT formats). The GDI

automatically determines the file type from the file

extensions.

l HttpSource to connect to HTTP endpoints.

l ElasticSource to connect to Elasticsearch indexes on an
Elasticsearch server.

l KafkaSource to connect to Kafka streaming sources.

Tip
Certain connection and input parameters are available

based on the specified source type. For details about the

options for your source, see GDI Property Reference.

url string This property specifies the URL for the data source, such as the
database URL, Elasticsearch URL, or HTTP endpoint URL. For
file-based sources, the url property specifies the file system
location of the source file or directory of files.

Important
For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across

queries. See Use a Query Context for more information.

For example, the triple patterns below reference keys from

a Query Context:

?data a s:DbSource ;

Reading Data Source Metadata 224

Option Type Description

s:url "{{@Somedb.url}}" ;

s:username "{{@Somedb.user}}" ;

s:password "{{@Somedb.password}}" ;

username string If authentication is required to access the source, include this
property to specify the user name.

password string This property lists the password for the given username.

catalogs variable This selector narrows the results to schema-related metadata such
as the schema names. Even when additional metadata types
(metadata_type datatype) are specified as objects, only catalog
(schema) information is returned.

fields variable This selector is the broadest and most flexible option. Using the
fields selector enables users to return any and all of the source
metadata information, depending on the specified metadata types
(metadata_type datatype).

models variable This selector narrows the results to model-related metadata such
as the model names. Even when additional metadata types
(metadata_type datatype) are specified as objects, only model
information is returned.

metadata_
type
datatype

N/A The triple patterns in the array for the metadata selector specify the
type of metadata to return as well as the data type for the return
value. The following list shows all of the valid options. You can
include any combination of properties. The results that are returned
depend on the type of data source and whether the information
exists in the source. The parentheses around the data type are not
required but are included in this document for readability.

Reading Data Source Metadata 225

Option Type Description

l ?model (xsd:string): Returns model names in string
format. For file sources, this property returns file names.

l ?field (xsd:string): Returns column names.

l ?catalog (xsd:string): Returns schema names.

l ?datatype (owl:Thing): Returns the data types of the
columns.

l ?keys (xsd:string): Returns primary and foreign key
columns. For compound keys, the GDI returns a comma-

separated list of columns comprising the key.

l ?format (xsd:string): Returns the format of the source.

l ?cardinality (xsd:string): Returns the cardinality of
relationships between tables: optional, many, or required.

l ?count (xsd:int): Returns the number of times the field
appears in the source.

l ?order (xsd:int): Returns the order in which the field was
encountered.

Metadata Query Examples

This section includes sample metadata queries that run against different types of data sources.

l List Database Schemas

l Explore a Database Schema

l Explore a Directory of SAS Files

l Explore an HTTP Endpoint

l Explore a Directory of CSV Files

Reading Data Source Metadata 226

List Database Schemas

The query below sends a metadata query to a MySQL database to return a list of the schemas that

are available:

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:DbSource ;

s:url "jdbc:mysql://10.100.2.9:5555/?user=root&password=Mysql1@#" .

?metadata a s:MetadataSource ;

s:from ?data ;

?catalogs [

?catalog (xsd:string) ;

?order (xsd:int) ;

] .

}

}

ORDER BY ?catalog

The query returns the following results:

catalog | order

----------------------+-------

BANKTEST_DB | 1

EMR | 4

GOLFCLUB_DB | 8

NORTHWIND | 10

SPORTDB | 13

Reading Data Source Metadata 227

SQLPOCKET_DB | 14

WORDPRESS_DB | 16

classicmodels | 2

crm_national_patients | 3

emrdbbig | 5

emrdbsmall | 6

emrnational_schema | 7

mysql | 9

optum | 11

performance_schema | 12

sys | 15

16 rows

Explore a Database Schema

Using the list of schemas that were returned in the example above (List Database Schemas), the

query below returns metadata about the columns in one of the schemas. To narrow the results to a

schema, the schema name (NORTHWIND) is added to the connection URL.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:DbSource ;

s:url "jdbc:mysql://10.100.2.9:5555/NORTHWIND?user=root&password=Mysql1@#" .

?metadata a s:MetadataSource ;

s:from ?data ;

?fields [

?model (xsd:string) ;

?field (xsd:string) ;

Reading Data Source Metadata 228

?datatype (owl:Thing) ;

] .

}

}

ORDER BY ?model

The query returns the following results:

model | field | datatype

-------------------------------+----------------------+--------------------------------

Alphabetical list of products | CategoryID |

http://www.w3.org/2001/XMLSchema#int

Alphabetical list of products | Discontinued |

http://www.w3.org/2001/XMLSchema#boolean

Alphabetical list of products | SupplierID |

http://www.w3.org/2001/XMLSchema#int

Alphabetical list of products | UnitPrice |

http://www.w3.org/2001/XMLSchema#decimal

Alphabetical list of products | ProductName |

http://www.w3.org/2001/XMLSchema#string

Alphabetical list of products | QuantityPerUnit |

http://www.w3.org/2001/XMLSchema#string

Alphabetical list of products | UnitsOnOrder |

http://www.w3.org/2001/XMLSchema#short

Alphabetical list of products | CategoryName |

http://www.w3.org/2001/XMLSchema#string

Alphabetical list of products | ProductID |

http://www.w3.org/2001/XMLSchema#int

Alphabetical list of products | ReorderLevel |

http://www.w3.org/2001/XMLSchema#short

Alphabetical list of products | UnitsInStock |

http://www.w3.org/2001/XMLSchema#short

Categories | CategoryID |

http://www.w3.org/2001/XMLSchema#int

Categories | Description |

http://www.w3.org/2001/XMLSchema#string

Categories | Picture |

http://www.w3.org/2001/XMLSchema#base64Binary

Categories | CategoryName |

http://www.w3.org/2001/XMLSchema#string

Categories | categoryid |

Category Sales for 1997 | CategoryName |

Reading Data Source Metadata 229

http://www.w3.org/2001/XMLSchema#string

Category Sales for 1997 | CategorySales |

http://www.w3.org/2001/XMLSchema#double

Current Product List | ProductName |

http://www.w3.org/2001/XMLSchema#string

Current Product List | ProductID |

http://www.w3.org/2001/XMLSchema#int

...

201 rows

Explore a Directory of SAS Files

The query below explores a directory of SAS files to return the model, catalog (schema), field, data

type, and cardinality information. The query also orders the results by model name, which is the file

name for file sources of a data model does not exist.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:FileSource ;

s:url "/opt/shared-files/sas" .

?metadata a s:MetadataSource ;

s:from ?data ;

?fields [

?model (xsd:string) ;

?field (xsd:string) ;

?catalog (xsd:string) ;

?datatype (owl:Thing) ;

Reading Data Source Metadata 230

?cardinality (xsd:string) ;

] .

}

}

ORDER BY ?model

The query returns the following results:

model | field | catalog | datatype | cardinality

--------+-------------+---------+---+------------

-

demand | P1 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | P2 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | P3 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | Y | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | Q1 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | Q2 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demand | Q3 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demo | YEAR | les/sas | http://www.w3.org/2001/XMLSchema#long | REQUIRED

demo | QTR | les/sas | http://www.w3.org/2001/XMLSchema#long | REQUIRED

demo | GDP | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demo | PR | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demo | M1 | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

demo | RS | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

airline | YEAR | les/sas | http://www.w3.org/2001/XMLSchema#long | REQUIRED

airline | Y | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

airline | W | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

airline | R | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

airline | L | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

airline | K | les/sas | http://www.w3.org/2001/XMLSchema#double | REQUIRED

cars | MPG | les/sas | http://www.w3.org/2001/XMLSchema#long | REQUIRED

cars | CYL | les/sas | http://www.w3.org/2001/XMLSchema#long | REQUIRED

...

50 rows

Explore an HTTP Endpoint

The query below explores the metadata for a sample HTTP source that compiles worldwide weather

statistics.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Reading Data Source Metadata 231

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:HttpSource ;

s:url "https://sampleEndpoint.com/forecast/30.374563,-97.975892" .

?metadata a s:MetadataSource ;

s:from ?data ;

?fields [

?model (xsd:string) ;

?field (xsd:string) ;

?datatype (owl:Thing) ;

?cardinality (xsd:string) ;

?order (xsd:int) ;

] .

}

}

ORDER BY ?model ?order

The query returns the following results:

model | field | datatype |

cardinality | order

----------+-----------------------------+---+----

---------+-------

currently | time | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 6

currently | summary | http://www.w3.org/2001/XMLSchema#string |

REQUIRED | 7

currently | icon | http://www.w3.org/2001/XMLSchema#string |

REQUIRED | 8

currently | nearestStormDistance | http://www.w3.org/2001/XMLSchema#int |

Reading Data Source Metadata 232

REQUIRED | 9

currently | nearestStormBearing | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 10

currently | precipIntensity | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 11

currently | precipProbability | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 12

currently | temperature | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 13

currently | apparentTemperature | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 14

currently | dewPoint | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 15

currently | humidity | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 16

currently | pressure | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 17

currently | windSpeed | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 18

currently | windGust | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 19

currently | windBearing | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 20

currently | cloudCover | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 21

currently | uvIndex | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 22

currently | visibility | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 23

currently | ozone | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 24

daily | summary | http://www.w3.org/2001/XMLSchema#string |

REQUIRED | 75

daily | icon | http://www.w3.org/2001/XMLSchema#string |

REQUIRED | 76

daily | data | |

MANY | 77

data | time | http://www.w3.org/2001/XMLSchema#int |

REQUIRED | 29

data | precipIntensity | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 30

data | precipProbability | http://www.w3.org/2001/XMLSchema#float |

REQUIRED | 31

Reading Data Source Metadata 233

data | summary | http://www.w3.org/2001/XMLSchema#string |

OPTIONAL | 32

...

81 rows

The following query retrieves the model, field, and data type metadata for the United States from the

publicly available Data API Covid Tracking Project.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:HttpSource ;

s:url "https://covidtracking.com/api/v1/us/current.csv" .

?metadata a s:MetadataSource ;

s:from ?data ;

?fields [

?model (xsd:string) ;

?field (xsd:string) ;

?datatype (owl:Thing) ;

] .

}

}

The query returns the following results:

model | field | datatype

------+--------------------------+---

us | date | http://www.w3.org/2001/XMLSchema#string

Reading Data Source Metadata 234

https://covidtracking.com/data/api

us | states | http://www.w3.org/2001/XMLSchema#string

us | positive | http://www.w3.org/2001/XMLSchema#string

us | negative | http://www.w3.org/2001/XMLSchema#string

us | pending | http://www.w3.org/2001/XMLSchema#string

us | hospitalizedCurrently | http://www.w3.org/2001/XMLSchema#string

us | hospitalizedCumulative | http://www.w3.org/2001/XMLSchema#string

us | inIcuCurrently | http://www.w3.org/2001/XMLSchema#string

us | inIcuCumulative | http://www.w3.org/2001/XMLSchema#string

us | onVentilatorCurrently | http://www.w3.org/2001/XMLSchema#string

us | onVentilatorCumulative | http://www.w3.org/2001/XMLSchema#string

us | recovered | http://www.w3.org/2001/XMLSchema#string

us | dateChecked | http://www.w3.org/2001/XMLSchema#string

us | death | http://www.w3.org/2001/XMLSchema#string

us | hospitalized | http://www.w3.org/2001/XMLSchema#string

us | lastModified | http://www.w3.org/2001/XMLSchema#string

us | total | http://www.w3.org/2001/XMLSchema#string

us | totalTestResults | http://www.w3.org/2001/XMLSchema#string

us | posNeg | http://www.w3.org/2001/XMLSchema#string

us | deathIncrease | http://www.w3.org/2001/XMLSchema#string

us | hospitalizedIncrease | http://www.w3.org/2001/XMLSchema#string

us | negativeIncrease | http://www.w3.org/2001/XMLSchema#string

us | positiveIncrease | http://www.w3.org/2001/XMLSchema#string

us | totalTestResultsIncrease | http://www.w3.org/2001/XMLSchema#string

us | hash | http://www.w3.org/2001/XMLSchema#string

25 rows

Explore a Directory of CSV Files

The query below explores a directory of CSV files to return the model, field, and data type. The

query also orders the results by model name, which is the file name for file sources of a data model

does not exist. In addition, the query includes s:sampling true, which means the GDI will scan

the entire file or files before returning results.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Reading Data Source Metadata 235

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?metadata .

?data a s:FileSource ;

s:url "/opt/shared-files/movie-csv" .

?metadata a s:MetadataSource ;

s:from ?data ;

Sample the whole file

s:sampling true ;

Sample the first N records

s:sampling 1000 ;

?fields [

?model (xsd:string) ;

?field (xsd:string) ;

?datatype (owl:Thing) ;

] .

}

}

ORDER BY ?model

The query returns the following results:

model | field | datatype

-----------------------+---------------------------+-----------------------------------

MovieActors1 | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieActors1 | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

MovieActors1 | ActorID |

http://www.w3.org/2001/XMLSchema#int

MovieActors1 | ActorName |

http://www.w3.org/2001/XMLSchema#string

MovieActors2 | MovieID |

http://www.w3.org/2001/XMLSchema#int

Reading Data Source Metadata 236

MovieActors2 | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

MovieActors2 | ActorID |

http://www.w3.org/2001/XMLSchema#int

MovieActors2 | ActorName |

http://www.w3.org/2001/XMLSchema#string

MovieActors2 | ActorCategory |

http://www.w3.org/2001/XMLSchema#string

MovieCategory | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieCategory | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

MovieCategory | MoveCategoryID |

http://www.w3.org/2001/XMLSchema#int

MovieCategory | MovieCategory |

http://www.w3.org/2001/XMLSchema#string

MovieCinematographers | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieCinematographers | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

MovieCinematographers | MovieCinematographerID |

http://www.w3.org/2001/XMLSchema#int

MovieCinematographers | MovieCinematographerName |

http://www.w3.org/2001/XMLSchema#string

MovieComposers | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieComposers | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

MovieComposers | MovieComposerID |

http://www.w3.org/2001/XMLSchema#int

MovieComposers | MovieComposerName |

http://www.w3.org/2001/XMLSchema#string

MovieDirectors | MovieID |

http://www.w3.org/2001/XMLSchema#int

MovieDirectors | MovieTitle |

http://www.w3.org/2001/XMLSchema#string

...

79 rows

The following example shows a query that returns metadata for an Elasticsearch source.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Reading Data Source Metadata 237

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ex: <http://example.org/ontologies/City#>

PREFIX es: <http://elastic.co/search/>

PREFIX : <http://example.org/cities/>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

[] s:select ?_fields .

?data a es:ElasticSource ;

es:url "http://localhost:9200/" ;

es:index "account" ;

?account_number xsd:long ;

?age (xsd:long) ;

?balance (xsd:long) ;

?address (xsd:string) ;

?city (xsd:string) ;

?state (xsd:string) ;

?email (xsd:string) ;

?employer (xsd:string) ;

?firstname (xsd:string) ;

?lastname (xsd:string) ;

?gender (xsd:string) .

?_fields a s:MetadataSource ;

s:from ?data ;

?fields [

?catalog () ;

?model () ;

?field () ;

?cardinality () ;

?datatype () ;

?type () ;

?object () ;

] .

}

Reading Data Source Metadata 238

}

ORDER BY ?catalog ?model ?field

For instructions on querying the instance data based on the data source metadata, see Getting

Started with GDI Queries.

Pagination Options

The GDI exposes paging models that enable you to access large amounts of data across a number

of smaller requests. Paging is configured by including the paging property in a query and
configuring a combination of the pagination options described below. The GDI supports keyset-

based, page-based, cursor-based, and offset-based pagination. Paging is supported for all data

source types.

l Paging Syntax

l Paging Examples

Paging Syntax

s:paging [

s:key (?variable) ;

s:page ?variable ;

s:cursor ?variable ;

s:offset ?variable ;

s:size int ;

s:limit ?variable ;

] ;

Option Type Description

key variable Include this property if you want to configure keyset-based pagination
where a key is specified to act as a delimiter of the page. The s:key
value is a variable that is bound to an expression that defines how to
delimit the data. It is usually calculated by an aggregate expression
and/or filter that can be pushed to the source. The aggregate
expression is typically MAX, but MIN can also be used to page through
data in reverse order, such as when working with temporal data. See
Key-Based Examples below for examples that configure paging using

Pagination Options 239

Option Type Description

the s:key property.

page variable Include this property if you want to configure page-based pagination
where the set is divided into pages. The s:page property value is a
variable that the GDI can use to track the current page across requests.
See Page-Based Example below for an example that configures
paging using the s:page property.

cursor variable Include this property if you want to configure cursor-based pagination.
The s:cursor property value is a variable that is bound against the
source to capture the "cursor" value. The GDI uses this value as input
to the source to deliver the next page of data. See Cursor-Based
Example below for an example that configures paging with the
s:cursor property.

offset variable Include this property along with the limit property if you want to
configure offset-based pagination. The s:offset property value is a
variable that the GDI can use to track the current offset across
requests. See Offset-Based Example below for an example that
configures paging using the s:offset property.

size int This property can be included with any of the paging models to
configure the maximum size of each page. For example, s:size
5000 limits the page size to 5,000 rows.

limit variable This property can be included to define the variable that the GDI should
use to push the page size back to the source.

Paging Examples

l Key-Based Examples

l Page-Based Example

Pagination Options 240

l Cursor-Based Example

l Offset-Based Example

Key-Based Examples

The example SERVICE clause below pages data based on the ?LastID key, which is calculated by

finding the maximum value of SalesOrderID and binding it to ?LastID. A FILTER is used to filter

for data where the SalesOrderID is greater than ?LastID.

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

BIND(MAX(?SalesOrderID) AS ?LastID)

FILTER(?SalesOrderID > ?LastID)

?SalesOrderHeaderEnlarged a s:DbSource ;

s:url "jdbc:sqlserver://..." ;

s:table "Sales.SalesOrderHeaderEnlarged" ;

s:paging [

s:key (?LastID) ;

s:size 5000 ;

] ;

?SalesOrderID (xsd:int) ;

?RevisionNumber (xsd:int) ;

?OrderDate ("OrderDate" xsd:dateTime) ;

?DueDate (xsd:dateTime) .

}

The SERVICE clause below shows an example where key-based paging is configured to page

through temporal data in reverse order. The s:limit property is configured on the s:HttpSource

to limit the overall number of results returned across all pages. This query retrieves at most 1000

records (s:limit 1000), 100 rows (s:size 100) at a time.

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

BIND(MIN(?Timestamp) AS ?LastTimestamp)

?api a s:HttpSource ;

s:url "http://slack.com/api/messages/latest" ;

s:parameter [s:name "before" ; s:value ?LastTimestamp] ;

s:parameter [s:name "limit" ; s:value ?limit] ;

s:limit 1000 ;

Pagination Options 241

s:paging [

s:key (?LastTimestamp) ;

s:limit ?limit ;

s:size 100 ;

] ;

?Message (xsd:string) ;

?Author (xsd:string) ;

?Timestamp (xsd:dateTime) .

}

Page-Based Example

The SERVICE clause below shows an example that uses the s:page property to configure page-

based paging where the page size is 100 rows. This query retrieves at most 1000 records (s:limit

1000), 100 rows (s:size 100) at a time.

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?api a s:HttpSource ;

s:url "http://slack.com/api/messages" ;

s:parameter [s:name "page" ; s:value ?page] ;

s:parameter [s:name "size" ; s:value ?limit] ;

s:limit 1000 ;

s:paging [

s:page ?page ;

s:limit ?limit ;

s:size 100 ;

] ;

?Message (xsd:string) ;

?Author (xsd:string) ;

?Timestamp (xsd:dateTime) .

}

Cursor-Based Example

The SERVICE clause below shows an example that uses the s:cursor property to configure

cursor-based paging.

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?api a s:HttpSource ;

s:url "http://slack.com/api/messages" ;

s:parameter [s:name "cursor" ; s:value ?cursor] ;

Pagination Options 242

s:parameter [s:name "limit" ; s:value ?limit] ;

s:limit 1000 ;

s:paging [

s:cursor ?cursor ;

s:limit ?limit ;

s:size 100 ;

] ;

?Message (xsd:string) ;

?Author (xsd:string) ;

?Timestamp (xsd:dateTime) ;

?cursor ("next_cursor" xsd:string) .

}

Offset-Based Example

The SERVICE clause below shows an example that uses the s:offset property to configure

offset-based paging.

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?api a s:HttpSource ;

s:url "http://slack.com/api/messages" ;

s:parameter [s:name "offset" ; s:value ?offset] ;

s:parameter [s:name "limit" ; s:value ?limit] ;

s:limit 1000 ;

s:paging [

s:offset ?offset ;

s:limit ?limit ;

s:size 100 ;

] ;

?Message (xsd:string) ;

?Author (xsd:string) ;

?Timestamp (xsd:dateTime) .

}

Binding and Hierarchy Concepts

As part of the Graph Data Interface's (GDI) flexibility, there are multiple ways to express binding

hierarchies in queries. This topic describes the options for expressing hierarchies.

Binding and Hierarchy Concepts 243

l Using Binding Trees and Selector Paths

l Unpacking JSON with Bindings and Arrays

l Returning Hierarchies as JSON Strings

Using Binding Trees and Selector Paths

One way to express hierarchies in queries is to use brackets ([]) to group objects into binding

trees. For example, the WHERE clause snippet below organizes mapping variable objects into an

hourly/data hierarchy by nesting the ?data patterns inside the ?hourly [] tree:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource;

s:url "https://sampleEndpoint.com/forecast/" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

?hourly

[

?data

[

?time (xsd:long) ;

?summary (xsd:string) ;

?rainIntensity ("precipIntensity" xsd:double) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?humidity (xsd:double) ;

?pressure (xsd:double) ;

?windSpeed (xsd:double) ;

] ;

] .

}

}

Binding and Hierarchy Concepts 244

When constructing object binding trees, if you choose to introduce the hierarchy with a variable

name that is not an exact match to the source label, include a selector property to list the value from
the source. For example, in the WHERE clause snippet below, s:selector is included to select

eventHeader in the source as ?event in the query and statLocation as ?location.

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/mnt/data/json/part_1.json" ;

?event

[

s:selector "eventHeader" ;

?eventId (xsd:string) ;

?eventName (xsd:string) ;

?eventVersion (xsd:string) ;

?eventTime (xsd:dateTime) ;

] ;

?location

[

s:selector "statLocation" ;

?locationId (xsd:string) ;

?lineNo (xsd:int) ;

?statNo (xsd:int) ;

?statId (xsd:int) ;

] .

}

}

As an alternative to grouping objects in binding trees, the selector property also supports using dot
notation to specify paths. For example, the WHERE clause snippet below rewrites the first example

query to express the same hourly/data hierarchy as a path in the s:selector value:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource;

s:url "https://sampleEndpoint.com/forecast/" ;

?latitude (xsd:double) ;

Binding and Hierarchy Concepts 245

?longitude (xsd:double) ;

?timezone (xsd:string) ;

s:selector: "hourly.data" ;

?time (xsd:long) ;

?summary (xsd:string) ;

?rainIntensity ("precipIntensity" xsd:double) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?humidity (xsd:double) ;

?pressure (xsd:double) ;

?windSpeed (xsd:double) .

}

}

You can also include the $ character to anchor the selector at the root of the file. For example,

s:selector "data" captures all data elements anywhere in the file. But s:selector

"$.data" captures only the data elements that are at the root of the hierarchy.

Unpacking JSON with Bindings and Arrays

In addition to object binding trees and selectors, the GDI offers additional syntax for reading or

ingesting JSON sources with nested objects and arrays. For example, following the JSON sample

file below is a query that captures each value in the arrays:

{

"payload" :

{

"IBP_IndEvent_MSR" :

{

"unit" : "ms",

"value" : [0, 1]

},

"IBP_IndEvent_RMF" :

{

"unit" : "-",

"value" : [0.012, 1.398, 3.1415]

}

}

}

Binding and Hierarchy Concepts 246

To read the JSON file above, the following query uses an object binding (?values []) to drill

down to the value arrays in the source. An @ selector is specified in the ?value variable binding

(?value ("@" xsd:double)) to retrieve each of the array values. For an array of primitive

values, the @ selector captures each value in the array. If the source value was an array of

objects, the @ selector would retrieve a JSON representation for each object in the array. In

addition to creating a new binding context for the primitive array values, the ?values object binding

also includes ?index ("!array::index") to capture the index array with the primitive value.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:url "/mnt/data/json/array-index.json" ;

s:selector "payload.*" ;

?unit (xsd:string) ;

?values [

s:selector "value" ;

?value ("@" xsd:double) ;

?index ("!array::index") ;

] .

}

}

The results of the query are shown below:

unit | value | index

-----+--------+-------

ms | 0 | 0

ms | 1 | 1

- | 0.012 | 0

- | 1.398 | 1

- | 3.1415 | 2

If you do not want to retrieve all of the values in an array, you can include the specific index number

to retrieve instead of using the @ symbol. In the variable binding, the index number is appended in

brackets ([]) to the binding column name. For example, the following variable binding retrieves the

second index value (the third value in the array) from a "projects" array: ?project ("projects

[2]"). The next example uses the following JSON file:

Binding and Hierarchy Concepts 247

{

"field1" : "value1" ,

"arrayfield" : [

"arrayvalue1",

"arrayvalue2"

]

}

To retrieve only the second value in the array, the following query appends the index value 1 to the

array column name, arrayfield:

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?json a s:FileSource ;

s:url "/mnt/data/json/array-index-2.json" ;

?field1 (xsd:string) ;

?arrayval ("arrayfield[1]" xsd:string) .

}

}

The results of the query are shown below:

field1 | arrayval

---------+----------

value1 |arrayvalue2

Returning Hierarchies as JSON Strings

When working with schema-less sources, you can also capture a tree of data as a JSON string. For

example, the query snippet below targets an HTTP endpoint. In this case, the properties under the

hourly class of data are unknown. So the query binds all of the data below hourly to the ?hourly
variable by including empty parentheses. As a result, the GDI returns a JSON string representation

of all of the properties and instance data under hourly:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource;

s:url "https://sampleEndpoint.com/forecast/" ;

Binding and Hierarchy Concepts 248

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

?hourly () .

}

}

For example, the results look like this:

latitude | longitude | timezone | hourly

-----------+------------+-----------------+----------------------------

30.374563 | -97.975892 | America/Chicago | {"summary":"\"Humid and partly cloudy

throughout the day.\"","icon":"\"partly-cloudy-day\"","data":[{"time":"1595559600",

summary":"\"Clear\"","icon":"\"clear-night\"","precipIntensity":"0",

"precipProbability":"0","temperature":"88.39","apparentTemperature":"91.72",

"dewPoint":"67.42","humidity":"0.5","pressure":"1011.7","windSpeed":"7.48",

"windGust":"16.71","windBearing":"109","cloudCover":"0.06","uvIndex":"0",

"visibility":"10","ozone":"285.2"},{"time":"1595563200","summary":"\"Clear\"",

"icon":"\"clear-night\"","precipIntensity":"2.0E-4","precipProbability":"0.01",

"precipType":"\"rain\"","temperature":"86.69","apparentTemperature":"90.1",

"dewPoint":"67.84","humidity":"0.54","pressure":"1012","windSpeed":"7.05",

"windGust":"17.56","windBearing":"110","cloudCover":"0.12","uvIndex":"0",

"visibility":"10","ozone":"284.9"},...

Similar to the example above, you can write a query that specifically captures some of the

properties in a hierarchy and then returns the rest of the properties and their values as a JSON

string representation. To do so, use "@" as the binding path. For example:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource;

s:url

"https://api.darksky.net/forecast/bdbe3f638eb908c9b94919537dad5945/30.374563,-

97.975892" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

?hourly [

s:selector "hourly.data" ;

?time (xsd:long) ;

?summary (xsd:string) ;

Binding and Hierarchy Concepts 249

?hourly_data ("@") ;

] .

}

}

Sample results are shown below:

latitude | longitude | timezone | time | summary | hourly_data

-----------+------------+-----------------+------------+------------------+------------

30.374563 | -97.975892 | America/Chicago | 1595559600 | Clear |

{"time":"1595559600","summary":"\"Clear\"",

"icon":"\"clear-

night\"","precipIntensity":"0","precipProbability":"0","temperature":"88.39",

"apparentTemperature":"91.72","dewPoint":"67.42","humidity":"0.5","pressure":"1011.7","

windSpeed":"7.48",

"windGust":"16.71","windBearing":"109","cloudCover":"0.06","uvIndex":"0","visibility":"

10","ozone":"285.2"}

30.374563 | -97.975892 | America/Chicago | 1595563200 | Clear |

{"time":"1595563200","summary":"\"Clear\"",

"icon":"\"clear-night\"","precipIntensity":"2.0E-

4","precipProbability":"0.01","precipType":"\"rain\"","temperature":"86.69",

"apparentTemperature":"90.1","dewPoint":"67.84","humidity":"0.54","pressure":"1012","wi

ndSpeed":"7.05","windGust":"17.56",

"windBearing":"110","cloudCover":"0.12","uvIndex":"0","visibility":"10","ozone":"284.

9"}

30.374563 | -97.975892 | America/Chicago | 1595566800 | Partly Cloudy |

{"time":"1595566800","summary":"\"Partly Cloudy\"",

"icon":"\"partly-cloudy-night\"","precipIntensity":"3.0E-4","precipProbability":"0.01",

"precipType":"\"rain"","temperature":"85.63","apparentTemperature":"89.21",

"dewPoint":"68.33","humidity":"0.56","pressure":"1012.6","windSpeed":"6.48","windGust":

"17.92","windBearing":"110",

"cloudCover":"0.34","uvIndex":"0","visibility":"10","ozone":"284.5"}

...

Binding and Hierarchy Concepts 250

Incremental Load Concepts

When loading data from a database or file-based data source with a Graph Data Interface (GDI)

query, you can add a few statements to the query to load a portion of the data incrementally rather

than all of the data at once. As data is added or changed in the source, new data can be ingested

without having to reload all of the previously ingested data. Because incremental ingestion is

configured as a filter in a SPARQL query, it is extremely flexible, allowing for various conditions to

be defined for diverse data sources. When the data is ingested, the GDI evaluates the current state

of the data and then loads only the data that meets the conditions defined in the query. This topic

provides example incremental queries to get you started.

l Incremental DbSource Example

l Incremental FileSource Example

Incremental DbSource Example

The following query ingests data from a database. All of the values for the requested columns in the

ORDER_DETAILS table will be loaded.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH <http://anzograph.com/northwind> {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:DbSource ;

s:url "jdbc:oracle:thin:@10.10.10.10:1111/XE" ;

s:username "northwind" ;

s:password "NORTHWIND123" ;

s:schema "NORTHWIND" ;

s:table "ORDER_DETAILS" ;

?database ("!") ;

Incremental Load Concepts 251

?schema ("!") ;

?table ("!") ;

?OrderID (xsd:int) ;

?ProductID (xsd:int) ;

?UnitPrice (xsd:double) ;

?Quantity (xsd:short) ;

?Discount xsd:double .

BIND(IRI("http://anzograph.com/orders/{{?OrderID}}") AS ?resource)

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/ontologies/northwind> ;

s:base <http://anzograph.com/data> .

}

}

The query below adds statements that configure the same query to ingest data incrementally. It

captures the maximum order ID as the incremental value. When the source is updated with records

that increase the order ID, only the records with larger order IDs than the previous maximum value

will be ingested when the query is run. In the query:

l A ?MaxID variable is bound to the result of MAX(?OrderID): BIND (MAX(?OrderID) AS

?MaxID).

l The ?MaxID variable is defined as the incremental value: ?MaxID a

s:IncrementalValue.

l A filter clause is added to create a condition that ingests only the records where the order ID

is greater than the previously ingested maximum ID: FILTER (?OrderID > ?MaxID).

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH <http://anzograph.com/northwind> {

?s ?p ?o .

}

Incremental Load Concepts 252

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?MaxID a s:IncrementalValue .

FILTER (?OrderID > ?MaxID)

BIND (MAX(?OrderID) AS ?MaxID)

?data a s:DbSource ;

s:url "jdbc:oracle:thin:@10.10.10.10:1111/XE" ;

s:username "northwind" ;

s:password "NORTHWIND123" ;

s:schema "NORTHWIND" ;

s:table "ORDER_DETAILS" ;

?database ("!") ;

?schema ("!") ;

?table ("!") ;

?OrderID (xsd:int) ;

?ProductID (xsd:int) ;

?UnitPrice (xsd:double) ;

?Quantity (xsd:short) ;

?Discount xsd:double .

BIND(IRI("http://anzograph.com/orders/{{?OrderID}}") AS ?resource)

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/ontologies/northwind> ;

s:base <http://anzograph.com/data> .

}

}

Incremental FileSource Example

The following query ingests data from all of the CSV files in the /nfs/data/fmcsa directory:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

Incremental Load Concepts 253

GRAPH <http://anzograph.com/fmcsa> {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:model "fmcsa" ;

s:url "/nfs/data/fmcsa" ;

s:pattern "*.csv" .

?rdf a s:RdfGenerator , s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/ontologies/fmcsa> ;

s:base <http://anzograph.com/data/> .

}

}

The query below adds statements that configure the same query to ingest data incrementally. It

uses a "last modified" strategy to determine what files are new or modified and should be ingested

the next time the query is run. In the query:

l The modified timestamp metadata on the files is captured with ?Modified ("!").

l The ?LastRun variable is bound to the result of the NOW() function: BIND (NOW() AS

?LastRun).

l A filter clause is added to check whether the modified timestamp is later than the timestamp

from the last time the query was run: FILTER (?Modified > ?LastRun).

l ?LastRun is defined as the incremental value: ?LastRun a s:IncrementalValue.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH <http://anzograph.com/fmcsa> {

?s ?p ?o .

}

Incremental Load Concepts 254

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?LastRun a s:IncrementalValue .

FILTER (?Modified > ?LastRun)

BIND (NOW() AS ?LastRun)

?data a s:FileSource ;

s:model "fmcsa" ;

s:url "/nfs/data/fmcsa" ;

s:pattern "*.csv" ;

?Modified ("!") .

?rdf a s:RdfGenerator , s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/ontologies/fmcsa> ;

s:base <http://anzograph.com/data/> .

}

}

Incremental Load Concepts 255

Options for Data Types, Data Connections, and Models

The topics in this section describe the options that are available across data source types for

controlling the way that strings are coerced to other data types, the way label and URI values are

generated in the data model, and the relationships that define connections across multiple sources.

In this section:
Data Type Formatting Options 256

Model Normalization Options 259

Data Linking Options 268

Data Type Formatting Options

To give you control over the data types that are used when coercing strings to other types, the

formats property can be included in GDI queries to define the desired types. In addition, formats
can be used to describe the formats of date and time values in the source to ensure that they are

recognized and parsed to the appropriate date, time, and/or dateTime values. You can also use the

formats property to suppress the conversion so that the generated values are typed the same way

as the source.

Tip
The GDI takes locale into account when formatting the generated date and time values.

For sources that do not include data type specifications and natively treat values as strings, the GDI

Generator automatically converts the values to the appropriate type. For example, if a CSV file

includes the value "Feb-18-2022," the GDI parses the string to an xsd:date with the format "2022-

02-18". A column with numbers is converted to an xsd:int type and a column with a decimal value

is converted to xsd:float. The formats property usage is described below.

l Formats Syntax

l Formats Examples

Options for Data Types, Data Connections, and Models 256

Formats Syntax

s:formats [

s:strict boolean ; [

xsd:data_type "format"

| xsd:data_type boolean ;

[... ;]

]

] ;

Option Type Description

strict boolean This property enables or disables the automatic type conversion
feature. By default, strict is set to false (s:strict false). When
strict is false or not set, any formats specified in s:formats []

augment the GDI's built-in date and time formats. In addition, when
strict is false or not set, you can selectively disable certain type
conversions by including xsd:data_type false. For example,
xsd:dateTime false disables the parsing of strings to
dateTime.

When strict is true (s:strict true), you can selectively enable

the default conversions. The GDI performs only the conversions

that you enable with xsd:data_type true or define in

xsd:data_type "format". Values that do not match any of

the formats provided will be typed as xsd:string. If strict is

true and no other data type rules are specified, the auto

conversion logic is essentially disabled and the generated data

will be represented the same way it is in the source.

xsd:data_
type
"format"

N/A Include xsd:data_type "format" when you want to describe
the formats of date and time values in the source. The GDI supports
Java date and time format notation. For example, if dates in the
source are formatted like "yyyy-MM-dd," include the statement
xsd:date "yyyy-MM-dd". If the source uses multiple formats for
dates, e.g., 18-MAR-1978 and 03/18/1978, you can list multiple

Data Type Formatting Options 257

Option Type Description

formats for xsd:date, such as xsd:date "dd-MMM-yyyy",

"MM/dd/yyyy".

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed to
02-04-2099. To specify an alternate base year to use for

two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

"dd-MMM-yy^1990". When one of those values is

specified, 02-04-99 is parsed to 02-04-1999.

xsd:data_
type
boolean

N/A When strict is false or not set, you can disable specific type
conversions by listing data types and setting their values to
false.For example, if you want the GDI to convert strings to
integers or floats when possible but you want the dates in the
source to be preserved as strings, you can include xsd:date
false to disable the conversion of strings to dates.

When strict is true, you can enable specific type conversions by

listing data types and setting their values to true. For example, if

you want the GDI to preserve the strings in the source except for

when the string is a number, you can include xsd:int true to

enable the conversion of strings to integers.

Formats Examples

The example below sets strict to true and forces the GDI to parse values only to the data types that

are enabled with true. It also defines the format to look for when converting strings to dateTime:

Data Type Formatting Options 258

s:formats [

s:strict true ;

xsd:int true ;

xsd:dateTime true ;

xsd:dateTime "yyyy-MM-dd-HH-mm-ss" ;

] ;

The example below does not set strict, so the default value of false is used. The data type

definitions specify the formats of the values to parse as date, time, and dateTime values. The

example also disables the conversion from string to long:

s:formats [

xsd:date "MM/dd/yyyy", "MMM dd", "MMM dd yyyy" ;

xsd:time "HH[:mm][:ss][]a" ;

xsd:dateTime "M/d/yyyy HH:mm:ss a", "yyyy-MM-dd-HH-mm-ss" ;

xsd:long false ;

] ;

Model Normalization Options

To give users control over the labels and URIs that are generated in the data model, the GDI offers

several options for normalizing the class and property fields that are created from the specified data

source(s). Normalization rules can be specified at the source level to normalize the data from each

source independently, or they can be used at the RDF Generator level to apply global rules across

all specified data sources.

Note
Normalization rules are applied only at the model level. The rules to do affect the instance

data values that are ingested.

Including the normalize parameter is optional. If you include it, you can specify any combination of
rules. See Default Normalization Behavior below for details about the Generator's default behavior

when normalization rules are not specified in your query.

l Default Normalization Behavior

l Normalize Syntax

Model Normalization Options 259

l Normalize Examples

Default Normalization Behavior

The GDI Generator normalizes data according to the following rules by default. If you do not include

the s:normalize parameter in your query, these are the rules that are applied:

s:normalize [

s:all [

s:removePrefix true ;

s:removePartialPrefix false ;

s:allowWhiteSpace false ;

s:allowPunctuation false ;

s:allowSymbols false ;

s:separator " " ;

s:singularize false ;

s:casing s:UpperCamel ;

s:localNameSeparator "." ;

]

]

Normalize Syntax

s:normalize boolean | [

s:model | s:field | s:all

[

s:removeStart "string" ;

s:removeEnd "string" ;

s:removePrefix boolean ;

s:removePartialPrefix boolean ;

s:match [s:pattern "regex" ; s:replace "regex"] ;

s:disambiguationLevel int ;

s:ignore "string" ;

s:words "string" ;

s:preserve "string" ;

s:split "string" ;

s:allowWhiteSpace boolean ;

s:allowPunctuation boolean ;

s:allowSymbols boolean ;

s:singularize boolean ;

s:casing property ;

s:separator "string" ;

s:localNamePrefix "string" ;

Model Normalization Options 260

s:localNameSeparator "string" ;

] ;

] ;

Property Type Description

boolean N/A Normalize is enabled by default for all GDI Generator
queries. If you want to disable normalization, you can
include s:normalize false. If normalization is
disabled, the names in the source will be used verbatim
both for labeling and in generating the local names for
property and class URIs. However, when normalization
is disabled, the labels in the data source are used
verbatim. In addition, the Generator creates hard-to-
read, URL-encoded local names for property and class
URIs.

s:model | s:field | s:all N/A This property defines whether the specified
normalization rules should be applied across the model
or only to the classes or properties. The list below
describes each option:

l s:model: Applies the rules to the
file/table/class names only.

l s:fields: Applies the rules to the
column/property/field names only.

l s:all: (Default) Applies the rules to both the
class and property names. This is the default

value if not specified.

removeStart string If you want to remove text from the beginning of
identifiers, include the removeStart rule to specify the
string to remove. For example, s:removeStart
"temp_".

Model Normalization Options 261

Property Type Description

removeEnd string If you want to remove text from the end of identifiers,
include the removeEnd rule to specify the string to
remove. For example, s:removeEnd "NEW".

removePrefix boolean If there are property identifiers that share a prefix with
the class, the RDF Generator automatically removes
the shared prefix from the property name; the
removePrefix rule is set to true by default. For
example, if there is an EMPLOYEE class with an
EMPLOYEE_ID column, the shared prefix
"EMPLOYEE" is removed from the generated property
so that it becomes "ID." If you do not want the
Generator to remove prefixes, you can include
s:removePrefix false.

removePartialPrefix boolean If there are property identifiers that share a partial prefix
with the class, you can enable removePartialPrefix to
remove the partial prefix from the property name. The
removePartialPrefix rule is set to false by default. If
you want the Generator to remove partial prefixes, you
can include s:removePrefix true.

match RDF list This rule provides a way to use regular expressions
(REGEX) to match a pattern against source identifiers
and replace the matched text in the normalized name.

The s:pattern property defines the Java REGEX

pattern to match against, and s:replace defines the

Java REGEX replacement pattern. As shown in the

example below, the match rule can also be configured

with an rdf:List of objects to perform match

evaluation in a certain order:

Model Normalization Options 262

Property Type Description

s:match (

[s:pattern "(.+)GUID$" ; s:replace

"$1" ;]

[s:pattern "(.+)ID$" ; s:replace "$1"

;]

)

disambiguationLevel int This rule specifies the number of levels to use to
resolve ambiguities between similarly named elements
in a hierarchical source. For example, an element
named "Data" appears in two contexts: "Currently" and
"Hourly." By default, the Generator retains all levels,
meaning two classes are generated: "Currently Data"
and "Hourly Data." If s:disambiguationLevel is set
to 0, a single class named "Data" is generated and both
the Currently and Hourly classes have a "Data"
property. The disambiguationLevel value is also used
to determine the number of hierarchy levels to use
when encoding the local name of the generated URI.

ignore string This rule can be used to list identifiers that should be
ignored. Properties and classes will not be generated
for identifiers that match the specified string(s). The
ignore rule is a multi-valued property. For simplicity,
you can enter a list by separating words with a space,
rather than quoting each term and separating them with
a comma. For multi-word identifiers, use single quotes.
For example, s:ignore "sample example 'test

column' old".

words string Since many sources do not encode word boundaries

Model Normalization Options 263

Property Type Description

very well, thewords rule can be used to list the set of
words that should be separate identifiers. This rule tells
the Generator which words may be encountered. The
words rule is a multi-valued property. For simplicity, you
can enter a list by separating words with a space, rather
than quoting each term and separating them with a
comma. For multi-word identifiers, use single quotes.
For example:

s:words "activity 'patient complaint'

medication observation patient signal

specialty study" ;

preserve string This rule can be used to identify any words whose
casing should be preserved in the input identifiers. For
example, if casing is set to lower but you want
preserve the original upper casing of certain words, you
can specify the words to preserve. The preserve rule is
a multi-valued property. For simplicity, you can enter a
list by separating words with a space, rather than
quoting each term and separating them with a comma.
For multi-word identifiers, use single quotes. For
example: s:preserve "ABC 'Laundry List'

TriG". The preserve rule is case-insensitive. You do
not have to match the casing of the words to preserve.

split string This rule specifies the string that should be used to split
source identifiers into individual terms. If neither split
nor words is specified, input identifiers are split on
casing changes and character class changes.

allowWhiteSpace boolean This rule specifies whether or not white space should

Model Normalization Options 264

Property Type Description

be preserved in identifiers after they have been split
into individual terms. This rule is set to false by
default, meaning white space is not preserved. You can
specify s:allowWhiteSpace true to preserve
spaces.

allowPunctuation boolean This rule specifies whether or not punctuation should
be preserved in identifiers after they have been split
into individual terms. This rule is set to false by
default, meaning punctuation is not preserved. You can
specify s:allowPunctuation true to preserve
punctuation.

allowSymbols boolean This rule specifies whether or not symbols should be
preserved in identifiers after they have been split into
individual terms. This rule is set to false by default,
meaning symbols are not preserved. You can specify
s:allowSymbols true to preserve symbols.

singularize boolean This rule specifies whether or not to change any plural
identifiers to singular. This rule is set to false by
default, meaning plural identifiers are preserved. You
can specify s:singularize true to change plural
terms to the singular version of the term.

casing object This rule specifies how the generated labels should be
cased. By default, the Generator outputs labels in
upper camel case (s:casing s:UpperCamel). To
use a different casing, specify any of the following
properties:

l default: This object preserves the casing from
the source. Labels will not be converted.

Model Normalization Options 265

Property Type Description

l UPPER: This object converts all characters to
uppercase. For example, "uppercase"

becomes "UPPERCASE."

l lower: This object converts all characters to
lowercase. For example, "Lower Case"

becomes "lower case".

l UpperCamel: This is the default casing value
and converts labels to upper camel case,

where terms are concatenated and the first

letter of each word is capitalized. For example,

"upper camel case" becomes

"UpperCamelCase."

l lowerCamel: This object converts labels to
lower camel case, where terms are

concatenated and the first letter of the first

word is lower case. The first letter of

subsequent terms is capitalized. For example,

"lower camel case" becomes

"lowerCamelCase."

separator string This rule specifies the character or characters to use to
separate terms in the generated label. The default
separator is a space (s:separator " ").

localNamePrefix string This rule specifies a string to use as the prefix for local
names when generating a URI.

localNameSeparator string This rule specifies the string to use for separating local

Model Normalization Options 266

Property Type Description

names when encoding hierarchies according to the
specified disambiguationLevel. By default,
localNameSeparator is a period
(s:localNameSeparator "."). If
localNameSeparator is empty, hierarchical context will
not be encoded into the local name of any properties or
child classes. The result would be an ontology where
only the class or property name is used to determine
the local name. For example, a property URI would look
like ont:employeeID rather than
ont:Employee.employeeID. The result could lead
to "conflicts" in the generated ontology, but those
"conflicts" may be desired as properties with same
name are reused across the generated ontology.

Tip
You can also specify normalization rules at both the source and global level in the same

query. If you include multi-valued rules (such as ignore, words, or preserve) at both

levels, the Generator combines all values from both instances of the rule. If you specify single

value rules at both levels and the values are conflicting, the Generator applies the value at the

source level.

Normalize Examples

The example below uses the normalize property to normalize data at both the model and field level.

s:normalize [

s:model [

s:localNamePrefix "C_" ;

s:localNameSeparator "_" ;

s:match [s:pattern "(.+)Enlarged" ; s:replace "$1"] ;

] ;

s:field [

s:localNamePrefix "P_" ;

Model Normalization Options 267

s:localNameSeparator "_" ;

s:ignore "rowguid ModifiedDate" ;

s:match (

[s:pattern "(.+)GUID$" ; s:replace "$1"]

[s:pattern "(.+)ID$" ; s:replace "$1"]

) ;

] ;

] ;

Data Linking Options

When a data source does not define keys (such as a CSV or JSON source), the GDI provides

properties that enable you to create a connected knowledge graph by defining relationships,

resource templates (primary keys) and object properties (foreign keys), when you are loading data

from multiple sources. The properties that are available are described below.

l Data Linking Syntax

l Data Linking Examples

Data Linking Syntax

s:key ("column_name") ;

s:reference [

s:model "table_to_reference" ;

s:using ("foreign_key_column")

]

Option Type Description

key string Include this property when you want to define the primary key column
for the source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). If none of the columns contain
unique values, you can specify a combination of columns that would
create a unique value. For example, s:key ("FlightNumber",

"TailNumber").

reference RDF list Include this property when you want to specify a foreign key column.

Data Linking Options 268

Option Type Description

The reference property is an RDF list that includes the model property
to list the target table and a using property that defines the foreign
key column in the source table.

s:reference [

s:model "table_to_reference" ;

s:using ("foreign_key_column")

]

Tip
You can also include an optional key property within the

s:reference list that defines the key column in the target

table and can be used as a way to expose additional metadata

that helps inform the GDI how to name the object property. For

example:

s:reference [s:model "Employees" ; s:using

("EMPLOYEE_ID") ; s:key ("EMPLOYEE_ID")]

Data Linking Examples

For example, the query snippet below defines two data sources. The s:model property defines the

table/class for each source, and the s:key defines the primary key for each table/class. The

s:reference property for the "venue" table defines a foreign key relationship from

venue.EVENT_ID to event.EVENT_ID.

?event a s:FileSource ;

s:model "event" ;

s:url "/opt/shared-files/csv/events.csv" ;

s:key ("EVENT_ID") .

?venue a s:FileSource ;

s:model "venue" ;

s:url " /opt/shared-files/csv/venues.csv" ;

Data Linking Options 269

s:key ("VENUE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID")] .

The following query for multiple file sources generates RDF and an ontology with resource

templates and object properties. The query also includes global normalization rules for normalizing

the data across all sources (see Model Normalization Options for information about normalization).

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

INSERT {

GRAPH <http://anzograph.com/tickets> {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?event a s:FileSource ;

s:model "event" ;

s:url "/opt/shared-files/csv/events.csv" ;

s:key ("EVENT_ID") .

?listing a s:FileSource ;

s:model "listing" ;

s:url " /opt/shared-files/csv/listings.csv" ;

s:key ("LIST_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?date a s:FileSource ;

s:model "date" ;

s:url "/opt/shared-files/csv/event_dates.csv" ;

s:key ("DATE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?venue a s:FileSource ;

s:model "venue" ;

s:url " /opt/shared-files/csv/venues.csv" ;

s:key ("VENUE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] .

?sale a s:FileSource ;

s:model "sale" ;

s:url " /opt/shared-files/csv/sales.csv" ;

Data Linking Options 270

s:key ("SALE_ID") ;

s:reference [s:model "event" ; s:using ("EVENT_ID") ; s:key ("EVENT_ID")] ;

s:reference [s:model "listing" ; s:using ("LIST_ID") ; s:key ("LIST_ID")] .

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/tickets> ;

s:base <http://anzograph.com/data> ;

s:normalize [

s:all [

s:casing s:UPPER ;

s:localNameSeparator "_" ;

] ;

] .

}

}

Data Linking Options 271

Advanced Usage by Data Source Type

The topics in this section provide more advanced GDI usage information by including descriptions

for all of the query options for each type of supported data source.

Tip
Rather than manually writing complex queries, you can use the GDI to automatically generate

graphs and ontologies by including a few key statements in a relatively simple query. For

information, see Generating a Knowledge Graph.

In this section:
Query a Database Source 272

Query an HTTP Source 286

Query an Elasticsearch Source 307

Query a File Source 331

Query a Database Source

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from database data sources. It also includes example queries that may be useful as a starting point

for writing your own GDI queries.

l Supported Databases

l Query Syntax

l Query Examples

Supported Databases

The GDI supports querying any database through a JDBC connection. Graph Lakehouse

installations include JDBC drivers for the following databases:

l Databricks

l H2

Advanced Usage by Data Source Type 272

l IBM DB2

l Microsoft SQL Server

l MariaDB

l Oracle

l PostgreSQL

l SAP Sybase (jTDS)

l Snowflake

Query Syntax

The following query syntax shows the structure of a GDI query for database sources. The clauses,

patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH <target_graph> {]

triple_patterns

[}]

}

[FROM Clause]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(<target_graph>)

Query a Database Source 273

{

?data a s:DbSource ;

s:url "string" ;

s:username "string" ;

s:password "string" ;

[s:token "string" ;]

[s:driver "string" ;]

[s:property [s:name "string" ; s:value "string"] ;]

[s:timeout int ;]

[s:maxConnections int ;]

[s:batching boolean | int ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:partitionBy "string" | ?variable | s:auto ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:query "string" ;]

[s:database "string" ;]

[s:schema "string" ;]

[s:table "string" ;]

[s:count ?variable ;]

[s:offset int ;]

[s:orderBy "string" | ?variable ;]

[s:limit int ;]

Mapping variables

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Query a Database Source 274

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and
the set of results to return, i.e., whether you want to read (SELECT
or CONSTRUCT) from the source or ingest the data into Graph
Lakehouse (INSERT).

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
creating a view, use the DataToolkitView service call, as
described below in View SERVICE Clause.

Include the optional TOPDOWN keyword when you want to

pass input values from Graph Lakehouse to the data source.

When you include TOPDOWN in the service call, it indicates

that the rest of the query produces values to send to the source.

In this case, the GDI makes repeated calls to pass in each of the

specified values and retrieve the data that is based on those

values.

Query a Database Source 275

Option Type Description

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the
data, include the following SERVICE call: SERVICE
<http://cambridgesemantics.com/services/DataTool

kitView>(<target_graph>). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect
the query and determine which filters to push to the data source. It
also limits the result set and retrieves only the data that is needed,
i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

url string This property specifies the URL to use to access the database.

Important
For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across

queries. See Use a Query Context for more information.

For example, the triple patterns below reference a Query

Context and add a JDBC driver level connection property:

?data a s:DbSource ;

s:url "{{@Somedb.url}}" ;

s:username "{{@Somedb.user}}" ;

s:password "{{@Somedb.password}}" ;

s:property [s:name "access" ; s:value

"all"]

username string This property lists the user name to use for the connection to the
database.

Query a Database Source 276

Option Type Description

Tip
If you want to group the username and password

properties, you can wrap them with s:credentials [

]. For example:

s:credentials [

s:username "username" ;

s:password "password" ;

] ;

password string This property lists the password for the given username.

token string For connections that require a bearer token, this property can be
included to specify the token.

driver string This property can be included to specify the JDBC driver to use.

property RDF list This property can be included to list any JDBC driver-specific
connection properties. To incorporate property, use the
following syntax:

s:property [

s:name "custom_driver_property_name" ;

s:value "custom_value"

]

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

maxConnection int This property can be used to set a limit on the maximum number

Query a Database Source 277

Option Type Description

s of active connections to the source. For example,
s:maxConnections 16 sets the limit to 16 connections. When
not specified, the default value is 10.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which
a request is sent to the source. The limit applies to the number of

Query a Database Source 278

Option Type Description

requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more
flexibility in configuring the rate. The sample values below show
the types of values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

partitionBy string,
variable,
object

The GDI attempts to partition queries automatically across the
available cores (slices) in Graph Lakehouse. To determine how to
partition the query, the GDI uses metadata from the source
database. It looks for any column in an index, preferring the
primary key column if it is interpolable. However, it only considers
the first column in any index on the table. After determining the
partition column, the GDI does a MIN/MAX on the column as well
as a basic sizing query. To specify which column or columns the
GDI should partition on, you can include the partitionBy
property in the query. The property supports a list of source field
names, bound variables, or the object s:auto, which forces the

Query a Database Source 279

Option Type Description

GDI to partition the data when the source does not define
partitioning metadata.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and
times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. As an alternative to including the
selector property for identifying the target data, you could use the
database, schema, and/or table properties.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however,
and you want to define resource templates (primary keys) and
object properties (foreign keys), you must specify the model value
for each source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The

Query a Database Source 280

Option Type Description

reference property is an RDF list that includes the model property
to list the target table and a using property that defines the
foreign key column. For more information about reference, see
Data Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the
formats property, see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or
the fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization
Options.

query string If you want to access the source data by running an SQL query,
you can include this property to specify the query string to run. The
language does not have to be SQL if the source supports another
language. However, some GDI features where the query is
dynamically altered may not work with a non-SQL language.
Including {{?variable}} substitutions is supported within
s:query strings.

Note
If you include s:query without also specifying table or

partitionBy, the GDI may not partition the query and query

execution may be less performant than if the partition

Query a Database Source 281

Option Type Description

column was specified. When using s:query, specifying

the table in s:table and the column to partition the table

on in s:partitionBy is a good practice, especially

when querying large tables.

database string This property can be used to specify the database to target in the
source if the database is not listed in the s:url or s:selector
strings.

schema string This property can be included to specify the target schema to
query. If you include s:schema "schema_name" without
specifying s:table (described below) or s:query, all tables in
the schema are queried.

table string This property can be included to specify the target table or tables
for the query.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

orderBy string,
variable,
list

You can include this property to order the result set by a field
name, a bound variable, or a list of names or bound variables.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

Query a Database Source 282

Option Type Description

mapping_
variable

variable The mapping variables, in ?variable (["binding"]

[datatype] ["datetime_format"]) format, define the triple
patterns to output. When the specified ?variablematches the
source column name, the GDI uses the variable as the source
data selector. If you specify an alternate variable name, a binding
needs to be specified to map the new variable to the source. You
also have the option to transform the data using the datatype and
datetime_format options.

Note
The parentheses around the binding, data type, and

format specifications are not required but are included in

this document for readability.

binding string The binding is a literal value that binds a ?variable to a source
column. If you specify a ?variable that matches the source column
name, then that variable name is the data selector and it is not
necessary to specify a binding. If you specify an alternate variable
name or there is a hierarchical path to the source column that is
not already identified by the selector, database, schema, table, or
query properties, then the binding is needed to map the new
variable to that source column. For example, ?subject
("dbo.FILM.SUBJECT") binds the ?subject variable by
navigating to the SUBJECT column in the FILM table in the dbo
schema.

Note
Database, schema, and table names in bindings are

parsed according to the specific rules for that database

type. You do not need to escape characters in database

names. However, database names with characters that do

Query a Database Source 283

Option Type Description

not match (_|A-Z|a-z)(_|A-Z|a-z|0-9)* should be

quoted, such as

("'Adventure.Works'.Sales.'Daily.Totals'").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data
has years with only two digits, such as 02-04-99, the

GDI prepends 20 to the digits. The value 02-04-99 is
parsed to 02-04-2099. To specify an alternate base year

to use for two-digit values, you can include the notation

^nnnn (e.g., ^1900) in the format value. For

example, to set the base year to 1900 instead of 2000,

use a format value such as xsd:date "dd-MMM-

Query a Database Source 284

Option Type Description

yy^1900" or xsd:date "dd-MMM-yy^1990". When

one of those values is specified, 02-04-99 is parsed to

02-04-1999.

Query Examples

The example below selects data from the AdventureWorks2012 database. The s:selector

property is used to specify the table (salesOrderHeader in the Sales schema) to target.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT (COUNT(*) as ?count)

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?SalesOrderHeader a s:DbSource ;

s:url "{{@Somedb.url}}" ;

s:username "{{@Somedb.user}}" ;

s:password "{{@Somedb.password}}" ;

s:selector "Sales.SalesOrderHeader" ;

?SalesOrderID (xsd:int) ;

?RevisionNumber (xsd:int) ;

?OrderDate (xsd:dateTime) ;

?DueDate (xsd:dateTime) ;

?TerritoryID (xsd:int) ;

?TotalDue (xsd:decimal) .

FILTER(?TerritoryID IN (1, 2, 3))

FILTER(?TotalDue < 11.0 || ?TotalDue > 250)

}

}

The example below ingests data from a database. To define the data to target, the query includes

the s:query property to run an SQL query. The s:table and partitionBy properties are also

included to aid the GDI in partitioning the query.

Query a Database Source 285

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX ont:

<http://cambridgesemantics.com/Layer/2f1e926b130a402db6fc10fa54199d49/Model#>

INSERT {

GRAPH <http://anzograph.com/emr> {

?resource a ont:EmrPatient ;

ont:EmrPatient.patientid ?PATIENTID ;

ont:EmrPatient.gender ?GENDER ;

ont:EmrPatient.language ?LANGUAGE ;

ont:EmrPatient.patientfirstdocactivitydate ?PATIENTFIRSTDOCACTIVITYDATE .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:DbSource ;

s:url "{{@Somedb.url}}" ;

s:username "{{@Somedb.user}}" ;

s:password "{{@Somedb.password}}" ;

s:query "select * from emrdbsmall.emr_patient where emr_patient.PATIENTID < 500"

;

s:partitionBy "PATIENTID" ;

s:table "emrdbsmall.emr_patient" ;

?PATIENTID (xsd:int) ;

?GENDER (xsd:string) ;

?LANGUAGE (xsd:string) ;

?PATIENTFIRSTDOCACTIVITYDATE (xsd:dateTime "M/d/yyyy HH:mm:ss") .

BIND(IRI("http://cambridgesemantics.com/Layer/2f1e926b130a402db6fc10fa54199d49/

{{?PATIENTID}}") AS ?resource)

}

}

Query an HTTP Source

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from HTTP data sources. It also includes example queries that may be useful as a starting point for

writing your own GDI queries.

Query an HTTP Source 286

l Query Syntax

l Mapping the Content Property to JSON

l Query Examples

Query Syntax

The following query syntax shows the structure of a GDI query for HTTP sources. The clauses,

patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH <target_graph> {]

triple_patterns

[}]

}

[FROM Clause]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(<target_graph>)

{

?data a s:HttpSource ;

s:url "string" ;

[s:authorization [

a s:BearerToken ; s:token "string" ;

| a s:AWSSignature ; s:accessKey "string" ; s:region "string" ;

s:secretKey "string" ; s:serviceName "string" ;

Query an HTTP Source 287

s:sessionToken "string" ;

| a s:BasicAuth ; s:username "string" ; s:password "string" ;

] ;]

[s:trust "string" ;]

[s:proxy "string" | [s:host "string" ; s:port int]]

[s:header [s:name: "string" ; s:value "string"] ;]

[s:mimetype "string" ;]

[s:contentType "string" ;]

[s:content """string""" ;]

[s:parameter [s:name "string" ; s:value "string"] ;]

[s:method "string" ;]

[s:encoding "string" ;]

[s:form [s:name: "string" ; s:value "string"] ;]

[s:format [source_format_options ;] ;]

[s:timeout int ;]

[s:batching boolean | int ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:partitionBy "string" | ?variable ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:orderBy "string" | ?variable ;]

[s:limit int ;]

Mapping variables

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Query an HTTP Source 288

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX
Clause

N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific
declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Graph
Lakehouse (INSERT).

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataToolk

it> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
creating a view, use the DataToolkitView service call, as
described below in View SERVICE Clause.

Include the optional TOPDOWN keyword when you want to pass

input values from Graph Lakehouse to the data source. When

you include TOPDOWN in the service call, it indicates that the

rest of the query produces values to send to the source. In this

case, the GDI makes repeated calls to pass in each of the

specified values and retrieve the data that is based on those

values.

Query an HTTP Source 289

Option Type Description

View
SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data,
include the following SERVICE call: SERVICE
<http://cambridgesemantics.com/services/DataToolk

itView>(<target_graph>). Using the DataToolkitView call
optimizes query execution because it tells the GDI to inspect the
query and determine which filters to push to the data source. It also
limits the result set and retrieves only the data that is needed, i.e.,
the source data is fully mapped but all of the mapped data is not
necessarily returned.

url string This property specifies the URL to use to access the source. Query
binding variables can be inserted into the url string by surrounding
the variable name with double curly braces. For example, "
{{?name}}".

Important
For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across queries.

See Use a Query Context for more information. For

example:

?data a s:HttpSource ;

s:url "{{@SomeHTTPSource.url}}" ;

s:authorization [a s:BasicAuth ;

s:username "{{@SomeHTTPSource.user}}" ;

s:password "{{@SomeHTTPSource.password}}"

;

]

Query an HTTP Source 290

Option Type Description

authorization RDF list This property specifies the type of authorization to use and the
values for authentication. The options are BearerToken,
AWSSignature, or BasicAuth.

s:authorization [a s:BearerToken |

s:AWSSignature | s:BasicAuth]

BearerToken string Specify this property when a bearer token is used for
authentication, and include the token property.

s:authorization [a s:BearerToken ;

s:token "string"

]

AWSSignatur
e

RDF list For authorization to AWS service endpoints, specify this property
and include the appropriate authentication properties from the list
below:

l accessKey: Include this property to specify the AWS

access key.

l region: Include this property to specify the AWS region.

l secretKey: Include this property to specify the AWS

secret key.

l serviceName: Include this property to specify the AWS

service name.

l sessionToken: Include this property to specify the AWS

session token.

s:authorization [

a s:AWSSignature ; s:accessKey "string" ;

s:region "string" ; s:secretKey "string" ;

Query an HTTP Source 291

Option Type Description

s:serviceName "string" ; s:sessionToken

"string" ;

]

BasicAuth RDF list Specify this property when basic authentication is used, and include
the username and password properties.

s:authorization [a s:BasicAuth ;

s:username "string" ;

s:password "string" ;

]

trust string Include this property to set the level of trust for the source's SSL
certificate. The value can be either "system" or "all".

proxy string or
RDF list

Include this property to specify proxy information if a proxy is used.
The value can be a string, such as s:proxy "host_url:port_

number", or an RDF list that includes host and port properties,
such as s:proxy [s:host "host_url" ; s:port port_

number].

header RDF list You can use this property to specify name-value pairs to include as
headers in the request. For example:

s:header [s:name "Accept" ; s:value

"application/json"]

If you are creating a view, you can include variables in the

s:header list. When another query is run against a view with

variables, that query can map the variables through the view by

including predicates in the CONSTRUCT clause.

Query an HTTP Source 292

Option Type Description

mimetype string You can include this property to specify the MIME type of the
source. For example, s:mimetype "text/html".

contentType string Include this property to specify the content type of the body of the
request. For example, s:contentType
"application/sparql-query" or s:contentType
"application/json".

content string or
RDF list

This property can be included to send content to the source in the
body of the request. For example, content can be a SPARQL
query, JSON arrays, or a list of key-value pairs. Content can also be
configured with an inline object (blank node) that gets translated to
JSON. For more information, see Mapping the Content Property to
JSON below.

parameter RDF list You can include this property to list any URL parameters as name-
value pairs. For example, the s:parameter property below adds
format to return results in CSV format and the named-graph-
uri parameter to target a specific layer in a graphmart.

s:parameter [s:name "format" ; s:value "csv"]

,

[s:name "named-graph-uri" ;

s:value

"http://cambridgesemantics.com/Layer/d541..."]

If you are creating a view, you can include variables in the

s:parameter list. When another query is run against a view

with variables, that query can map the variables through the view

by including predicates in the CONSTRUCT clause.

method string You can include this property to specify the HTTP method. For

Query an HTTP Source 293

Option Type Description

example, s:method "GET" or s:method "POST".

encoding string When targeting a file, you can include this property to specify the
character encoding used by the file. The default value is
s:encoding "utf8".

form RDF list To send data to the HTTP endpoint, you can use this property to
post the data. Form is a list of name-value pairs. When including
s:form, you must also include s:contentType
"multipart/form-data". The GDI sends the form object as an
application/x-www-form-urlencoded string that contains
the specified parameters. See Query an HTTP Source below for
sample usage.

format RDF list If the data is file-based, you can include the format property to add
parameters that describe the source. See File Source Format
Options for details about the supported parameters.

timeout int This property can be used to specify the timeout (in milliseconds) to
use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch size
when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching 3000.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as

Query an HTTP Source 294

Option Type Description

s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more flexibility
in configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit in

aggregate.

Query an HTTP Source 295

Option Type Description

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with a

rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate delay

of 750ms between requests.

partitionBy string,
variable,
list

The GDI attempts to partition queries automatically across the
available cores (slices) in Graph Lakehouse. To determine how to
partition the query, the GDI uses metadata from the source. It looks
for any column in an index, preferring the primary key column if it is
interpolable. However, it only considers the first column in any index
on the table. After determining the partition column, the GDI does a
MIN/MAX on the column as well as a basic sizing query. To specify
which column or columns the GDI should partition on, you can
include the partitionBy property in the query. The property
supports a list of source field names, bound variables, or the object
s:auto, which forces the GDI to partition the data when the source
does not define partitioning metadata.

locale string This property can be used to specify the locale to use when parsing
locale-dependent data such as numbers, dates, and times.

sampling int This property can be used to configure the number of records in the
source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees
and Selector Paths.

Query an HTTP Source 296

Option Type Description

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however, and
you want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for each
source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource template
for the instances that are created from the source. For example,
s:key ("EMPLOYEE_ID"). For more information about key, see
Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the foreign
key column. For more information about reference, see Data
Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in GDI
queries to define the desired types. In addition, it can be used to
describe the formats of date and time values in the source to ensure
that they are recognized and parsed to the appropriate date, time,
and/or dateTime values. For details about the formats property,
see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For details
about the normalize property, see Model Normalization Options.

Query an HTTP Source 297

Option Type Description

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

orderBy string,
variable,
list

You can include this property to order the result set by a field name,
a bound variable, or a list of names or bound variables.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable (["binding"]

[datatype] ["datetime_format"]) format, define the triple
patterns to output. When the specified ?variablematches the
source column name, the GDI uses the variable as the source data
selector. If you specify an alternate variable name, a binding needs
to be specified to map the new variable to the source. You also
have the option to transform the data using the datatype and
datetime_format options.

Note
The parentheses around the binding, data type, and format

specifications are not required but are included in this

document for readability.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is

Query an HTTP Source 298

Option Type Description

not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,
then the binding is needed to map the new variable to that source
column.

For example for CSV, the following pattern simply binds the

source column AIRLINE to the lowercase variable ?airline:

?airline ("AIRLINE").

Note
For FileSource, periods (.), forward slashes (/), and

brackets ([]) are parsed as path notation. Therefore, if a

source column name includes any of those characters they

must be escaped in the binding. Use two backslashes (\\)

as an escape character. For example, if a column name is

average/day, the variable and binding pattern could be
written as ?averagePerDay ("average\\/day").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time
data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify

Query an HTTP Source 299

Option Type Description

"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed to
02-04-2099. To specify an alternate base year to use for

two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

"dd-MMM-yy^1990". When one of those values is

specified, 02-04-99 is parsed to 02-04-1999.

Mapping the Content Property to JSON

The s:content property can be configured with an inline object (blank node) that gets translated to

JSON in the request body. This mapping allows for creation of embedded objects and arrays as well

as a mechanism for iterating over all available input so that HTTP endpoints that support batching

can be used more effectively.

Using Blank Nodes

Blank nodes are used to create an object in the output JSON. The local name of any predicate used

within content becomes a key in the generated JSON object. Blank nodes can be embedded

within each other, allowing the hierarchical nature of JSON to be represented. For example:

s:content [ex:firstName "Mary" ; ex:lastName "Barry"] ;

Or

s:content [ex:person [ex:firstName "Mary"]] ;

Query an HTTP Source 300

Using Variables

Variables can be also used in the object position to construct a request from input at runtime. For

example:

s:content [ex:firstName ?firstName ; ex:lastName ?lastName] ;

The values for the variables can come from a TOPDOWN variable, a VALUES clause in the

SERVICE block, or another data source. Any unbound variables in the input will not be added to the

generated JSON object.

Using RDF Lists

An RDF list can also be used to create an array in the output JSON. For example:

s:content [ex:allKnownNames (?firstName ?lastName ?nickName)]

An RDF list can also be embedded inside another list to create an array in the output JSON and

populate it with items evaluated against a repeating pattern across all available input rows for a

slice. That pattern can be a variable, which generates an array of primitive values, or a blank node,

which generates an array of mapped JSON objects. For example:

s:content [ex:documents ((?id))] ;

Or

s:content [ex:documents (([ex:id ?id ; ex:title ?title])) ;

Example

The following example query demonstrates the use of s:content to generate JSON. The query

also includes the s:concurrency property to restrict execution to a single slice. Without limiting

execution when there are a small number of inputs (as in the VALUES clause), each input row gets

executed on its own. As the inputs increase, each slice operates over a larger number of inputs until

the default s:batching 5000 is applied.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX api: <http://contoso.com/api/>

SELECT *

Query an HTTP Source 301

WHERE {

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit>

{

VALUES (?firstName ?lastName ?dob ?email)

{

("Gray" "Hay" "1978-03-18"^^xsd:date "gray@abc.com")

("Ana" "Bana" "1974-10-20"^^xsd:date "ana@abc.com")

("George" "Forge" "1975-08-13"^^xsd:date "george@abc.com")

("Miles" "Giles" "1977-04-12"^^xsd:date "miles@abc.com")

}

?data a s:HttpSource ;

s:url "https://postman-echo.com/post" ;

s:header [s:name "Accept" ; s:value "application/json"] ;

s:concurrency 1 ;

s:content

(([

api:dateOfBirth ?dob ;

api:email ?email ;

api:year 2020 ;

api:person [api:firstName ?firstName ; api:lastName ?lastName] ;

])) ;

s:selector "data" ;

?firstName ("person.firstName" xsd:string) ;

?lastName ("person.lastName" xsd:string) ;

?dob ("dateOfBirth" xsd:date) ;

?email ("email" xsd:string) ;

?year ("year" xsd:int) .

}

}

The content portion of the request that the query generates is shown below:

[{

"firstName": "Gray" ,

"lastName": "Hay" ,

"dateOfBirth": "1978-03-18" ,

"email": "gray@abc.com" ,

"year": 2020

},

{

"firstName": "Ana" ,

"lastName": "Bana" ,

Query an HTTP Source 302

"dateOfBirth": "1974-10-20" ,

"email": "ana@abc.com" ,

"year": 2020

},

{

...

}]

Query Examples

l Topdown Query with URL Parameters

l Generator Query against a SPARQL Endpoint

l API Queries

Topdown Query with URL Parameters

The query below reads data from a sample HTTP source that compiles worldwide weather statistics.

The source has several models available for retrieving data that is current, daily, historical, etc. To

target current data, the query includes s:selector "currently". In addition, the query

demonstrates the use of the "topdown" functionality, where the query sends values to the source to

narrow the results. The VALUES clause specifies the latitude and longitude values for the cities to

return data for. In addition, since this sample source requires parameters to be specified in the

connection URL, the s:url value includes ?lat and ?long as parameters as part of the value.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX ex: <http://example.org/ontologies/City#>

SELECT

?city ?state ?temp ?rainChance

?humidity ?pressure ?windSpeed

WHERE

{

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource ;

s:url "https://sampleEndpoint.com/forecast/{{?lat}},{{?long}}" ;

s:selector "currently" ;

Query an HTTP Source 303

?lat ("latitude") ;

?long ("longitude") ;

?temp ("temperature") ;

?rainChance ("precipProbability") ;

?humidity () ;

?pressure () ;

?windSpeed () .

}

VALUES(?city ?state ?lat ?long)

{

("Lakeway" "TX" 30.374563 -97.975892)

("Boston" "MA" 42.358043 -71.060415)

("Seattle" "WA" 47.590720 -122.307053)

("Chicago" "IL" 41.837741 -87.823296)

("Hilo" "HI" 19.702040 -155.090312)

}

}

ORDER BY ?city

Generator Query against a SPARQL Endpoint

The example below is a GDI Generator query that retrieves data from a remote SPARQL endpoint.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

INSERT {

GRAPH <http://anzograph.com/something> {

?s ?p ?o }

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource ;

s:url "https://10.10.0.10/sparql/http%3A%2F%2Fsomething.com%2Fdata";

s:trust "all" ;

s:username "user";

s:password "pass";

s:contentType "application/sparql-query" ;

s:header [s:name "Accept" ; s:value "text/csv"] ;

Query an HTTP Source 304

s:content """

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?s ?p ?o

WHERE {

?s ?p ?o .

FILTER(ISLITERAL(?o))

}

""" .

?rdf a s:RdfGenerator, s:OntologyGenerator ;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/ontologies/TopMovies> ;

s:base <http://anzograph.com/data> .

}

}

API Queries

The following example queries the Google Recognize API to request transcriptions for voice

recordings that are stored in a Google bucket.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT {

GRAPH <http://anzograph.com/transcriptions> {

?record <http://google.com/transcript> ?transcript .

?record <http://google.com/confidence> ?confidence .

?record <http://google.com/file> ?file .

}

}

WHERE {

BIND(<gs://csi-se/demo/emergency-test.mp3> as ?file)

BIND(UUID() as ?record)

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:HttpSource ;

Query an HTTP Source 305

s:selector "results.alternatives" ;

s:url "https://speech.googleapis.com/v1p1beta1/speech:recognize" ;

s:authorization [a s:BearerToken ; s:token """ya29..."""] ;

s:content """

{

"config": {

"encoding":"MP3",

"sampleRateHertz": 16000,

"languageCode": "en-US",

"enableWordTimeOffsets": false

},

"audio": {

"uri":"gs://csi-se/demo/emergency-test.mp3"}

}

""" ;

?confidence ("confidence") ;

?transcript ("transcript") .

}

}

}

The example below includes the header and content properties to send a request that contains

small text snippets for sentiment analysis.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX ont: <http://cambridgesemantics.com/ontologies/Sentiment_Analysis#>

INSERT {

GRAPH <http://anzograph.com/sentiment> {

?requirement a ont:Sentiment ;

ont:p_Sentiment_Type ?sentiment ;

ont:p_Sentiment_Score ?polarity .

}

}

WHERE {

?requirement a <http://cambridgesemantics.com/Requirements> ;

<http://cambridgesemantics.com/Requirements.reqText> ?requirement_text .

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:HttpSource ;

Query an HTTP Source 306

s:url "https://text-analysis12.p.rapidapi.com/sentiment-analysis/api/v1.1" ;

s:method "POST" ;

s:header [s:name "Accept" ; s:value "application/json"] ,

[s:name "X-RapidAPI-Key" ; s:value "key"] ,

[s:name "X-RapidAPI-Host" ; s:value "text-analysis12.p.rapidapi.com"

] ;

s:contentType "application/json" ;

s:content """{ "text": "{{?requirement_text}}" , "language": "english" }""" ;

?polarity ("aggregate_sentiment/compound" xsd:double);

?sentiment () .

}

}

Query an Elasticsearch Source

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from Elasticsearch data sources. It also includes example queries that may be useful as a starting

point for writing your own GDI queries.

l Query Syntax

l Query DSL and Filter Mapping

l Query Examples

Query Syntax

The following query syntax shows the structure of a GDI query for Elasticsearch sources. The

clauses, patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX es: <http://elastic.co/search/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

Query an Elasticsearch Source 307

{

[GRAPH <target_graph> {]

triple_patterns

[}]

}

[FROM Clause]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

{

?data a s:ElasticSource ;

s:url "string" ;

[s:username "string" ;]

[s:password "string" ;]

[s:property [s:name "string" ; s:value "string" ;]

[es:aggregations [rdf_list] ;]

[es:document "string" ;]

[es:field "string" | ?variable ;]

[es:highlight [rdf_list] ;]

[es:html boolean ;]

[es:index "string" ;]

[es:minScore float ;]

[es:query "string" | [rdf_list] ;]

[es:routing "string" ;]

[es:searchAfter [rdf_list] ;]

[es:size int ;]

[es:source boolean | [rdf_list] ;]

[s:timeout int ;]

[s:batching boolean | int ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:partitionBy "string" | ?variable ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

Query an Elasticsearch Source 308

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:orderBy "string" | ?variable ;]

[s:limit int ;]

Mapping variables

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URIs

<http://cambridgesemantics.com/ontologies/DataToolkit#> and

<http://elastic.co/search/> as well as the s: and es: prefixes. As shown in the

examples, however, the prefixes or full property URIs do need to be included in queries.

Option Type Description

PREFIX
Clause

N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from the
query template (or a subset of them) plus any data-specific
declarations.

Result
Clause

N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Graph
Lakehouse (INSERT).

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataToolk

it> to invoke the GDI service when you are running a SELECT,

Query an Elasticsearch Source 309

Option Type Description

INSERT, or CONSTRUCT query that is not creating a view. When
creating a view, use the DataToolkitView service call, as
described below in View SERVICE Clause.

Include the optional TOPDOWN keyword when you want to pass

input values from Graph Lakehouse to the data source. When you

include TOPDOWN in the service call, it indicates that the rest of

the query produces values to send to the source. In this case, the

GDI makes repeated calls to pass in each of the specified values

and retrieve the data that is based on those values.

View
SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data,
include the following SERVICE call: SERVICE
<http://cambridgesemantics.com/services/DataToolk

itView>(<target_graph>). Using the DataToolkitView call
optimizes query execution because it tells the GDI to inspect the
query and determine which filters to push to the data source. It also
limits the result set and retrieves only the data that is needed, i.e.,
the source data is fully mapped but all of the mapped data is not
necessarily returned.

url string This property specifies the URL to use to access the source.

Important
For security, it is a best practice to reference connection

information (such as the url, username, and password) from

a Query Context so that the sensitive details are abstracted

from any requests. In addition, using a Query Context

makes connection details reusable across queries. See Use

a Query Context for more information. For example:

?data a s:ElasticSource ;

Query an Elasticsearch Source 310

Option Type Description

s:url "{{@es.hostname}}:{{@es.port}}" ;

s:username "{{@es.username}}" ;

s:password "{{@es.password}}" ;

username string This property lists the user name to use for the connection to the
Elasticsearch.

Tip
If you want to group the username and password properties,

you can wrap them with s:credentials []. For

example:

s:credentials [

s:username “username” ;

s:password “password” ;

]

password string This property lists the password for the given username.

property RDF list This property can be included to list any source-specific
configuration values.

s:property [s:name "custom_property_name" ;

s:value "custom_value"]

aggregations RDF list You can include this property to calculate aggregations over the
specified bindings. For information about aggregations, see
Aggregations in the Elasticsearch documentation.

document string This property lists the document(s) to search.

Query an Elasticsearch Source 311

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html

Option Type Description

field string or
variable

This property defines the field to operate on. The value can be a
string or bound variable.

highlight RDF list You can include this property to define how results are highlighted.
For information about the available properties, see Highlighting
Elasticsearch Results.

html boolean This property controls whether to output HTML for highlighted
results. Defaults to true.

index string This property can be included to specify the index to search.

minScore float This property defines the minimum score for matching documents.
Documents with a lower score are not included in the search results.

query string or
RDF list

This property defines the query to execute. The value can be a string
or a query object that maps to the Elasticsearch Query DSL. To
generate the final query, the GDI combines es:query with any
filters it can push to the Elasticsearch DSL. For more information
about the query property and mapping Elasticsearch filters to
SPARQL FILTER clauses, see Query DSL and Filter Mapping
below.

routing string This property can be included to route a document to a specific
shard or to limit the search to a particular shard.

searchAfter RDF list You can include this property to define the key values to start
searching from.

size int This property maps to the size parameter in the Elasticsearch
Search API and configures the batch size or maximum number of
hits to return in a single call. Defaults to 10 and typically does not

Query an Elasticsearch Source 312

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

Option Type Description

need to be changed.

source boolean
or RDF
list

This property can be included to specify the source data to include in
results. The value can be a boolean, list of fields, or a list of variable
bindings. When true, all source data is returned. When false, no
source data is returned.

timeout int This property can be used to specify the timeout (in milliseconds) to
use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to 5000
(s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch size
when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching 3000.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to use,
concurrency can also be included as an object with limit, nodes,
and/or executorsPerNode properties. For example, the following
object configures a concurrency model that allows a maximum of 24
executors distributed across 4 nodes with 8 executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

Query an Elasticsearch Source 313

Option Type Description

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests to
issue per minute. If you specify a string, you have more flexibility in
configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing slices,

the longer the rate delay needs to be to enforce the limit in

aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with a

rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate delay

of 750ms between requests.

partitionBy string,
variable,
list

The GDI attempts to partition queries automatically across the
available cores (slices) in Graph Lakehouse. To determine how to
partition the query, the GDI uses metadata from the source
database. It looks for any column in an index, preferring the primary
key column if it is interpolable. However, it only considers the first

Query an Elasticsearch Source 314

Option Type Description

column in any index on the table. After determining the partition
column, the GDI does a MIN/MAX on the column as well as a basic
sizing query. To specify which column or columns the GDI should
partition on, you can include the partitionBy property in the
query. The property supports a list of source field names, bound
variables, or the object s:auto, which forces the GDI to partition the
data when the source does not define partitioning metadata.

locale string This property can be used to specify the locale to use when parsing
locale-dependent data such as numbers, dates, and times.

sampling int This property can be used to configure the number of records in the
source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees and
Selector Paths.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a single
source. If your query targets multiple sources, however, and you
want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for each
source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource template
for the instances that are created from the source. For example,

Query an Elasticsearch Source 315

Option Type Description

s:key ("EMPLOYEE_ID"). For more information about key, see
Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property to
list the target table and a using property that defines the foreign key
column. For more information about reference, see Data Linking
Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in GDI
queries to define the desired types. In addition, it can be used to
describe the formats of date and time values in the source to ensure
that they are recognized and parsed to the appropriate date, time,
and/or dateTime values. For details about the formats property,
see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For details
about the normalize property, see Model Normalization Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count. The GDI runs an Elasticsearch value count
aggregation.

offset int This property can be used to offset the data that is returned by a
number of rows.

orderBy string,
variable,

You can include this property to order the result set by a field name,
a bound variable, or a list of names or bound variables.

Query an Elasticsearch Source 316

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-valuecount-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-valuecount-aggregation.html

Option Type Description

list

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable (["binding"]

[datatype] ["datetime_format"]) format, define the triple
patterns to output. When the specified ?variablematches the
source column name, the GDI uses the variable as the source data
selector. If you specify an alternate variable name, a binding needs
to be specified to map the new variable to the source. You also have
the option to transform the data using the datatype and datetime_
format options.

Note
The parentheses around the binding, data type, and format

specifications are not required but are included in this

document for readability.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,
then the binding is needed to map the new variable to that source
column.

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

Query an Elasticsearch Source 317

Option Type Description

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time data
types. The GDI supports Java date and time formats. Specify days
as "d," months as "M," and years as "y." For the time, specify "H" for
hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed to
02-04-2099. To specify an alternate base year to use for

two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

"dd-MMM-yy^1990". When one of those values is

specified, 02-04-99 is parsed to 02-04-1999.

Query DSL and Filter Mapping

The vocabulary used in GDI queries against an ElasticSource closely mimics the Elasticsearch

Query DSL. The table below shows a side-by-side view of a DSL query that is mapped to SPARQL

using the es:query property:

Query an Elasticsearch Source 318

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

DSL SPARQL

{

"query": {

"bool" : {

"must" : {

"term" : { "user.id" :

"kimchy" }

},

"filter": {

"term" : { "tags" :

"production" }

},

"must_not" : {

"range" : {

"age" : { "gte" : 10,

"lte" : 20 }

}

},

"should" : [

{ "term" : { "tags" :

"env1" } },

{ "term" : { "tags" :

"deployed" } }

],

"minimum_should_match" : 1,

"boost" : 1.0

}

}

}

es:query [

a es:BoolQuery ;

es:must [

a es:TermQuery ;

es:field "user.id" ;

es:value "kimchy" ;

] ;

es:filter [

a es:TermQuery ;

es:field "tags" ;

es:value "production" ;

] ;

es:mustNot [

a es:RangeQuery ;

es:field "age" ;

es:gte 10 ;

es:lte 20 ;

] ;

es:should (

[a es:TermQuery ; es:field "tags" ;

es:value "env1"]

[a es:TermQuery ; es:field "tags" ;

es:value "deployed"]

) ;

es:minimumShouldMatch 1 ;

es:boost 1.0 ;

]

The following example SERVICE clause with comments provides details about how the GDI

es:query property can be mapped to DSL:

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a es:ElasticSource ;

Query an Elasticsearch Source 319

s:url "http://localhost:9200/" ;

When the value of es:query is a simple literal,

it is mapped to an Elastic query string query.

es:query "literal"

When the value of es:query is an RDF list,

you can specify other query types,

such as a match query:

es:query [

a es:MatchQuery ;

es:field "title" | ?title ; # field can be a literal or bound variable

es:query "moby dick" ;

] ;

or a boolean query:

es:query [

a es:BoolQuery ;

es:should ([

a es:RangeQuery ;

es:field ?amount ;

es:gt 500 ;

es:lt 1000 ;

] [

a es:TermQuery ;

es:field ?status ;

es:value 'late' ;

]) ;

] ;

}

Filter Mapping

Filtering can be performed inside the es:query list or you can add a FILTER clause to the query.

For example, the table below shows the SPARQL snippet above expressed as a FILTER clause.

SPARQL Query FILTER Clause

es:query [

a es:BoolQuery ;

es:must [

a es:TermQuery ;

FILTER(?user_id = "kimchy" &&

?tags = "production" &&

!(?age >= 10 && ?age <=

20) &&

(?tags == "env1" || ?tags

Query an Elasticsearch Source 320

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html

SPARQL Query FILTER Clause

es:field "user.id" ;

es:value "kimchy" ;

] ;

es:filter [

a es:TermQuery ;

es:field "tags" ;

es:value "production" ;

] ;

es:mustNot [

a es:RangeQuery ;

es:field "age" ;

es:gte 10 ;

es:lte 20 ;

] ;

es:should (

[a es:TermQuery ; es:field "tags" ;

es:value "env1"]

[a es:TermQuery ; es:field "tags" ;

es:value "deployed"]

) ;

es:minimumShouldMatch 1 ;

es:boost 1.0 ;

]

== "deployed"))

The table below shows each of the supported ElasticSource FILTER translations. Only expressions

matching the list below will be translated by the GDI. If the expression is of the form value <=

?field, the inequality is flipped to ?field > value before translating.

es:query Expression
FILTER Clause
Expression

es:query [a es:BoolQuery ; es:mustNot expr] !expr

Query an Elasticsearch Source 321

es:query Expression
FILTER Clause
Expression

es:query [a es:BoolQuery ; es:must (left right)] left && right

es:query [a es:BoolQuery ; es:should (left right)] left || right

es:query [a es:RangeQuery ; es:field ?field ; es:lt value] ?field < value

es:query [a es:RangeQuery ; es:field ?field ; es:lte value

]

?field <= value

es:query [a es:TermQuery ; es:field ?field ; es:value value

]

?field = value

es:query [a es:BoolQuery ; es:mustNot [a es:TermQuery ;

es:field ?field ; es:value value]]

?field != value

es:query [a es:RangeQuery ; es:field ?field ; es:gte value

]

?field >= value

es:query [a es:RangeQuery ; es:field ?field ; es:gt value] ?field > value

es:query [a es:QueryStringQuery ; es:field ?field ;

es:query pattern ; es:defaultOperator "AND"]

REGEX(?field,

pattern, "q")

es:query [a es:TermsQuery ; es:field ?field ; es:value

value, ...]

IN(?field,

value, ...)

es:query [a es:BoolQuery ; es:mustNot [a es:TermsQuery ;

es:field ?field ; es:value value, ...]]

NOT IN(?field,

value, ...)

es:query [a es:MatchQuery ; es:field ?field ; es:query CONTAINS

Query an Elasticsearch Source 322

es:query Expression
FILTER Clause
Expression

value ; es:lenient true] (?field, value)

es:query [a es:PrefixQuery ; es:field ?field ; es:value

value]

STRSTARTS

(?field, value)

es:query [a es:ExistsQuery ; es:field ?field] BOUND(?field)

Query Examples

l Aggregations

l Highlighting

Aggregations

The following example query performs terms aggregations.

PREFIX es: <http://elastic.co/search/>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a es:ElasticSource;

s:url "https://{{@es.hostname}}:{{@es.port}}/" ;

s:username "{{@es.username}}" ;

s:password "{{@es.password}}" ;

es:index "templated_consumption_es" ;

es:query "*ELM*" ;

?instance () ;

es:aggregations [

?artifactTypes [

a es:TermsAggregation ;

es:field ?artifactType ;

es:meta [

?label "artifactType" ;

] ;

Query an Elasticsearch Source 323

?value () ;

?count () ;

] ;

?fileTypes [

a es:TermsAggregation ;

es:field ?fileType ;

es:meta [

?label "fileType" ;

] ;

?value () ;

?count () ;

] ;

?managedBys [

a es:TermsAggregation ;

es:field ?managedBy ;

es:meta [

?label "managedBy" ;

] ;

?value () ;

?count () ;

] ;

] .

}

}

Highlighting

The following example configures highlighting for fragments from the actor field.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX es: <http://elastic.co/search/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

WHERE {

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit>

{

?data a es:ElasticSource ;

es:url "http://localhost:9200/" ;

es:index "films" ;

es:html false ;

es:query "Clint" ;

es:field ?actor, ?director ;

es:highlight [

Query an Elasticsearch Source 324

es:field ?actor ;

es:type "plain" ;

es:fragmentSize 200 ;

es:numberOfFragments 10 ;

es:preTags "<mark hit='true'>" ;

es:postTags "</mark>" ;

] ;

s:selector "film" ;

?actor (xsd:string) ;

?awards (xsd:string) ;

?director (xsd:string) ;

?image (xsd:string) ;

?length (xsd:long) ;

?popularity (xsd:long) ;

?subject (xsd:string) ;

?title (xsd:string) ;

?year (xsd:long) ;

?score () ;

?id () ;

?highlights [

?field () ;

?fragment () ;

] .

FILTER(?year = 1990 || ?length > 103)

FILTER(REGEX(?title, "Manhattan", "q") || REGEX(?subject, "Comedy", "q") || REGEX

(?subject, "Drama", "q"))

}

}

Highlighting Elasticsearch Results

By including the highlight property in ElasticSource GDI queries, you can configure the response to
include highlights for search results. For general information about highlighting Elasticsearch

responses, see Highlighting in the Elasticsearch documentation. Highlight property usage is

described below.

l Highlight Syntax

l Highlight Examples

Query an Elasticsearch Source 325

https://www.elastic.co/guide/en/elasticsearch/reference/current/highlighting.html

Highlight Syntax

es:highlight [

es:boundaryChars "string" ;

es:boundaryMaxScan int ;

es:boundaryScannerLocale "string" ;

es:boundaryScannerType "string" ;

es:field "string" ;

es:forceSource boolean ;

es:fragmentSize int ;

es:fragmenter "string" ;

es:highlightFilter boolean ;

es:highlightQuery "string" | [rdf_list] ;

es:highlighterType "string" ;

es:noMatchSize int ;

es:numberOfFragments int ;

es:order "string" ;

es:phraseLimit int ;

es:postTags "string" ;

es:preTags "string" ;

es:requireFieldMatch boolean ;

] ;

Option Type Description

boundaryChars string This property can be used to define the boundary
characters to look for. Defaults to .,!? \t\n.

boundaryMaxScan int This property can be used to place a limit on the
number of characters to scan when looking for
boundary characters. Defaults to 20.

boundaryScannerLocale string This property defines the language tag (such as
"en-US" or "fr-FR") to apply when searching for
sentence and word boundaries.

boundaryScannerType string If highlighterType is unified or fvh, this property
can be used to specify how to break the highlighted
fragments. This property is ignored when the

Query an Elasticsearch Source 326

Option Type Description

highlighter type is plain. The list below describes
the valid values:

l chars: Valid when the highlighter type is
fast vector highlighter (fvh)

(es:highlighterType "fvh").

Specifies that the highlighting boundaries

are the characters specified by

boundaryChars. The boundaryMaxScan

value controls how far to scan for boundary

characters. This is the default value for fvh.

l sentence: This is the default value for the
unified highlighter. It configures highlighted

fragments to break at the next sentence

boundary. You can specify the locale to

use with boundaryScannerLocale. When

used with the unified highlighter, the

sentence scanner splits sentences bigger

than fragmentSize at the first word

boundary next to fragmentSize. You can

set fragmentSize to 0 to avoid splitting

sentences.

l word: Configures highlighted fragments to
break at the next word boundary. You can

specify the locale to use with

boundaryScannerLocale.

field string or
variable

This property specifies the field to retrieve
highlights for. It can include a ?variable (which the
GDI maps to the full path of the field in the

Query an Elasticsearch Source 327

Option Type Description

Elasticsearch document), a field name, or a field
name pattern. For example:

es:highlight [

es:field ?actor ;

es:field "film.actor" ;

es:field "film.*" ;

es:field "*" ;

]

forceSource boolean This property controls whether to highlight based
on the source even if the field is stored separately.
Defaults to false.

fragmentSize int This property specifies the number of characters to
include in highlighted fragments. Defaults to 100.

fragmenter string If highlighterType is plain, this property can be
used to specify how to break up text in highlight
snippets. The list below describes the valid values:

l simple: Breaks text into fragments that are
the same size (as specified by

fragmentSize).

l span: The default value. Breaks text into
fragments that are the same size but tries

to avoid breaking text between highlighted

terms.

highlightFilter boolean This property controls whether to highlight filter
results.

Query an Elasticsearch Source 328

Option Type Description

highlightQuery string or
object

This property specifies the highlight query. The
value can be a string or a query object that maps to
the Elasticsearch query DSL.

highlighterType string This property defines the type of highlighter to use,
"plain", "unified", or "fvh".

noMatchSize int This property specifies the number of characters to
return from the beginning of the field if there are no
matching fragments to highlight. Defaults to 0
(nothing is returned).

numberOfFragments int This property can be used to set the maximum
number of fragments to generate. If this property is
set to 0, no fragments are returned. Instead, the
entire field contents are highlighted and returned,
which can be useful if you want to highlight short
text (such as a title or address) for which
fragmentation is not required. Defaults to 5. If the
number of fragments is 0, fragmentSize is ignored.

order string This property can be included to sort highlighted
fragments by score. When es:order "score",
the most relevant fragments are output first.
Defaults to "none"; fragments are output in the
order they appear in the field.

phraseLimit int If highlighterType is fvh, this property can be used
to limit the number of matching phrases to consider.
Limiting the number of phrases prevents the fvh
highlighter from analyzing too many phrases and
consuming too much memory. Defaults to 256.

Query an Elasticsearch Source 329

Option Type Description

postTags string This property is used in conjunction with preTags to
define the HTML tags to use for the highlighted
elements. This property defines the closing tag to
use after the highlighted text. Defaults to .

preTags string This property is used in conjunction with postTags
to define the HTML tags to use for the highlighted
elements. This property defines the opening tag to
use before the highlighted text. Defaults to .

requireFieldMatch boolean This property controls whether to highlight only the
fields that contain a query match. Defaults to true.
If false, all fields are highlighted.

Highlight Examples

The following example configures highlighting for fragments from the actor field.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX es: <http://elastic.co/search/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

WHERE {

SERVICE TOPDOWN <http://cambridgesemantics.com/services/DataToolkit>

{

?data a es:ElasticSource ;

es:url "http://localhost:9200/" ;

es:index "films" ;

es:html false ;

es:query "Clint" ;

es:field ?actor, ?director ;

es:highlight [

es:field ?actor ;

es:type "plain" ;

es:fragmentSize 200 ;

es:numberOfFragments 10 ;

es:preTags "<mark hit='true'>" ;

Query an Elasticsearch Source 330

es:postTags "</mark>" ;

] ;

s:selector "film" ;

?actor (xsd:string) ;

?awards (xsd:string) ;

?director (xsd:string) ;

?image (xsd:string) ;

?length (xsd:long) ;

?popularity (xsd:long) ;

?subject (xsd:string) ;

?title (xsd:string) ;

?year (xsd:long) ;

?score () ;

?id () ;

?highlights [

?field () ;

?fragment () ;

] .

FILTER(?year = 1990 || ?length > 103)

FILTER(REGEX(?title, "Manhattan", "q") || REGEX(?subject, "Comedy", "q") || REGEX

(?subject, "Drama", "q"))

}

}

Query a File Source

The Graph Data Interface (GDI) uses the Apache Commons VFS library to work with file systems.

Many of the properties specified in queries against file sources reflect the requirements of the VFS

library for that source. The topics in this section provide guidance on writing GDI queries for each of

the supported file types.

In this section:

Query CSV and TSV Files

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from CSV or TSV files. It also includes example queries that may be useful as a starting point for

writing your own GDI queries.

Query a File Source 331

https://commons.apache.org/proper/commons-vfs/

l Query Syntax

l Query Examples

Query Syntax

The following query syntax shows the structure of a GDI query for CSV and TSV sources. The

clauses, patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH <target_graph> {]

triple_patterns

[}]

}

[FROM Clause]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(<target_graph>)

{

?data a s:FileSource ;

s:url "string" ;

[s:options [file_storage_connection_options] ;]

[s:pattern "string" ;]

[s:maxDepth int ;]

[s:format [source_format_options ;] ;]

[s:mimetype "string" ;]

[s:username "string" ;]

Query a File Source 332

[s:password "string" ;]

[s:timeout int ;]

[s:batching boolean | int ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;]

Mapping variables

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX
Clause

N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from the
query template (or a subset of them) plus any data-specific
declarations.

Result N/A The result clause defines the type of SPARQL query to run and the

Query a File Source 333

Option Type Description

Clause set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Graph
Lakehouse (INSERT).

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataToolki

t> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
creating a view, use the DataToolkitView service call, as
described below in View SERVICE Clause.

Include the optional TOPDOWN keyword when you want to pass

input values from Graph Lakehouse to the data source. When you

include TOPDOWN in the service call, it indicates that the rest of

the query produces values to send to the source. In this case, the

GDI makes repeated calls to pass in each of the specified values

and retrieve the data that is based on those values.

View
SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data,
include the following SERVICE call: SERVICE
<http://cambridgesemantics.com/services/DataToolki

tView>(<target_graph>). Using the DataToolkitView call
optimizes query execution because it tells the GDI to inspect the
query and determine which filters to push to the data source. It also
limits the result set and retrieves only the data that is needed, i.e., the
source data is fully mapped but all of the mapped data is not
necessarily returned.

url string This property specifies the file system location of the source file or
directory of files. When specifying a directory (such as s:url
"/opt/shared-files/loads/"), the GDI loads all of the file
formats it recognizes. To specify a directory but limit the number or

Query a File Source 334

Option Type Description

type of files that are read, you can include the pattern and/or
maxDepth properties.

options RDF list If additional connection information needs to be provided to access
the file storage system, include the options property to list any
storage-specific connection parameters. See File Storage
Connection Options for information about the supported properties
for each storage type.

pattern string This property can be used to specify a wildcard pattern for matching
file names. For example, s:pattern "common_prefix*.csv".
You can include one s:pattern property per FileSource. The GDI
supports Unix file globbing syntax outside of parentheses. Within
parentheses, full Java regular expression language is supported. For
example, including s:pattern "data/**/customer_*.csv"

tells the GDI to load all files that match the pattern "customer_*.csv"
from any number of subdirectories under the data directory.
Similarly s:pattern "(\d+)/transaction_*.csv" tells the
GDI to load all files that match the pattern "transaction_*.csv" in all
subdirectories.

maxDepth int This property can be used to limit the directory traversal depth. By
default, when s:url specifies a directory (and a s:pattern that
limits that traversal depth is not specified), all subdirectories are
processed. To process only the files in the top level directory, set
maxDepth to 0 (s:maxDepth 0). To process the files in the top level
directory plus the first-level subdirectories, set maxDepth to 1
(s:maxDepth 1), and so on.

format RDF list You can include the format property to add parameters that
describe the source files. See File Source Format Options for details
about the supported parameters.

Query a File Source 335

Option Type Description

mimetype string If you are querying TSV files that do not have a .tsv file extension,
include the mimetype property with a value of text/tsv
(s:mimetype "text/tsv").

username string If authentication is required to access the source, include this
property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in milliseconds) to
use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to 5000
(s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change the
batching size. However, it can be useful to control the batch size
when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching 3000.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to use,
concurrency can also be included as an object with limit, nodes,
and/or executorsPerNode properties. For example, the following
object configures a concurrency model that allows a maximum of 24
executors distributed across 4 nodes with 8 executors per node:

s:concurrency [

Query a File Source 336

Option Type Description

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests to
issue per minute. If you specify a string, you have more flexibility in
configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing slices,

the longer the rate delay needs to be to enforce the limit in

aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with a

rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate delay

of 750ms between requests.

locale string This property can be used to specify the locale to use when parsing
locale-dependent data such as numbers, dates, and times.

Query a File Source 337

Option Type Description

sampling int This property can be used to configure the number of records in the
source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees and
Selector Paths.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a single
source. If your query targets multiple sources, however, and you
want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for each
source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource template
for the instances that are created from the source. For example,
s:key ("EMPLOYEE_ID"). For more information about key, see
Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property to
list the target table and a using property that defines the foreign key
column. For more information about reference, see Data Linking
Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in GDI

Query a File Source 338

Option Type Description

queries to define the desired types. In addition, it can be used to
describe the formats of date and time values in the source to ensure
that they are recognized and parsed to the appropriate date, time,
and/or dateTime values. For details about the formats property, see
Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For details
about the normalize property, see Model Normalization Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable (["binding"]

[datatype] ["datetime_format"]) format, define the triple
patterns to output. When the specified ?variablematches the
source column name, the GDI uses the variable as the source data
selector. If you specify an alternate variable name, a binding needs to
be specified to map the new variable to the source. You also have the
option to transform the data using the datatype and datetime_format
options.

Note
The parentheses around the binding, data type, and format

Query a File Source 339

Option Type Description

specifications are not required but are included in this

document for readability.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate variable
name or there is a hierarchical path to the source column, then the
binding is needed to map the new variable to that source column.

For example for CSV, the following pattern simply binds the source

column AIRLINE to the lowercase variable ?airline: ?airline

("AIRLINE").

Note
For FileSource, periods (.), forward slashes (/), and brackets

([]) are parsed as path notation. Therefore, if a source

column name includes any of those characters they must be

escaped in the binding. Use two backslashes (\\) as an

escape character. For example, if a column name is

average/day, the variable and binding pattern could be
written as ?averagePerDay ("average\\/day").

datatype URI The datatype is the data type to convert the column to. If you do not
specify a data type, the GDI infers the type. The GDI supports the
following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

Query a File Source 340

Option Type Description

xsd:yearMonthDuration, xsd:gMonthDay, xsd:gMonth,

xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time data
types. The GDI supports Java date and time formats. Specify days as
"d," months as "M," and years as "y." For the time, specify "H" for
hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values such
as "01JAN19."

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed to
02-04-2099. To specify an alternate base year to use for

two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set the

base year to 1900 instead of 2000, use a format value such

as xsd:date "dd-MMM-yy^1900" or xsd:date "dd-

MMM-yy^1990". When one of those values is specified, 02-

04-99 is parsed to 02-04-1999.

Query Examples

The example below ingests a directory of CSV files. The pattern property (s:pattern "post_[0-

9]*_[0-9]*.csv") is used to narrow down the set of files to load. Since the files use a pipe (|) as

the delimiter rather than a comma (,), the delimiter property is also included to specify the |

character.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX snvoc: <http://www.ldbc.eu/ldbc_socialnet/1.0/vocabulary/>

PREFIX sntag: <http://www.ldbc.eu/ldbc_socialnet/1.0/tag/>

Query a File Source 341

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT {

GRAPH <http://anzograph.com/vocab>

{

?postIRI a snvoc:Post, snvoc:Message ;

snvoc:creationDate ?creationDate ;

snvoc:id ?id ;

snvoc:imageFile ?imageFile ;

snvoc:locationIP ?locationIP ;

snvoc:browserUsed ?browserUsed ;

snvoc:language ?language ;

snvoc:content ?content ;

snvoc:length ?length ;

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/opt/shared-files/data/csv/post_6_0/" ;

s:pattern "post_[0-9]*_[0-9]*.csv" ;

s:format [s:delimiter "|"] ;

?creationDate (xsd:dateTime) ;

?id (xsd:string) ;

?imageFile (xsd:string) ;

?locationIP (xsd:string) ;

?browserUsed (xsd:string) ;

?language (xsd:string) ;

?content (xsd:string) ;

?length(xsd:string) .

BIND(IRI("http://www.ldbc.eu/ldbc_socialnet/1.0/data/Post/{{?id}}") as ?postIRI)

}

}

The example below is similar to the query above but it specifies the formats to use for the

xsd:date values.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

Query a File Source 342

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX kd: <http://cambridgesemantics.com/ont/autogen/Rh/Kaggle_Diabetes#>

INSERT {

GRAPH <http://anzograph.com/diagnoses>

{

?URI a kd:Diagnosis ;

kd:Diagnosis_DiagnosisGuid ?diagnosis_guid ;

kd:Diagnosis_PatientGuid ?patient_guid ;

kd:Diagnosis_ICD9Code ?icd9Code ;

kd:Diagnosis_DiagnosisDescription ?diagnosisDescription ;

kd:Diagnosis_StartDate ?cus_start_date ;

kd:Diagnosis_EndDate ?Date_End ;

kd:Diagnosis_Acute ?acute ;

kd:Diagnosis_UserGuid ?UserGuid .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?csv a s:FileSource ;

s:url "/opt/shared-files/source_data/kaggle_diabetes/" ;

s:pattern "Diagnosis.csv" ;

s:format [s:delimiter ","] ;

?diagnosis_guid ("DiagnosisGuid" xsd:string) ;

?patient_guid ("PatientGuid" xsd:string) ;

?icd9Code ("ICD9Code" xsd:string) ;

?diagnosisDescription ("DiagnosisDescription" xsd:string) ;

?acute ("Acute" xsd:int) ;

?UserGuid ("UserGuid" xsd:string) ;

?cus_start_date ("CUSTOMER_START_DATE" xsd:date "yyyy-MM-dd") ;

?Date_End ("Date End" xsd:date "MM/dd/yy") .

}

BIND(IRI(CONCAT("urn://anzograph.com/kaggle_diabetes/patient/",ENCODE_FOR_URI

(?diagnosis_guid))) as ?URI)

}

Query a File Source 343

Query JSON and NDJSON Files

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from JSON or NDJSON files. It also includes example queries that may be useful as a starting point

for writing your own GDI queries.

l Query Syntax

l Hierarchical Bindings and Arrays

l Capturing Property Keys

l Query Examples

Query Syntax

The following query syntax shows the structure of a GDI query for JSON sources. The clauses,

patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH <target_graph> {]

triple_patterns

[}]

}

[FROM Clause]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(<target_graph>)

Query a File Source 344

{

?data a s:FileSource ;

s:url "string" ;

[s:options [file_storage_connection_options] ;]

[s:pattern "string" ;]

[s:maxDepth int ;]

[s:format [source_format_options ;] ;]

[s:mimetype "string" ;]

[s:username "string" ;]

[s:password "string" ;]

[s:timeout int ;]

[s:batching boolean | int ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;]

Mapping variables and hierarchical bindings

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Query a File Source 345

Option Type Description

PREFIX
Clause

N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from the
query template (or a subset of them) plus any data-specific
declarations.

Result
Clause

N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Graph
Lakehouse (INSERT).

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataToolki

t> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
creating a view, use the DataToolkitView service call, as
described below in View SERVICE Clause.

Include the optional TOPDOWN keyword when you want to pass

input values from Graph Lakehouse to the data source. When you

include TOPDOWN in the service call, it indicates that the rest of

the query produces values to send to the source. In this case, the

GDI makes repeated calls to pass in each of the specified values

and retrieve the data that is based on those values.

View
SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the data,
include the following SERVICE call: SERVICE
<http://cambridgesemantics.com/services/DataToolki

tView>(<target_graph>). Using the DataToolkitView call
optimizes query execution because it tells the GDI to inspect the
query and determine which filters to push to the data source. It also
limits the result set and retrieves only the data that is needed, i.e., the
source data is fully mapped but all of the mapped data is not

Query a File Source 346

Option Type Description

necessarily returned.

url string This property specifies the file system location of the source file or
directory of files. When specifying a directory (such as s:url
"/opt/shared-files/loads/"), the GDI loads all of the file
formats it recognizes. To specify a directory but limit the number or
type of files that are read, you can include the pattern and/or
maxDepth properties.

options RDF list If additional connection information needs to be provided to access
the file storage system, include the options property to list any
storage-specific connection parameters. See File Storage
Connection Options for information about the supported properties
for each storage type.

pattern string This property is used to specify a wildcard pattern for matching file
names. For example, s:pattern "common_prefix*.json".
You can include one s:pattern property per FileSource. The GDI
supports Unix file globbing syntax outside of parentheses. Within
parentheses, full Java regular expression language is supported. For
example, including s:pattern "data/**/customer_*.json"

tells the GDI to load all files that match the pattern "customer_*.json"
from any number of subdirectories under the data directory.
Similarly s:pattern "(\d+)/transaction_*.json" tells the
GDI to load all files that match the pattern "transaction_*.json" in all
subdirectories.

maxDepth int This property can be used to limit the directory traversal depth. By
default, when s:url specifies a directory (and a s:pattern that
limits that traversal depth is not specified), all subdirectories are
processed. To process only the files in the top level directory, set
maxDepth to 0 (s:maxDepth 0). To process the files in the top level

Query a File Source 347

Option Type Description

directory plus the first-level subdirectories, set maxDepth to 1
(s:maxDepth 1), and so on.

format RDF list You can include the format property to add parameters that
describe the source files. See File Source Format Options for details
about the supported parameters.

mimetype string If you are querying NDJSON files that do not have an .ndjson file
extension, include the mimetype property with a value of
application/x-ndjson (s:mimetype "application/x-

ndjson").

username string If authentication is required to access the source, include this
property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in milliseconds) to
use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to 5000
(s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change the
batching size. However, it can be useful to control the batch size
when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching 3000.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a

Query a File Source 348

Option Type Description

maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to use,
concurrency can also be included as an object with limit, nodes,
and/or executorsPerNode properties. For example, the following
object configures a concurrency model that allows a maximum of 24
executors distributed across 4 nodes with 8 executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of requests to
issue per minute. If you specify a string, you have more flexibility in
configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing slices,

the longer the rate delay needs to be to enforce the limit in

aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with a

Query a File Source 349

Option Type Description

rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate delay

of 750ms between requests.

locale string This property can be used to specify the locale to use when parsing
locale-dependent data such as numbers, dates, and times.

sampling int This property can be used to configure the number of records in the
source to examine for data type inferencing.

selector string or
RDF list

This property can be used for JSON path extraction to traverse
nested structures and target specific data. For example,
s:selector "projects" targets the projects class of data. To
express a hierarchy, use dot notation. For example, s:selector
"region.state.city" navigates a hierarchy to target city data.
For more information about binding components and the selector
property, see Using Binding Trees and Selector Paths.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a single
source. If your query targets multiple sources, however, and you
want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for each
source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource template
for the instances that are created from the source. For example,
s:key ("EMPLOYEE_ID"). For more information about key, see
Data Linking Options.

Query a File Source 350

Option Type Description

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property to
list the target table and a using property that defines the foreign key
column. For more information about reference, see Data Linking
Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in GDI
queries to define the desired types. In addition, it can be used to
describe the formats of date and time values in the source to ensure
that they are recognized and parsed to the appropriate date, time,
and/or dateTime values. For details about the formats property, see
Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,
the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For details
about the normalize property, see Model Normalization Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable (["binding"]

[datatype] ["datetime_format"]) format, define the triple
patterns to output. When the specified ?variablematches the

Query a File Source 351

Option Type Description

source column name, the GDI uses the variable as the source data
selector. If you specify an alternate variable name, a binding needs to
be specified to map the new variable to the source. You also have the
option to transform the data using the datatype and datetime_format
options.

Tip
See Hierarchical Bindings and Arrays below for more

information about configuring mapping variables and

unpacking JSON files with nested objects and arrays.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source
column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate variable
name or there is a hierarchical path to the source column, then the
binding is needed to map the new variable to that source column.

For example for CSV, the following pattern simply binds the source

column AIRLINE to the lowercase variable ?airline: ?airline

("AIRLINE").

Note
For FileSource, periods (.), forward slashes (/), and brackets

([]) are parsed as path notation. Therefore, if a source

column name includes any of those characters they must be

escaped in the binding. Use two backslashes (\\) as an

escape character. For example, if a column name is

average/day, the variable and binding pattern could be
written as ?averagePerDay ("average\\/day").

Query a File Source 352

Option Type Description

datatype URI The datatype is the data type to convert the column to. If you do not
specify a data type, the GDI infers the type. The GDI supports the
following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay, xsd:gMonth,

xsd:gYearMonth, xsd:anyURI

datetime_
format

string This option is used to specify the format to use for date and time data
types. The GDI supports Java date and time formats. Specify days as
"d," months as "M," and years as "y." For the time, specify "H" for
hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values such
as "01JAN19."

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed to
02-04-2099. To specify an alternate base year to use for

two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set the

base year to 1900 instead of 2000, use a format value such

as xsd:date "dd-MMM-yy^1900" or xsd:date "dd-

MMM-yy^1990". When one of those values is specified, 02-

04-99 is parsed to 02-04-1999.

Query a File Source 353

Hierarchical Bindings and Arrays

When configuring the mapping variables in a query, the GDI provides syntax for unpacking JSON

files with nested objects and arrays. One way to express hierarchies in queries is to use brackets

([]) to group objects into binding trees. For example, the WHERE clause snippet below

organizes mapping variable objects into an hourly/data hierarchy by nesting the ?data

patterns inside the ?hourly [] tree:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource;

s:url "/mnt/data/json/weather.json" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

?hourly

[

?data

[

?time (xsd:long) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?windSpeed (xsd:double) ;

] ;

] .

}

}

When constructing object binding trees, if you choose to introduce the hierarchy with a variable

name that is not an exact match to the source label, include a selector property to list the value
from the source. For example, in the WHERE clause snippet below, s:selector is included to

select eventHeader in the source as ?event in the query and statLocation as ?location.

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

Query a File Source 354

s:url "/mnt/data/json/part_1.json" ;

?event

[

s:selector "eventHeader" ;

?eventId (xsd:string) ;

?eventName (xsd:string) ;

?eventVersion (xsd:string) ;

?eventTime (xsd:dateTime) ;

] ;

?location

[

s:selector "statLocation" ;

?locationId (xsd:string) ;

?lineNo (xsd:int) ;

?statNo (xsd:int) ;

?statId (xsd:int) ;

] .

}

}

As an alternative to grouping objects in binding trees, the selector property also supports using
dot notation to specify paths. For example, the WHERE clause snippet below rewrites the first

example query to express the same hourly/data hierarchy as a path in the s:selector

value:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource;

s:url "/mnt/data/json/weather.json" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

s:selector: "hourly.data" ;

?time (xsd:long) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?windSpeed (xsd:double) .

}

}

Query a File Source 355

In addition to object binding trees and selectors, the GDI offers additional syntax for reading or

ingesting JSON sources with nested objects and arrays. For example, following the JSON

sample file below is a query that captures each value in the arrays:

{

"payload" :

{

"IBP_IndEvent_MSR" :

{

"unit" : "ms",

"value" : [0, 1]

},

"IBP_IndEvent_RMF" :

{

"unit" : "-",

"value" : [0.012, 1.398, 3.1415]

}

}

}

To read the JSON file above, the following query uses an object binding (?values []) to drill

down to the value arrays in the source. An @ selector is specified in the ?value variable binding

(?value ("@" xsd:double)) to retrieve each of the array values. For an array of primitive

values, the @ selector captures each value in the array. If the source value was an array of

objects, the @ selector would retrieve a JSON representation for each object in the array. In

addition to creating a new binding context for the primitive array values, the ?values object

binding also includes ?index ("!array::index") to capture the index array with the

primitive value.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:url "/mnt/data/json/array-index.json" ;

s:selector "payload.*" ;

?unit (xsd:string) ;

?values [

s:selector "value" ;

Query a File Source 356

?value ("@" xsd:double) ;

?index ("!array::index") ;

] .

}

}

The results of the query are shown below:

unit | value | index

-----+--------+-------

ms | 0 | 0

ms | 1 | 1

- | 0.012 | 0

- | 1.398 | 1

- | 3.1415 | 2

If you do not want to retrieve all of the values in an array, you can include the specific index

number to retrieve instead of using the @ symbol. In the variable binding, the index number is

appended in brackets ([]) to the binding column name. For example, the following variable

binding retrieves the second index value (the third value in the array) from a "projects" array:

?project ("projects[2]"). The next example uses the following JSON file:

{

"field1" : "value1" ,

"arrayfield" : [

"arrayvalue1",

"arrayvalue2"

]

}

To retrieve only the second value in the array, the following query appends the index value 1 to

the array column name, arrayfield:

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

SELECT *

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?json a s:FileSource ;

s:url "/mnt/data/json/array-index-2.json" ;

?field1 (xsd:string) ;

?arrayval ("arrayfield[1]" xsd:string) .

Query a File Source 357

}

}

The results of the query are shown below:

field1 | arrayval

---------+----------

value1 |arrayvalue2

Capturing Property Keys

In GDI Generator queries, the names of property keys can be captured from files by including a

variable as the s:selector and using the same variable as the s:key. For example, the GDI

query below ingests the following simple JSON file.

company.json

{

"AAPL": {

"name": "Apple Corp"

},

"MSFT": {

"name": "Microsoft"

},

"IBM": {

"name": "IBM"

}

}

In the query, the keys "AAPL," "MSFT," and "IBM" are selected as the ?TickerSymbol variable and

the key is set to the same value.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT { GRAPH <http://anzograph.com/companies> {

?s ?p ?o .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:url "/opt/shared/data/company.json" ;

s:selector "?TickerSymbol" ;

Query a File Source 358

s:key (?TickerSymbol) ;

s:model "Company" ;

?TickerSymbol (xsd:string) ;

?name (xsd:string) .

?rdf a s:RdfGenerator, s:OntologyGenerator;

s:as (?s ?p ?o) ;

s:ontology <http://anzograph.com/ontologies/companies> ;

s:base ${targetGraph} .

}

}

Selecting the predicates and objects from the graph shows the tickerSymbol predicate and value.

SELECT ?p ?o

FROM <http://anzograph.com/companies>

WHERE { ?s ?p ?o . }

ORDER BY desc(?o)

p | o

---+-------------

http://anzograph.com/ontologies/company#Company.name | Microsoft

http://anzograph.com/ontologies/company#Company.tickerSymbol | MSFT

http://anzograph.com/ontologies/company#Company.name | IBM

http://anzograph.com/ontologies/company#Company.tickerSymbol | IBM

http://anzograph.com/ontologies/company#Company.name | Apple Corp

http://anzograph.com/ontologies/company#Company.tickerSymbol | AAPL

...

Query Examples

The example query below reads a JSON file that contains data about weather. Since the file is

hierarchical, the s:selector property is included to specify the path to data in the hourly/data

hierarchy:

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource;

Query a File Source 359

s:url "/mnt/data/json/weather.json" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

s:selector: "hourly.data" ;

?time (xsd:long) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?windSpeed (xsd:double) .

}

}

The following example query ingests data from a JSON file that contains data about the New York

Times best selling books.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX books: <http://cambridgesemantics.com/ontologies/NYT_Bestsellers_Ontology#>

INSERT {

GRAPH <http://anzograph.com/books> {

?book a books:Book ;

books:p_Title ?title ;

books:p_Description ?description ;

books:p_Author ?author ;

books:p_Publisher ?publisher ;

books:p_Date ?rawdate .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/mnt/data/json/nyt_best_sellers.json" ;

?title () ;

?author () ;

?description () ;

?publisher () ;

?price() ;

?rawdate ("bestsellers_date.$date.$numberLong").

}

BIND(IRI(CONCAT("http://anzograph.com/ontologies/NYT_Bestsellers_Ontology/", ENCODE_

FOR_URI(?title))) AS ?book) .

}

Query a File Source 360

A snippet of the file's contents is shown below:

{

"_id": {

"$oid": "5b4aa4ead3089013507db18b"

},

"bestsellers_date": {

"$date": {

"$numberLong": "1211587200000"

}

},

"published_date": {

"$date": {

"$numberLong": "1212883200000"

}

},

"amazon_product_url": "http://www.amazon.com/Odd-Hours-Dean-

Koontz/dp/0553807056?tag=NYTBS-20",

"author": "Dean R Koontz",

"description": "Odd Thomas, who can communicate with the dead, confronts evil forces

in a California coastal town.",

"price": {

"$numberInt": "27"

},

"publisher": "Bantam",

"title": "ODD HOURS",

"rank": {

"$numberInt": "1"

},

"rank_last_week": {

"$numberInt": "0"

},

"weeks_on_list": {

"$numberInt": "1"

}

}

Query XML Files

This topic provides details about the structure to use when writing GDI queries to read or ingest data

from XML files. It also includes example queries that may be useful as a starting point for writing

your own GDI queries.

Query a File Source 361

l Query Syntax

l Hierarchical Bindings and Arrays

l Query Examples

Query Syntax

The following query syntax shows the structure of a GDI query for XML sources. The clauses,

patterns, and placeholders that are links are described below.

PREFIX Clause

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX anzo: <http://openanzo.org/ontologies/2008/07/Anzo#>

PREFIX zowl: <http://openanzo.org/ontologies/2009/05/AnzoOwl#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

Result Clause

{

[GRAPH ${targetGraph} {]

triple_patterns

[}]

}

[${usingSources}]

WHERE

{

SERVICE Clause: Include the following service call when reading or inserting data.

SERVICE [TOPDOWN] <http://cambridgesemantics.com/services/DataToolkit>

View SERVICE Clause: Or use the service call below when constructing a view.

SERVICE <http://cambridgesemantics.com/services/DataToolkitView>(${targetGraph})

{

?data a s:FileSource ;

s:url "string" ;

[s:options [file_storage_connection_options] ;]

[s:pattern "string" ;]

[s:maxDepth int ;]

Query a File Source 362

[s:format [source_format_options ;] ;]

[s:mimetype "string" ;]

[s:username "string" ;]

[s:password "string" ;]

[s:timeout int ;]

[s:batching boolean | int ;]

[s:paging [pagination_options ;]

[s:concurrency int | [list_of_properties] ;]

[s:rate int | "string" ;]

[s:locale "string" ;]

[s:sampling int ;]

[s:selector "string" | [list] ;]

[s:model "string" ;]

[s:key ("string") ;]

[s:reference [s:model "string" ; s:using ("string")]

[s:formats [datatype_formatting_options] ;]

[s:normalize boolean | [normalization_rules] ;]

[s:count ?variable ;]

[s:offset int ;]

[s:limit int ;]

Mapping variables and hierarchical bindings

?mapping_variable (["binding"] [datatype] ["datetime_format"]) ;

... ;

.

Additional clauses such as BIND, VALUES, FILTER

}

}

Note
For readability, the parameters below exclude the base URI

<http://cambridgesemantics.com/ontologies/DataToolkit#> as well as the s:

prefix. As shown in the examples, however, the s: prefix or full property URI does need to be

included in queries.

Option Type Description

PREFIX Clause N/A The PREFIX clause declares the standard and custom prefixes for
GDI service queries. Generally, queries include the prefixes from
the query template (or a subset of them) plus any data-specific

Query a File Source 363

Option Type Description

declarations.

Result Clause N/A The result clause defines the type of SPARQL query to run and the
set of results to return, i.e., whether you want to read (SELECT or
CONSTRUCT) from the source or ingest the data into Graph
Lakehouse (INSERT).

GRAPH
${targetGraph}

N/A Include the GRAPH keyword and target graph parameter
${targetGraph} when writing an INSERT query to ingest data
into a graphmart. Graph Lakehouse automatically populates the
query with the appropriate target URIs when the query runs.

${usingSource
s}

N/A Include the source graph parameter ${usingSources} when
writing a "topdown" query that passes values from the data that is
in the graphmart to the data source. Graph Lakehouse
automatically populates the query with the appropriate FROM
clauses when the query runs. When passing literal values to the
remote source, you do not need to include the source graph
parameter. The SERVICE Clause description below includes more
information about passing input to data sources.

SERVICE
Clause

N/A Include the SERVICE call SERVICE [TOPDOWN]

<http://cambridgesemantics.com/services/DataTool

kit> to invoke the GDI service when you are running a SELECT,
INSERT, or CONSTRUCT query that is not creating a view. When
creating a view, use the DataToolkitView service call, as
described below in View SERVICE Clause.

Include the optional TOPDOWN keyword when you want to pass

input values from Graph Lakehouse to the data source. When

you include TOPDOWN in the service call, it indicates that the

rest of the query produces values to send to the source. In this

Query a File Source 364

Option Type Description

case, the GDI makes repeated calls to pass in each of the

specified values and retrieve the data that is based on those

values.

View SERVICE
Clause

N/A When writing a CONSTRUCT query that creates a view of the
data, include the following SERVICE call: SERVICE
<http://cambridgesemantics.com/services/DataTool

kitView>(<target_graph>). Using the DataToolkitView
call optimizes query execution because it tells the GDI to inspect
the query and determine which filters to push to the data source. It
also limits the result set and retrieves only the data that is needed,
i.e., the source data is fully mapped but all of the mapped data is
not necessarily returned.

url string This property specifies the file system location of the source file or
directory of files. When specifying a directory (such as s:url
"/opt/shared-files/loads/"), the GDI loads all of the file
formats it recognizes. To specify a directory but limit the number or
type of files that are read, you can include the pattern and/or
maxDepth properties.

options RDF list If additional connection information needs to be provided to access
the file storage system, include the options property to list any
storage-specific connection parameters. See File Storage
Connection Options for information about the supported properties
for each storage type.

pattern string This property is used to specify a wildcard pattern for matching file
names. For example, s:pattern "common_prefix*.xml".
You can include one s:pattern property per FileSource. The
GDI supports Unix file globbing syntax outside of parentheses.
Within parentheses, full Java regular expression language is

Query a File Source 365

Option Type Description

supported. For example, including s:pattern
"data/**/customer_*.xml" tells the GDI to load all files that
match the pattern "customer_*.xml" from any number of
subdirectories under the data directory. Similarly s:pattern "

(\d+)/transaction_*.xml" tells the GDI to load all files that
match the pattern "transaction_*.xml" in all subdirectories.

maxDepth int This property can be used to limit the directory traversal depth. By
default, when s:url specifies a directory (and a s:pattern that
limits that traversal depth is not specified), all subdirectories are
processed. To process only the files in the top level directory, set
maxDepth to 0 (s:maxDepth 0). To process the files in the top
level directory plus the first-level subdirectories, set maxDepth to 1
(s:maxDepth 1), and so on.

format RDF list You can include the format property to add parameters that
describe the source files. See File Source Format Options for
details about the supported parameters.

mimetype string This property can be included to specify the MIME type of the data.

username string If authentication is required to access the source, include this
property to specify the user name.

password string This property lists the password for the given username.

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example, s:timeout
5000 configures a 5 second timeout.

batching boolean
or int

This property can be used to disable batching, or it can be used to
change the default the batch size. By default, batching is set to

Query a File Source 366

Option Type Description

5000 (s:batching 5000). To disable batching, you can include
s:batching false in the query. Typically users do not change
the batching size. However, it can be useful to control the batch
size when performing updates. To configure the size, include
s:batching int in the query. For example, s:batching
3000.

paging RDF list This property can be used to configure paging so that the GDI can
access large amounts of data across a number of smaller
requests. For details about the paging property, see Pagination
Options.

concurrency int or
RDF list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the query.
For finer-grained control over the number of nodes and slices to
use, concurrency can also be included as an object with limit,
nodes, and/or executorsPerNode properties. For example, the
following object configures a concurrency model that allows a
maximum of 24 executors distributed across 4 nodes with 8
executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

rate int or
string

This property can be included to control the frequency with which a
request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the

Query a File Source 367

Option Type Description

rate, then the value is treated as the maximum number of requests
to issue per minute. If you specify a string, you have more flexibility
in configuring the rate. The sample values below show the types of
values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution with

a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and times.

sampling int This property can be used to configure the number of records in
the source to examine for data type inferencing.

selector string or
RDF list

This property can be used for XML path extraction to traverse
nested structures and target specific data. For example,
s:selector "projects" targets the projects class of data.
To express a hierarchy, use dot notation. For example,
s:selector "region.state.city" navigates a hierarchy to
target city data. For more information about binding components

Query a File Source 368

Option Type Description

and the selector property, see Hierarchical Bindings and Arrays
below.

model string This property defines the class (or table) name for the type of data
that is generated from the specified data source. For example,
s:model "employees". Model is optional when querying a
single source. If your query targets multiple sources, however, and
you want to define resource templates (primary keys) and object
properties (foreign keys), you must specify the model value for
each source.

key string This property can be used to define the primary key column for the
source file or table. This column is leveraged in a resource
template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model property
to list the target table and a using property that defines the foreign
key column. For more information about reference, see Data
Linking Options.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be used
to describe the formats of date and time values in the source to
ensure that they are recognized and parsed to the appropriate
date, time, and/or dateTime values. For details about the formats
property, see Data Type Formatting Options.

normalize RDF list To give users control over the labels and URIs that are generated,

Query a File Source 369

Option Type Description

the GDI offers several options for normalizing the model and/or the
fields that are created from the specified data source(s). For
details about the normalize property, see Model Normalization
Options.

count variable If you want to turn the query into a COUNT query, you can include
this property with a ?variable to perform a count. For example,
s:count ?count.

offset int This property can be used to offset the data that is returned by a
number of rows.

limit int You can include this property to limit the number of results that are
returned. s:limitmaps to the SPARQL LIMIT clause.

mapping_
variable

variable The mapping variables, in ?mapping_variable
(["binding"] [datatype] ["datetime_format"])

format, define the triple patterns to output. When the specified
?variablematches the source column name, the GDI uses the
variable as the source data selector. If you specify an alternate
variable name, a binding needs to be specified to map the new
variable to the source. You also have the option to transform the
data using the datatype and datetime_format options.

Tip
See Hierarchical Bindings and Arrays below for more

information about configuring mapping variables and

unpacking JSON files with nested objects and arrays.

binding string The binding is a literal value that binds a ?mapping_variable to a
source column. If you specify a ?variable that matches the source

Query a File Source 370

Option Type Description

column name, then that variable name is the data selector and it is
not necessary to specify a binding. If you specify an alternate
variable name or there is a hierarchical path to the source column,
then the binding is needed to map the new variable to that source
column.

For example for CSV, the following pattern simply binds the

source column AIRLINE to the lowercase variable ?airline:

?airline ("AIRLINE").

Note
For FileSource, periods (.), forward slashes (/), and

brackets ([]) are parsed as path notation. Therefore, if a

source column name includes any of those characters

they must be escaped in the binding. Use two backslashes

(\\) as an escape character. For example, if a column

name is average/day, the variable and binding pattern
could be written as ?averagePerDay

("average\\/day").

datatype URI The datatype is the data type to convert the column to. If you do
not specify a data type, the GDI infers the type. The GDI supports
the following types:

xsd:int, xsd:long, xsd:float, xsd:double,

xsd:boolean, xsd:time, xsd:dateTime, xsd:date,

xsd:duration, xsd:dayTimeDuration,

xsd:yearMonthDuration, xsd:gMonthDay,

xsd:gMonth, xsd:gYearMonth, xsd:anyURI

datetime_ string This option is used to specify the format to use for date and time

Query a File Source 371

Option Type Description

format data types. The GDI supports Java date and time formats. Specify
days as "d," months as "M," and years as "y." For the time, specify
"H" for hours, "m" for minutes, and "s" for seconds. For example,
"yyyyMMdd HH:mm:ss" or "ddMMMyy" to display date values
such as "01JAN19."

Note
The GDI's default base year is 2000. If the source data has
years with only two digits, such as 02-04-99, the GDI

prepends 20 to the digits. The value 02-04-99 is parsed
to 02-04-2099. To specify an alternate base year to use

for two-digit values, you can include the notation ^nnnn

(e.g., ^1900) in the format value. For example, to set

the base year to 1900 instead of 2000, use a format value

such as xsd:date "dd-MMM-yy^1900" or xsd:date

"dd-MMM-yy^1990". When one of those values is

specified, 02-04-99 is parsed to 02-04-1999.

Hierarchical Bindings and Arrays

When configuring the mapping variables in a query, the GDI provides syntax for unpacking XML

files with nested objects and arrays. One way to express hierarchies in queries is to use brackets ([

]) to group objects into binding trees. For example, the WHERE clause snippet below organizes

mapping variable objects into an hourly/data hierarchy by nesting the ?data patterns inside the

?hourly [] tree:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource;

s:url "/mnt/data/xml/weather.xml" ;

?latitude (xsd:double) ;

Query a File Source 372

?longitude (xsd:double) ;

?timezone (xsd:string) ;

?hourly

[

?data

[

?time (xsd:long) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?windSpeed (xsd:double) ;

] ;

] .

}

}

When constructing object binding trees, if you choose to introduce the hierarchy with a variable

name that is not an exact match to the source label, include a selector property to list the value from
the source. For example, in the WHERE clause snippet below, s:selector is included to select

eventHeader in the source as ?event in the query and statLocation as ?location.

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource ;

s:url "/mnt/data/xml/part_1.xml" ;

?event

[

s:selector "eventHeader" ;

?eventId (xsd:string) ;

?eventName (xsd:string) ;

?eventVersion (xsd:string) ;

?eventTime (xsd:dateTime) ;

] ;

?location

[

s:selector "statLocation" ;

?locationId (xsd:string) ;

?lineNo (xsd:int) ;

?statNo (xsd:int) ;

?statId (xsd:int) ;

Query a File Source 373

] .

}

}

As an alternative to grouping objects in binding trees, the selector property also supports using dot
notation to specify paths. For example, the WHERE clause snippet below rewrites the first example

query to express the same hourly/data hierarchy as a path in the s:selector value:

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:FileSource;

s:url "/mnt/data/xml/weather.xml" ;

?latitude (xsd:double) ;

?longitude (xsd:double) ;

?timezone (xsd:string) ;

s:selector: "hourly.data" ;

?time (xsd:long) ;

?rainProbability ("precipProbability" xsd:double) ;

?temperature (xsd:double) ;

?feelsLike ("apparentTemperature" xsd:double) ;

?windSpeed (xsd:double) .

}

}

Query Examples

The following example query ingests data from an XML file that contains hierarchies.

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX fmcsa: <http://census.gov/ontologies/FMCSA#>

INSERT {

GRAPH <http://anzograph.com/define> {

?s ?p ?o

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

Query a File Source 374

?data a s:FileSource ;

s:url "file:///opt/shared/data/xml/define.xml" ;

?ItemGroupDef [

?OID (xsd:string) ;

?Name (xsd:string) ;

?Repeating (xsd:string) ;

?IsReferenceData (xsd:string) ;

?Purpose (xsd:string) ;

?Label (xsd:string) ;

?Structure (xsd:string) ;

?DomainKeys (xsd:string) ;

?Class (xsd:string) ;

?ArchiveLocationID (xsd:string) ;

?Comment (xsd:string) ;

?ItemRef [

?ItemOID (xsd:string) ;

?OrderNumber (xsd:int) ;

?Mandatory (xsd:string) ;

] ;

] .

}

}

File Source Format Options

For file sources, you can include the format property to list additional parameters that describe the
source. The supported format parameters are described below.

s:format [

s:delimiter "string" ;

s:headers boolean ;

s:columns "string" ;

s:start int ;

s:skip int ;

s:comment "string" ;

s:quote "string" ;

s:escape "string" ;

s:maxColumns int ;

s:segment boolean ;

] ;

Query a File Source 375

Option Type Description

delimiter string This property specifies the string that is used to delimit columns
in the file(s). For example, s:delimiter "|".

headers boolean This property indicates whether or not the file(s) include
headers. By default the headers value is true (s:headers
true). For files that do not have headers, specify s:headers
false.

columns string If you want the GDI to target only certain columns in the source
file(s), you can include the columns property to list the names
of columns to include. The value is a single string that is a
comma-separated list. For example, s:columns
"employee_id, name, address, start date,

title".

start int If the file includes headers that take up more than one row,
include the start property to specify the row number where the
data starts to exclude headers. For example, s:start 8.

skip int This property can be used to specify the number of
rows/records to skip before reading or ingesting the file(s). By
default, skip is set to 0 (s:skip 0).

comment string This property specifies the string that is used as the comment
character in the file(s). The comment value is set to # by default
(s:comment "#").

quote string This property is used to specify the string that is used as the
quote character.

escape string This property is used to specify the escape string that is used in
the file(s). For example, s:escape "\".

Query a File Source 376

Option Type Description

maxColumns int This property can be used to set a limit on the maximum number
of columns to read or ingest. The maxColumns property is set to
-1 (unlimited) by default (s:maxColumns -1).

segment boolean This property indicates whether or not the file(s) can be
segmented. For example, some CSV files that contain
embedded newlines cannot be segmented. By default, segment
is not set.

File Storage Connection Options

If you are querying a FileSource and additional connection information needs to be provided to
access the file storage system, include the options property in the query and define the necessary
storage-specific connection parameters. The parameters that the GDI supports for each type of

storage system are pulled directly from the Java API for that system. The supported properties for

each storage type are listed below.

l Amazon S3

l FTP & FTPS

l Google Cloud Storage

l HDFS

l SFTP

l WebDAV

Amazon S3

s:options [

s:accessKey "string" ;

s:region "string" ;

s:secretKey "string" ;

s:serviceName "string" ;

s:sessionToken "string" ;

s:createBucket boolean ;

Query a File Source 377

s:disableChunkedEncoding boolean ;

s:serverSideEncryption boolean ;

s:useHttps boolean ;

] ;

Option Type Description

accessKey string The accessKey property can be included to
specify the access key.

region string The region property can be included to specify
the region.

secretKey string The secretKey property can be included to
specify the secret key.

serviceName string For connections to AWS service endpoints, the
serviceName property can be included to
specify the service name.

sessionToken string The sessionToken property can be included to
specify the session token.

createBucket boolean Refer to the S3 API documentation.

disableChunkedEncoding boolean For increased performance, Amazon S3 requests
use chunked encoding by default. To disable
chunked encoding, you can include
s:disableChunkedEncoding true in the
query.

serverSideEncryption boolean Refer to the S3 API documentation.

useHttps boolean Refer to the S3 API documentation.

Query a File Source 378

FTP & FTPS

s:options [

s:autodetectUtf8 boolean ;

s:connectTimeout int ;

s:controlEncoding "string" ;

s:dataTimeout int ;

s:defaultDateFormat "string" ;

s:entryParser "string" ;

s:fileType "string" ;

s:passiveMode boolean ;

s:proxy "string" ;

s:recentDateFormat "string" ;

s:remoteVerification boolean ;

s:serverLanguageCode "string" ;

s:serverTimeZoneId "string" ;

s:shortMonthNames "string" ;

s:socketTimeout int ;

s:userDirIsRoot boolean ;

s:dataChannelProtectionLevel "string" ;

s:ftpsMode "string" ;

s:keyManager "string" ;

s:trustManager "string" ;

] ;

Option Type Description

autodetectUtf8 boolean For FTP connections, the autodetectUtf8
property can be included to indicate whether
the FTP server is set to UTF-8 mode or Auto-
detect encoding.

connectTimeout int For FTP connections, you can include the
connectTimeout property to specify the
maximum number of seconds to hold a
connection before timing out.

controlEncoding string Refer to the FTP API documentation.

Query a File Source 379

Option Type Description

dataTimeout int For FTP connections, you can include the
dataTimeout property to specify the
maximum number of seconds to transfer data
before timing out.

defaultDateFormat string Refer to the FTP API documentation.

entryParser string Refer to the FTP API documentation.

fileType string Refer to the FTP API documentation.

passiveMode boolean For FTP connections, the passiveMode
property can be included to indicate whether
the data transfer mode is passive or active. If
you use passive mode, set passiveMode to
true (s:passiveMode true).

proxy string If you are using an FTP proxy, include the
proxy property to specify the proxy connection
details.

recentDateFormat string Refer to the FTP API documentation.

remoteVerification boolean For FTP connections, the
remoteVerification property can be
included to indicate whether remote
authentication is enabled. If you use remote
authentication, set remoteVerification to true
(s:remoteVerification true).

serverLanguageCode string If the FTP server language is not set to English,
include the serverLanguageCode property

Query a File Source 380

Option Type Description

to specify the language code for the server. For
example, s:serverLanguageCode "ES".

serverTimeZoneId string For FTP connections, the
serverTimeZoneId property can be included
to specify the timezone ID for the server.

shortMonthNames string Refer to the FTP API documentation.

socketTimeout int For FTP connections, you can include the
socketTimeout property to specify the
maximum number of seconds to transfer data
before timing out.

userDirIsRoot boolean Refer to the FTP API documentation.

dataChannelProtectionLevel string For FTPS connections, the
dataChannelProtectionLevel property
specifies the Data Channel Protection Level for
the server.

ftpsMode string For FTPS connections, the ftpsMode property
specifies whether the FTPS is in implicit or
explicit mode.

keyManager string For FTPS connections, the keyManager
property specifies the KeyManager value for
making an SSL connection to the server.

trustManager string For FTPS connections, the trustManager
property specifies the TrustManager value for
the SSL connection to the server.

Query a File Source 381

Google Cloud Storage

s:options [

s:serviceAccountKey "string" ;

] ;

Option Type Description

serviceAccountKey string For connections to GCS, the serviceAccountKey
property can be included to specify the key for the service
account.

HDFS

s:options [

s:configName "string" ;

s:configPath "string" ;

s:configURL "string" ;

] ;

Option Type Description

configName string For connections to HDFS, the configName property can be
included to specify the name of the configuration file to read.

configPath string For connections to HDFS, the configPath property can be
included to list the path to the specified configuration file.

configURL string Refer to the HDFS API documentation.

SFTP

s:options [

s:compression "string" ;

s:configRepository "string" ;

s:fileNameEncoding "string" ;

s:identityProvider "string" ;

s:identityRepositoryFactory "string" ;

s:keyExchangeAlgorithm "string" ;

Query a File Source 382

s:knownHosts "string" ;

s:loadOpenSSHConfig boolean ;

s:preferredAuthentications "string" ;

s:sessionTimeout int ;

s:strictHostKeyChecking "string" ;

s:userInfo "string" ;

] ;

Option Type Description

compression string Refer to the SFTP API documentation.

configRepository string Refer to the SFTP API documentation.

fileNameEncoding string Refer to the SFTP API documentation.

identityProvider string Refer to the SFTP API documentation.

identityRepositoryFactory string Refer to the SFTP API documentation.

keyExchangeAlgorithm string For SFTP connections, you can include the
keyExchangeAlgorithm property to specify
the key exchange algorithm to use.

knownHosts string Refer to the SFTP API documentation.

loadOpenSSHConfig boolean For SFTP connections, the
loadOpenSSHConfig property indicates
whether to read the ~/.ssh/config file.

preferredAuthentications string For SFTP connections, the
preferredAuthentications property can be
included to specify the authentication order to
use.

Query a File Source 383

Option Type Description

sessionTimeout int For SFTP connections, you can include the
sessionTimeout property to specify the
maximum number of seconds to leave the
session open before timing out.

strictHostKeyChecking string For SFTP connections, you can include the
strictHostKeyChecking property to specify
how host keys are checked.

userInfo string Refer to the SFTP API documentation.

WebDAV

s:options [

s:creatorName "string" ;

s:versioning boolean ;

] ;

Option Type Description

creatorName string For WebDAV connections, the creatorName property can be
included to add a description of the creator of the resource.

versioning boolean Refer to the WebDAV API documentation.

Query a File Source 384

GDI Property Reference

This topic describes the Graph Data Interface (GDI) properties that are available to use in queries.

The first section describes the options that are available regardless of data source type, and the

subsequent sections describe the source-specific options.

l Universal Properties

l DbSource Properties

l FileSource Properties

l HttpSource Properties

l ElasticSource Properties

Universal Properties

The table below lists the properties that are valid in queries against all data source types.

Option Type Description

batching boolean or
int

This property can be used to disable batching, or it can be used
to change the default the batch size. By default, batching is set to
5000 (s:batching 5000). To disable batching, you can
include s:batching false in the query. Typically users do
not change the batching size. However, it can be useful to
control the batch size when performing updates. To configure
the size, include s:batching int in the query. For example,
s:batching 3000.

concurrency int or RDF
list

This property can be included to configure the maximum level of
concurrency for the query. The value can be an integer, such as
s:concurrency 8. If the value is an integer, it configures a
maximum limit on the number of slices that can execute the
query. For finer-grained control over the number of nodes and
slices to use, concurrency can also be included as an object with

GDI Property Reference 385

Option Type Description

limit, nodes, and/or executorsPerNode properties. For
example, the following object configures a concurrency model
that allows a maximum of 24 executors distributed across 4
nodes with 8 executors per node:

s:concurrency [

s:limit 24 ;

s:nodes 4 ;

s:executorsPerNode 8 ;

] ;

count variable If you want to turn the query into a COUNT query, you can
include this property with a ?variable to perform a count. For
example, s:count ?count.

errors boolean Controls whether the GDI ignores errors (such as query or file
errors) or stops processing the query when an error is
encountered. This property is set to true by default (s:errors
true). Processing stops when an error is encountered. To
ignore errors, you can include s:errors false.

formats RDF list To give users control over the data types that are used when
coercing strings to other types, this property can be included in
GDI queries to define the desired types. In addition, it can be
used to describe the formats of date and time values in the
source to ensure that they are recognized and parsed to the
appropriate date, time, and/or dateTime values. For details
about the formats property, see Data Type Formatting
Options.

key string This property can be used to define the primary key column for
the source file or table. This column is leveraged in a resource

Universal Properties 386

Option Type Description

template for the instances that are created from the source. For
example, s:key ("EMPLOYEE_ID"). For more information
about key, see Data Linking Options.

limit int You can include this property to limit the number of results that
are returned. s:limitmaps to the SPARQL LIMIT clause.

locale string This property can be used to specify the locale to use when
parsing locale-dependent data such as numbers, dates, and
times.

model string This property defines the class (or table) name for the type of
data that is generated from the specified data source. For
example, s:model "employees". Model is optional when
querying a single source. If your query targets multiple sources,
however, and you want to define resource templates (primary
keys) and object properties (foreign keys), you must specify the
model value for each source.

normalize boolean
and/or
RDF list

To give users control over the labels and URIs that are
generated, the GDI offers several options for normalizing the
model and/or the fields that are created from the specified data
source(s). For details about the normalize property, see Model
Normalization Options.

offset int This property can be used to offset the data that is returned by a
number of rows.

paging RDF list This property can be used to configure paging so that the GDI
can access large amounts of data across a number of smaller
requests. For details about the paging property, see Pagination
Options.

Universal Properties 387

Option Type Description

password string This property lists the password for the given username.

rate int or string This property can be included to control the frequency with which
a request is sent to the source. The limit applies to the number of
requests a single slice can make. If you specify an integer for the
rate, then the value is treated as the maximum number of
requests to issue per minute. If you specify a string, you have
more flexibility in configuring the rate. The sample values below
show the types of values that are supported:

s:rate "90/minute" ;

s:rate "90 per minute" ;

s:rate "200000 every week" ;

s:rate "10000 every 6 hours" ;

To enforce the rate limit, the GDI introduces a sleep between

requests that is equal to the rate delay. The more executing

slices, the longer the rate delay needs to be to enforce the limit

in aggregate.

Given the example of s:rate "90/minute", the GDI would

optimize the concurrency and only use 1 slice for execution

with a rate delay of 666ms between requests. If s:rate

"240/minute", the GDI would use 3 executors with a rate

delay of 750ms between requests.

reference RDF list This property can be used to specify a foreign key column. The
reference property is an RDF list that includes the model
property to list the target table and a using property that defines
the foreign key column. For more information about reference,
see Data Linking Options.

sampling int This property can be used to configure the number of records in

Universal Properties 388

Option Type Description

the source to examine for data type inferencing.

selector string or
RDF list

This property can be used as a binding component to identify the
path to the source objects. For example, s:selector
"Sales.SalesOrderHeader" targets the SalesOrderHeader
table in the Sales schema. For more information about binding
components and the selector property, see Using Binding Trees
and Selector Paths.

strict boolean This property can be used to force the GDI to limit the data to
strictly what is stated in the query. For example, when ingesting
data from a CSV file, you can include s:strict true on the
s:FileSource to ensure that the GDI only ingests columns for
which a variable binding exists in the query. In addition, this
property can be included in s:formats to control the automatic
data type conversion feature (as described in Data Type
Formatting Options). The default value is false.

timeout int This property can be used to specify the timeout (in milliseconds)
to use for requests against the source. For example,
s:timeout 5000 configures a 5 second timeout.

url string This property specifies the URL for the data source, such as the
database URL, Elasticsearch URL, or HTTP endpoint URL. For
file-based sources, the url property specifies the file system
location of the source file or directory of files. When specifying a
directory (such as s:url "/opt/shared-files/loads/"),
the GDI loads all of the file formats it recognizes. To specify a
directory but limit the number or type of files that are read, you
can include the pattern and/or maxDepth properties.

Important

Universal Properties 389

Option Type Description

For security, it is a best practice to reference connection

information (such as the url, username, and password)

from a Query Context so that the sensitive details are

abstracted from any requests. In addition, using a Query

Context makes connection details reusable across

queries. See Use a Query Context for more information.

For example, the triple patterns below reference a Query

Context and add a JDBC driver level connection

property:

?data a s:DbSource ;

s:url "{{@Somedb.url}}" ;

s:username "{{@Somedb.user}}" ;

s:password "{{@Somedb.password}}" ;

s:property [s:name "access" ; s:value

"all"]

username string If authentication is required to access the source, include this
property to specify the user name.

DbSource Properties

The table below lists the properties that are available for queries against database data sources.

For more information about database sources, see Query a Database Source.

Option Type Description

database string This property can be used to specify the database to target
in the source if the database is not listed in the s:url or
s:selector strings.

DbSource Properties 390

Option Type Description

driver string This property can be included to specify the JDBC driver to
use.

orderBy string,
variable,
list

You can include this property to order the result set by a
field name, a bound variable, or a list of names or bound
variables.

maxConnections int This property can be used to set a limit on the maximum
number of active connections to the source. For example,
s:maxConnections 16 sets the limit to 16 connections.
When not specified, the default value is 10.

partitionBy string,
variable,
list

The GDI attempts to partition queries automatically across
the available cores (slices) in Graph Lakehouse. To
determine how to partition the query, the GDI uses
metadata from the source database. It looks for any column
in an index, preferring the primary key column if it is
interpolable. However, it only considers the first column in
any index on the table. After determining the partition
column, the GDI does a MIN/MAX on the column as well as
a basic sizing query. To specify which column or columns
the GDI should partition on, you can include the
partitionBy property in the query. The property
supports a list of source field names, bound variables, or
the object s:auto, which forces the GDI to partition the
data when the source does not define partitioning
metadata.

property RDF list This property can be included to list any JDBC driver-
specific connection properties. To incorporate property,
use the following syntax:

s:property [

DbSource Properties 391

Option Type Description

s:name "custom_driver_property_name" ;

s:value "custom_value"

]

query string If you want to access the source data by running an SQL
query, you can include this property to specify the query
string to run. The language does not have to be SQL if the
source supports another language. However, some GDI
features where the query is dynamically altered may not
work with a non-SQL language. Including
{{?variable}} substitutions is supported within
s:query strings.

Important
If you include s:query, you must also specify table

and partitionBy. Specify the table name in

s:table and the column to partition the table on in

s:partitionBy. If the table and partition column

are not specified, the GDI will not partition the query

and query execution may fail or perform very

poorly.

schema string This property can be included to specify the target schema
to query. If you include s:schema "schema_name"

without specifying s:table (described below) or
s:query, all tables in the schema are queried.

table string This property can be included to specify the target table or
tables for the query.

DbSource Properties 392

FileSource Properties

The table below lists the properties that are available for queries against file-based data sources.

For more information about file sources, see Query a File Source.

Option Type Description

format RDF list You can include the format property to add parameters that describe
the source files. See File Source Format Options for details about the
supported parameters.

maxDepth int This property can be used to limit the directory traversal depth. By
default, when s:url specifies a directory (and a s:pattern that
limits that traversal depth is not specified), all subdirectories are
processed. To process only the files in the top level directory, set
maxDepth to 0 (s:maxDepth 0). To process the files in the top level
directory plus the first-level subdirectories, set maxDepth to 1
(s:maxDepth 1), and so on.

mimetype string This property can be included to specify the MIME type of the data. If
you are querying TSV files that do not have a .tsv file extension,
include the mimetype property with a value of text/tsv
(s:mimetype "text/tsv").

options RDF list If additional connection information needs to be provided to access
the file storage system, include the options property to list any
storage-specific connection parameters. See File Storage Connection
Options for information about the supported properties for each
storage type.

pattern string This property can be used to specify a wildcard pattern for matching
file names. For example, s:pattern "common_prefix*.csv".
You can include one s:pattern property per FileSource. The GDI
supports Unix file globbing syntax outside of parentheses. Within

FileSource Properties 393

Option Type Description

parentheses, full Java regular expression language is supported. For
example, including s:pattern "data/**/customer_*.csv"

tells the GDI to load all files that match the pattern "customer_*.csv"
from any number of subdirectories under the data directory. Similarly
s:pattern "(\d+)/transaction_*.csv" tells the GDI to load
all files that match the pattern "transaction_*.csv" in all subdirectories.

HttpSource Properties

The table below lists the properties that are available for queries against HTTP data sources. For

more information about HTTP sources, see Query an HTTP Source.

Option Type Description

authorization RDF list This property specifies the type of authorization to use and the
values for authentication. The options are BearerToken,
AWSSignature, or BasicAuth.

s:authorization [a s:BearerToken |

s:AWSSignature | s:BasicAuth]

AWSSignature RDF list For authorization to AWS service endpoints, specify this
property and include the appropriate authentication properties
from the list below:

l accessKey: Include this property to specify the AWS

access key.

l region: Include this property to specify the AWS

region.

l secretKey: Include this property to specify the AWS

secret key.

l serviceName: Include this property to specify the

FileSource Properties 394

Option Type Description

AWS service name.

l sessionToken: Include this property to specify the
AWS session token.

s:authorization [

a s:AWSSignature ; s:accessKey "string" ;

s:region "string" ; s:secretKey "string" ;

s:serviceName "string" ; s:sessionToken

"string" ;

]

BasicAuth RDF list Specify this property when basic authentication is used, and
include the username and password properties.

s:authorization [a s:BasicAuth ;

s:username "string" ;

s:password "string" ;

]

BearerToken string Specify this property when a bearer token is used for
authentication, and include the token property.

s:authorization [a s:BearerToken ;

s:token "string"

]

content string or
RDF list

This property can be included to send content to the source in
the body of the request. For example, content can be a
SPARQL query, JSON arrays, or a list of key-value pairs.
Content can also be configured with an inline object (blank
node) that gets translated to JSON. For more information, see
Mapping the Content Property to JSON.

FileSource Properties 395

Option Type Description

contentType string Include this property to specify the content type of the body of
the request. For example, s:contentType
"application/sparql-query" or s:contentType
"application/json".

encoding string When targeting a file, you can include this property to specify
the character encoding used by the file. The default value is
s:encoding "utf8".

form RDF list To send data to the HTTP endpoint, you can use this property
to post the data. Form is a list of name-value pairs. When
including s:form, you must also include s:contentType
"multipart/form-data". The GDI sends the form object as
an application/x-www-form-urlencoded string that
contains the specified parameters. See GDI Property
Reference below for sample usage.

format RDF list If the data is file-based, you can include the format property to
add parameters that describe the source. See File Source
Format Options for details about the supported parameters.

header RDF list You can use this property to specify name-value pairs to
include as headers in the request. For example:

s:header [s:name "Accept" ; s:value

"application/json"]

If you are creating a view, you can include variables in the

s:header list. When another query is run against a view with

variables, that query can map the variables through the view

by including predicates in the CONSTRUCT clause.

method string You can include this property to specify the HTTP method. For

FileSource Properties 396

Option Type Description

example, s:method "GET" or s:method "POST".

mimetype string You can include this property to specify the MIME type of the
source. For example, s:mimetype "text/html".

orderBy string,
variable,
list

You can include this property to order the result set by a field
name, a bound variable, or a list of names or bound variables.

parameter RDF list You can include this property to list any URL parameters as
name-value pairs. For example, the s:parameter property
below adds format to return results in CSV format and the
named-graph-uri parameter to target a specific layer in a
graphmart.

s:parameter [s:name "format" ; s:value "csv"

] ,

[s:name "named-graph-uri" ;

s:value

"http://cambridgesemantics.com/Layer/d541..."

]

If you are creating a view, you can include variables in the

s:parameter list. When another query is run against a view

with variables, that query can map the variables through the

view by including predicates in the CONSTRUCT clause.

partitionBy string,
variable,
list

The GDI attempts to partition queries automatically across the
available cores (slices) in Graph Lakehouse. To determine how
to partition the query, the GDI uses metadata from the source. It
looks for any column in an index, preferring the primary key
column if it is interpolable. However, it only considers the first

FileSource Properties 397

Option Type Description

column in any index on the table. After determining the partition
column, the GDI does a MIN/MAX on the column as well as a
basic sizing query. To specify which column or columns the GDI
should partition on, you can include the partitionBy property
in the query. The property supports a list of source field names,
bound variables, or the object s:auto, which forces the GDI to
partition the data when the source does not define partitioning
metadata.

proxy string or
RDF list

Include this property to specify proxy information if a proxy is
used. The value can be a string, such as s:proxy "host_

url:port_number", or an RDF list that includes host and
port properties, such as s:proxy [s:host "host_url"

; s:port port_number].

trust string Include this property to set the level of trust for the source's SSL
certificate. The value can be either "system" or "all".

ElasticSource Properties

The table below lists the properties that are available for queries against Elasticsearch data

sources. For more information about Elasticsearch sources, see Query an Elasticsearch Source.

Option Type Description

aggregations object You can include this property to calculate aggregations over the
specified bindings. For information about aggregations, see
Aggregations in the Elasticsearch documentation.

config string To enable you to use explicit mappings, you can include this
property to specify the URL to the index configuration file to
employ. For example, es:config

ElasticSource Properties 398

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html

Option Type Description

"/opt/shared/elastic/mapping.json".

document string This property lists the document(s) to search.

field string or
variable

This property defines the field to operate on. The value can be a
string or bound variable.

highlight RDF list You can include this property to define how results are
highlighted. For information about the available properties, see
Highlighting Elasticsearch Results.

html boolean This property controls whether to output HTML for highlighted
results. Defaults to true.

index string This property can be included to specify the index to search.

minScore float This property defines the minimum score for matching
documents. Documents with a lower score are not included in
the search results.

query string or
RDF list

This property defines the query to execute. The value can be a
string or a query object that maps to the Elasticsearch Query
DSL. To generate the final query, the GDI combines es:query
with any filters it can push to the Elasticsearch DSL. For more
information about the query property and mapping
Elasticsearch filters to SPARQL FILTER clauses, see Query
DSL and Filter Mapping.

routing string This property can be included to route a document to a specific
shard or to limit the search to a particular shard.

searchAfter You can include this property to define the key values to start

ElasticSource Properties 399

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

Option Type Description

searching from.

size int This property maps to the size parameter in the Elasticsearch
Search API and configures the batch size or maximum number
of hits to return in a single call. Defaults to 10 and typically does
not need to be changed.

source boolean or
RDF list

This property can be included to specify the source data to
include in results. The value can be a boolean, list of fields, or a
list of variable bindings. When true, all source data is returned.
When false, no source data is returned.

url string The Elasticsearch endpoint URL.

ElasticSource Properties 400

Use a Query Context

When accessing data sources that require sensitive connection and authorization information such

as keys, tokens, and user credentials, you can create Query Contexts for storing the sensitive

information. A Query Context has a number of key-value pairs, such as username, password, and

connection URL. Queries can then reference the keys from a context file and the connection values

are abstracted from the requests. This topic provides instructions for creating contexts and referring

to a context in a query.

l Creating a Query Context

l Referencing Context Keys in a Query

Creating a Query Context

Follow the steps below to create a query context from the user interface.

Tip
You can also create a context file in JSON format and save it on the Graph Lakehouse leader

server. To reference a context file when using the AZGI command line interface, use the -

context <filename>.json option.

1. In the Query & Admin Console, click the Admin tab. Then click the Query Contexts menu
item. The Context Configuration screen is displayed.

Use a Query Context 401

2. Click the Add Context Config button to create a new context. A new context, named

Context N, is added. For example:

3. At the top of the screen, click the edit icon () next to the context title and specify a name for

this context. Queries that connect to this source will use this name when referencing keys in

the file. Click Save to save the change.

4. Click the edit icon () next to the gray contents field. In the field, specify the appropriate key-

value pairs to use to connect to the data source. The contents must be in valid JSON format.

For example:

Use a Query Context 402

{

"url": "jdbc:mysql://10.111.4.9:3306/NORTHWIND",

"username": "sysadmin",

"password": "admin123"

}

5. When you have finished adding key-value pairs, click the checkmark icon () to save the

changes. For example:

6. If you want to create additional Query Contexts, click the Add Context Config button and
repeat the steps above. For details about referencing contexts in queries, see Referencing

Context Keys in a Query below.

Referencing Context Keys in a Query

To reference the keys from a Query Context in a query, you use the following syntax to specify a

variable in the object of a triple pattern:

"{{@context_name:key_name}}"

Where context_name is the title of the context file, and key_name is the key whose value should
be used as the object. For example, the following query excerpt from a Graph Data Interface (GDI)

query refers to the sample context that was created in Creating a Query Context:

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

SELECT DISTINCT *

WHERE

{

SERVICE <http://cambridgesemantics.com/services/DataToolkit>

{

?data a s:DbSource ;

s:url "{{@NorthwindDB:url}}" ;

Use a Query Context 403

s:username "{{@NorthwindDB:username}}" ;

s:password "{{@NorthwindDB:password}}" ;

...

}

}

At runtime, the GDI refers to the context file to find the values that are associated with the specified

keys. For more information about running GDI queries, see Getting Started with GDI Queries.

Use a Query Context 404

Create a Labeled Property Graph (RDF-star)

Graph Lakehouse supports the Labeled Property Graph (LPG) model for adding metadata about the

relationships in your graphs. Properties that express values such as start and end dates, data

provenance tracking, or the weight, score, or veracity of the data can be added to a graph to further

define any of the relationships in the data.

Note
Graph Lakehouse's LPG implementation follows the proposed RDF-star and SPARQL-star

extension to the W3C SPARQL query language and RDF data model specifications. The

proposal, called RDF-star and SPARQL-star, is a work in progress. The syntax described in

the document may not be included in the final specification, and Graph Lakehouse does not

support all of the examples included in the proposal at this time.

This topic provides information about loading and inserting properties and querying property

graphs.

l Defining Properties in Turtle Load Files

l Defining Properties in INSERT Queries

l Querying Property Graphs

Create a Labeled Property Graph (RDF-star) 405

https://w3c.github.io/rdf-star/cg-spec/editors_draft.html

Defining Properties in Turtle Load Files

This section provides information about how to create a property graph by defining relationship

properties in a Turtle load file. For instructions on creating properties in INSERT queries, see

Defining Properties in INSERT Queries below.

Note
There is a limit of 255 total property values per edge. Graph Lakehouse returns an Element

larger than allowed - too many properties error if you attempt to load or insert

more than 255 property values for the same relationship.

To define a relationship property in a Turtle file, wrap the triplet in double arrow heads (<< >>), and

then specify the property URI and value at the end of the triplet:

<< <subject> <predicate> <object> >> <property_URI> <property_value> .

For example, the TTL file contents below include properties that further define the like, dislike, and
friend relationships in the triples. The file adds a weight property to define how much person3

likes or dislikes certain types of events, and the file adds startDate and endDate properties to
friend predicates to define the start and end dates of friendships.

Tip
By default, the sample Tickit data set already includes startDate and endDate properties for

the friend predicates. The example below defines start and end date properties only for

illustrative purposes.

@prefix tickit: <http://anzograph.com/tickit/> .

tickit:person3

rdf:type tickit:person ;

tickit:card "4984932249480735"^^xsd:long ;

tickit:birthday "1963-07-02"^^xsd:date ;

tickit:ssn 503703220 ;

tickit::firstname "Lars" ;

tickit:lastname "Ratliff" ;

tickit:city "High Point" ;

Defining Properties in Turtle Load Files 406

tickit:state "NY" ;

tickit:email "amet.faucibus.ut@condimentumegetvolutpat.ca" ;

tickit:phone "(624) 767-2465" .

<< tickit:person3 tickit:like "sports" >> tickit:weight 8 .

<< tickit:person3 tickit:like "rock" >> tickit:weight 9 .

<< tickit:person3 tickit:like "musicals" >> tickit:weight 4 .

<< tickit:person3 tickit:dislike "theatre" >> tickit:weight 5 .

<< tickit:person3 tickit:dislike "jazz" >> tickit:weight 9 .

<< tickit:person3 tickit:dislike "opera" >> tickit:weight 10 .

<< tickit:person3 tickit:friend tickit:person8563 >> tickit:startDate "1990-01-

04"^^xsd:date .

<< tickit:person3 tickit:friend tickit:person38436 >> tickit:startDate "2000-04-

27"^^xsd:date .

<< tickit:person3 tickit:friend tickit:person11979 >> tickit:startDate "2004-11-

09"^^xsd:date .

<< tickit:person3 tickit:friend tickit:person11979 >> tickit:endDate "2012-07-

17"^^xsd:date .

tickit:person3 tickit:friend

tickit:person8639,tickit:person18536,tickit:person42975,tickit:person47376,

tickit:person1692,tickit:person2556,tickit:person11979,tickit:person20860,tickit:person

21259,tickit:person26586,

tickit:person27529,tickit:person31735,tickit:person36264,tickit:person38436,tickit:pers

on42306,tickit:person42975 .

The example above contains both compact and long Turtle notation. When defining properties in

files, tuples that contain properties must include the complete reference triple (subject, predicate,

and object). Properties cannot be added to triples specified in compact notation. In addition, specify

one property per triplet. To define multiple properties for the same triplet, list the triplet multiple

times. For example, the following lines in the example above define two properties (startDate and

endDate) for the person3 friend person11979 triple:

<< tickit:person3 tickit:friend tickit:person11979 >> tickit:startDate "2004-11-

09"^^xsd:date .

<< tickit:person3 tickit:friend tickit:person11979 >> tickit:endDate "2012-07-

17"^^xsd:date .

Defining Properties in Turtle Load Files 407

Defining Properties in INSERT Queries

Users can create property graphs using INSERT and INSERT DATA syntax to insert triples and

properties or add properties to existing triples. To define properties in INSERT statements, use the

same syntax as Turtle files: wrap triplets in double arrow heads (<< >>), and then specify the

property URI and value for that triple at the end of the triplet.

<< <subject> <predicate> <object> >> <property_URI> <property_value> .

Note
There is a limit of 255 total property values per edge. Graph Lakehouse returns an Element

larger than allowed - too many properties error if you attempt to load or insert

more than 255 property values for the same relationship.

For example, the INSERT DATA statement below adds weight properties to the like and dislike

predicates for person3. This example specifies literal values for weight property.

PREFIX tickit: <http://anzograph.com/tickit/>

INSERT DATA { GRAPH <http://anzograph.com/tickit> {

<< tickit:person3 tickit:dislike "jazz" >> tickit:weight 9 .

<< tickit:person3 tickit:dislike "theatre" >> tickit:weight 5 .

<< tickit:person3 tickit:dislike "opera" >> tickit:weight 10 .

<< tickit:person3 tickit:like "sports" >> tickit:weight 8 .

<< tickit:person3 tickit:like "rock" >> tickit:weight 9 .

<< tickit:person3 tickit:like "musicals" >> tickit:weight 4 .

}

}

The following example INSERT statement queries the Tickit graph to find the sellers whose total

sales amount is greater than or equal to $20,000. For each seller who meets the requirement, the

INSERT clause inserts an earned predicate with a property named score and a score value of 10:

PREFIX tickit: <http://anzograph.com/tickit/>

INSERT {GRAPH <http://anzograph.com/tickit> {

<< ?person tickit:earned ?earned >> tickit:score 10

}

}

WHERE {GRAPH <http://anzograph.com/tickit> {

Defining Properties in INSERT Queries 408

{ SELECT ?person (SUM(?dollars) AS ?earned)

WHERE {

?person tickit:firstname ?first .

?person tickit:lastname ?last .

?sale tickit:sellerid ?person .

?sale tickit:pricepaid ?dollars .

}

GROUP BY ?person

}

FILTER(?earned >= 20000)

}

}

Selecting the newly created triples shows that 52 people met the requirement and were assigned a

<score> property with a value of 10:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?person ?earned ?score

FROM <http://anzograph.com/tickit>

WHERE {

<< ?person tickit:earned ?earned >> tickit:score ?score .

}

ORDER BY ?person

person | earned | score

--+--------+-------

http://anzograph.com/tickit/person11168 | 21036 | 10

http://anzograph.com/tickit/person1140 | 32399 | 10

http://anzograph.com/tickit/person12263 | 20320 | 10

http://anzograph.com/tickit/person12646 | 22194 | 10

http://anzograph.com/tickit/person13385 | 28495 | 10

http://anzograph.com/tickit/person15976 | 20929 | 10

http://anzograph.com/tickit/person16008 | 20515 | 10

http://anzograph.com/tickit/person16335 | 20160 | 10

http://anzograph.com/tickit/person18005 | 20918 | 10

http://anzograph.com/tickit/person19231 | 22636 | 10

http://anzograph.com/tickit/person19814 | 20465 | 10

http://anzograph.com/tickit/person20029 | 20103 | 10

http://anzograph.com/tickit/person23635 | 20265 | 10

http://anzograph.com/tickit/person2372 | 27159 | 10

http://anzograph.com/tickit/person24980 | 24857 | 10

http://anzograph.com/tickit/person25433 | 27653 | 10

http://anzograph.com/tickit/person26198 | 21243 | 10

Defining Properties in INSERT Queries 409

...

52 rows

The following example shows how to create properties and assign values based on data that exists

in a source file. The data for the example is a CSV file with the following columns and data:

Airline,FlightNumber,TailNumber,OriginAirport,DestinationAirport,Distance

AS,98,N407AS,ANC,SEA,1448

AA,2336,N3KUAA,LAX,PBI,2330

US,840,N171US,SFO,CLT,2296

AA,258,N3HYAA,LAX,MIA,2342

AS,135,N527AS,SEA,ANC,1448

DL,806,N3730B,SFO,MSP,1589

NK,612,N635NK,LAS,MSP,1299

US,2013,N584UW,LAX,CLT,2125

The example INSERT query for the file above defines the Distance column as a property and adds

the Distance value as the value for the property:

PREFIX s: <http://cambridgesemantics.com/ontologies/DataToolkit#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT { GRAPH <http://anzograph.com/flights> {

?OriginIRI a <Airport> .

?DestinationIRI a <Airport> .

<< ?OriginIRI <Destination> ?DestinationIRI >> <Distance> ?Distance .

?FlightIRI a <Flight> ;

<Airline> ?Airline ;

<FlightNumber> ?FlightNumber ;

<TailNumber> ?TailNumber .

}

}

WHERE {

SERVICE <http://cambridgesemantics.com/services/DataToolkit> {

?data a s:FileSource ;

s:url "/home/erin/air-lpg.csv" ;

?Airline (xsd:string);

?FlightNumber (xsd:string);

?TailNumber (xsd:string);

?OriginAirport (xsd:string);

?DestinationAirport (xsd:string);

?Distance (xsd:long).

BIND(IRI("http://anzograph.com/flights/Flight/{{?FlightNumber}}") as ?FlightIRI)

Defining Properties in INSERT Queries 410

BIND(IRI("http://anzograph.com/flights/origin/{{?OriginAirport}}") as ?OriginIRI)

BIND(IRI("http://anzograph.com/flights/destination/{{?DestinationAirport}}") as

?DestinationIRI)

}

}

The following query returns the origin and destination airports for the flights as well as the distance

property value:

SELECT ?from ?to ?distance

FROM <http://anzograph.com/flights>

WHERE {

<< ?from ?p ?to >> ?property ?distance

}

ORDER BY DESC(?distance)

from | to

| distance

--+--

+----------

http://anzograph.com/flights/origin/LAX | http://anzograph.com/flights/destination/MIA

| 2342

http://anzograph.com/flights/origin/LAX | http://anzograph.com/flights/destination/PBI

| 2330

http://anzograph.com/flights/origin/SFO | http://anzograph.com/flights/destination/CLT

| 2296

http://anzograph.com/flights/origin/LAX | http://anzograph.com/flights/destination/CLT

| 2125

http://anzograph.com/flights/origin/SFO | http://anzograph.com/flights/destination/MSP

| 1589

http://anzograph.com/flights/origin/ANC | http://anzograph.com/flights/destination/SEA

| 1448

http://anzograph.com/flights/origin/SEA | http://anzograph.com/flights/destination/ANC

| 1448

http://anzograph.com/flights/origin/LAS | http://anzograph.com/flights/destination/MSP

| 1299

8 rows

Defining Properties in INSERT Queries 411

Querying Property Graphs

To return properties and their values when analyzing data sets, include the following property graph

syntax in graph and triple patterns:

<< <subject> <predicate> <object> >> <property_URI> <property_value> .

The following example query returns the properties that were defined in the INSERT DATA query

above.

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT *

FROM <http://anzograph.com/tickit>

WHERE {

<< tickit:person3 ?p ?likes_or_dislikes >> tickit:weight ?value.

FILTER(?p=tickit:like || ?p=tickit:dislike)

}

ORDER BY ?p

p | likes_or_dislikes | value

------------------------------------+-------------------+-------

http://anzograph.com/tickit/dislike | jazz | 9

http://anzograph.com/tickit/dislike | opera | 10

http://anzograph.com/tickit/dislike | theatre | 5

http://anzograph.com/tickit/like | musicals | 4

http://anzograph.com/tickit/like | rock | 9

http://anzograph.com/tickit/like | sports | 8

6 rows

This example returns a list of the properties in the Tickit graph and lists the number of times each

property is referenced in the graph. Note that in addition to the properties that were defined above,

the results shown below also include the properties that are defined by default in the sample Tickit

data set. See Working with SPARQL and the Tickit Data for instructions on loading the full data set.

SELECT ?property (COUNT(?property) AS ?times_used)

FROM <http://anzograph.com/tickit>

WHERE {

<< ?s ?p ?o >> ?property ?value

}

GROUP BY ?property

ORDER BY desc(?times_used)

Querying Property Graphs 412

property | times_used

-----------------------------------+------------

startDate | 1445832

score | 241949

endDate | 144706

http://anzograph.com/tickit/score | 52

http://anzograph.com/tickit/weight | 6

5 rows

Querying Property Graphs 413

Return Edges and Vertexes as JSON Objects

Graphs consists of nodes or vertexes connected in pairs by relationships or edges. Information

about vertexes includes labels such as Person or Employee. Information about edges includes the

type of edge, such as "knows" or "friend," and properties of an edge, such as a "startDate" or

"endDate."

Labeled property graphs can be queried with SPARQL. However, SPARQL does not provide a

construct to extract and combine the vertex or edge information as a unit, as might be needed for

certain applications. Graph Lakehouse provides the EDGE and VERTEX functions for returning

edge and vertex data as a JSON object.

l Constructing Edges and Vertexes

l VERTEX Function

l EDGE Function

l Examples

Important
Prior to loading the data for which you want to use the VERTEX function, Graph Lakehouse

must be configured to register vertex labels as predicates. To configure the system to register

vertices as predicates, add the following line to <install_

path>/config/settings.conf and then restart Graph Lakehouse:

auto_predicate=true

For more information about changing settings, see Change System Settings.

Constructing Edges and Vertexes

Both the EDGE and VERTEX functions return Blob type objects, in JSON format, that represent the

edges and vertexes in a graph, along with all their associated attributes and properties. Following

the standard subject-predicate-object representation of triples, the criteria for how various data is

handled to generate edges and vertexes is the following:

Return Edges and Vertexes as JSON Objects 414

Vertexes

l The URI in the subject or object position of a triple can be used to construct a vertex.

l The rdf:type predicates define the label of vertexes.

l Triples with non-URI object values are treated as vertex properties. Predicates in those

triples are used as the property name and the objects are the values of properties. For

example:

<person1> <age> 20

Edges

l Triples where both the subject and object are URIs can be used to construct an edge.

l An edge's property name and property value is obtained from the RDF-star triple for that

edge. Non-URI object values are identified as property values and predicates are treated as

the property name. For example:

<< <person1> <works_at> <Company1> >> <startDate> "2000-04-27"^^xsd:date .

Note
You cannot directly pass a vertex or edge constructed by the VERTEX or EDGE functions as a

parameter or filter in a query. However you can use them as arguments to other functions or

expressions within the same query.

VERTEX Function

The VERTEX function returns labels and properties of nodes or vertexes.

Syntax

VERTEX(?URI_variable) as ?variable

Where ?URI_variable is the variable that represents the targeted subject or object URI.

The VERTEX function returns an <http://anzograph.com/blobtype/vertex> Blob type

object formatted as a JSON string with the following elements:

Return Edges and Vertexes as JSON Objects 415

l id: A unique identifier for the vertex in the database.

l labels: An array of the labels for the vertex.

l properties: A list of the properties that are mapped to the vertex.

For example:

{

"id":4294967405,

"labels":[

"Actor",

"Person"

],

"properties":{

"born":{

"type":"typed-literal",

"datatype":"http://www.w3.org/2001/XMLSchema#int",

"value":"1956"

},

"name":{

"type":"typed-literal",

"datatype":"http://www.w3.org/2001/XMLSchema#string",

"value":"Tom Hanks"

}

}

}

EDGE Function

The EDGE function returns properties and values of relationships or edges. There are two options

for calling the EDGE function, both of which provide a way to create the same edge objects. The first

syntax method is more straightforward, however, it requires that the database be in a pristine and

unvarying or unaltered state. It may return an error in some cases when there are ongoing

transactions. In that case, you can use the second method, which does not require the same pristine

state of the database.

l Syntax 1: No Transactions in Progress

l Syntax 2: Aggregate (Database Updates can be Ongoing)

Return Edges and Vertexes as JSON Objects 416

Syntax 1: No Transactions in Progress

You can use the following syntax to call the EDGE function when the database is at rest—there are

no transactions in progress.

BIND(EDGE(?start_vertex, ?edge, ?end_vertex) as ?variable)

Argument Data Type Description

start_vertex URI as a
variable

The variable that represents the vertex at the start of the
edge.

edge URI as a
variable

The variable that represents the edge or predicate.

end_vertex URI as a
variable

The variable that represents the vertex at the end of the edge.

Note
Using this syntax, the EDGE function must appear in a BIND clause that immediately follows

the triple pattern that specifies the subject, predicate, and object variables for the edge. The

WHERE clause should not include any clause other than a simple FILTER on the subject,

predicate, or object. For example:

SELECT ?acted_in

FROM <Movies>

WHERE {

?s a <Actor> .

{

?s ?p ?o .

BIND (EDGE(?s,?p,?o) as ?acted_in)

}

FILTER(?p = <ACTED_IN>)

}

The EDGE function returns an <http://anzograph.com/blobtype/edge> Blob type object

formatted as a JSON string with the following elements:

Return Edges and Vertexes as JSON Objects 417

l start: The ID for the starting vertex of the edge.

l end: The ID for the end vertex of the edge.

l type: The type of edge.

l properties: A list of the properties that are mapped to the edge.

For example:

{

"start":114,

"end":4294967403,

"type":"ACTED_IN",

"properties":{

"roles":{

"type":"typed-literal",

"datatype":"http://www.w3.org/2001/XMLSchema#string",

"value":"Neo"

}

}

}

Syntax 2: Aggregate (Database Updates can be Ongoing)

You can use the following syntax to call the EDGE function when the database is at rest or when

transactions are in progress.

EDGE(?start_vertex, ?edge, ?end_vertex, ?edge_property, ?property_value) as ?variable)

...

GROUP BY ?start_vertex ?edge ?end_vertex

Argument Data Type Description

start_vertex URI as a
variable

The variable that represents the vertex at the start of the
edge.

edge URI as a
variable

The variable that represents the edge or predicate.

end_vertex URI as a The variable that represents the vertex at the end of the

Return Edges and Vertexes as JSON Objects 418

Argument Data Type Description

variable edge.

edge_property URI as a
variable

The variable that represents the edge property URI.

property_
value

variable The variable that represents the value of the property.

The query must include a GROUP BY clause that groups on the first three fields. For example:

SELECT ?s ?p ?o (EDGE(?s,?p,?o,?pp,?pv) as ?edge)

FROM <Movies>

WHERE {

?s ?p ?o .

OPTIONAL { << ?s ?p ?o >> ?pp ?pv }

FILTER (?p = <ACTED_IN>)

}

GROUP BY ?s ?p ?o

The EDGE function returns an <http://anzograph.com/blobtype/edge> Blob type object

formatted as a JSON string with the following elements:

l start: The ID for the starting vertex of the edge.

l end: The ID for the end vertex of the edge.

l type: The type of edge.

l properties: A list of the properties that are mapped to the edge.

For example:

{

"start":114,

"end":4294967403,

"type":"ACTED_IN",

"properties":{

"roles":{

"type":"typed-literal",

Return Edges and Vertexes as JSON Objects 419

"datatype":"http://www.w3.org/2001/XMLSchema#string",

"value":"Neo"

}

}

}

Examples

Tip
Make sure that auto_predicate=true is set in <install_

path>/config/settings.conf before inserting the sample data for the example queries.

The following INSERT DATA query creates a graph named http://anzograph.com/Movies

that inserts a small sample of data you can use to test the VERTEX and EDGE functions:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX movies: <http://anzograph.com/Movies/data/>

PREFIX ont: <http://anzograph.com/ontologies/Movies#>

INSERT DATA {

GRAPH <http://anzograph.com/Movies> {

triples for "Tom Hanks" vertex

movies:TomHanks rdf:type ont:Person .

movies:TomHanks rdf:type ont:Actor .

movies:TomHanks ont:name "Tom Hanks" .

movies:TomHanks ont:born 1956 .

triples for "Forrest Gump" vertex

movies:ForrestGump rdf:type ont:Movie .

movies:ForrestGump ont:title "Forrest Gump" .

movies:ForrestGump ont:release 1994 .

edge with properties

<<movies:TomHanks ont:ACTED_IN movies:ForrestGump>> ont:roles "Forrest" .

}

}

VERTEX Example

The following example uses the VERTEX function to return the vertexes for actors defined in the

sample Movies graph:

Return Edges and Vertexes as JSON Objects 420

SELECT (VERTEX(?s) as ?actor)

FROM <http://anzograph.com/Movies>

WHERE {

?s a <http://anzograph.com/ontologies/Movies#Actor> .

}

{

"id":4294967435,

"labels":[

"http://anzograph.com/ontologies/Movies#Person",

"http://anzograph.com/ontologies/Movies#Actor"

],

"properties":{

"http://anzograph.com/ontologies/Movies#name":{

"type":"typed-literal",

"datatype":"http://www.w3.org/2001/XMLSchema#string",

"value":"Tom Hanks"

},

"http://anzograph.com/ontologies/Movies#born":{

"type":"typed-literal",

"datatype":"http://www.w3.org/2001/XMLSchema#int",

"value":"1956"

}

}

}

EDGE Example (Syntax 1)

The following example uses the EDGE function to return information about the ACTED_IN edge:

SELECT ?acted_in

FROM <http://anzograph.com/Movies>

WHERE {

?s a <http://anzograph.com/ontologies/Movies#Actor> .

{

?s ?p ?o .

BIND (EDGE(?s,?p,?o) as ?acted_in)

}

FILTER(?p = <http://anzograph.com/ontologies/Movies#ACTED_IN>)

}

{

"start":4294967435,

"end":8589934735,

Return Edges and Vertexes as JSON Objects 421

"type":"http://anzograph.com/ontologies/Movies#ACTED_IN",

"properties":{

"http://anzograph.com/ontologies/Movies#roles":{

"type":"typed-literal",

"datatype":"http://www.w3.org/2001/XMLSchema#string",

"value":"Forrest"

}

}

}

Aggregate EDGE Example (Syntax 2)

The following example uses the aggregate EDGE function to return information about the ACTED_

IN edge.

SELECT ?s ?p ?o (EDGE(?s,?p,?o,?pp,?pv) as ?edge)

FROM <http://anzograph.com/Movies>

WHERE {

?s ?p ?o .

OPTIONAL { << ?s ?p ?o >> ?pp ?pv }

FILTER (?p = <http://anzograph.com/ontologies/Movies#ACTED_IN>)

}

GROUP BY ?s ?p ?o

s | p

| o | edge

--+--

-----+--+----------------------------------

http://anzograph.com/Movies/data/TomHanks |

http://anzograph.com/ontologies/Movies#ACTED_IN |

http://anzograph.com/Movies/data/ForrestGump | {"start":4294967435,

"end":8589934735,

"type":"http://anzograph.com/ontologies/Movies#ACTED_IN",

"properties":{

"http://anzograph.com/ontologies/Movies#roles":{

Return Edges and Vertexes as JSON Objects 422

"type":"typed-literal",

"datatype":"http://www.w3.org/2001/XMLSchema#string",

"value":"Forrest"}}}

1 rows

Return Edges and Vertexes as JSON Objects 423

Infer New Data (RDFS+ Inferencing)

Graph Lakehouse includes an inference engine that can create new relationships based on the

vocabularies or ontologies in the existing data.

The following example from the W3C Semantic Web Inference documentation illustrates the

inference concept:

A data set might include the relationship Flipper isA Dolphin. An ontology might declare

that "every Dolphin is also a Mammal." An inference program that understands the notion of "X is

also Y" adds the statement Flipper isA Mammal to the set of relationships even though it was

not specified in the original data.

When Graph Lakehouse creates inferences, it scans the specified graph for any of the RDFS-plus

and supported OWL 2 RL ontologies and generates new triples according to the W3C OWL 2 RL

rules, or rules specified with the optional WITH RULES clause. This topic provides instructions for

generating inferences with Graph Lakehouse and describes the supported inference vocabularies.

l Generating Inferences

l Inference Rule Reference

l Inference Example

Generating Inferences

Graph Lakehouse generates inferences as a batch command. Run the following command to

generate inferences from one or more existing graphs:

CREATE INFERENCES FROM source_graph1 [source_graph2 ...] INTO GRAPH target_graph

[WITH RULES 'list_of_rules']

Where list_of_rules in the optional WITH RULES clause is any of the following arguments. Specify

multiple options in a comma-separated list:

Infer New Data (RDFS+ Inferencing) 424

https://www.w3.org/standards/semanticweb/inference.html
https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Option Description

all Run all rules.

rdfsplus Run only the RDFS-plus rules.

rule list List specific rules to run. For a list of available rule names, see Inference Rule
Reference below.

-rulename Specify a hyphen (-) in front of a rule name to exclude that rule. For example, -
scm-svf2 excludes the scm-svf2 rule.

For example, the following WITH RULES clause runs all of the inference rules except prp-fp and
prp-ifp:

... WITH RULES 'all,-prp-fp,-prp-ifp'

When you run the CREATE INFERENCES command, Graph Lakehouse runs rules for each of the

RDFS-plus ontologies that it finds in the source graphs, or rules specified with the optional

WITH RULES clause, and inserts the inferred triples into the specified target graph.

Note
Certain inference rules are coupled. Specifying either of the rules in the pair automatically

runs the coupled rule. The list below describes the paired rules:

l scm-dom1 and scm-rng1

l scm-dom2 and scm-rng2

l prp-inv1 and prp-inv2

In addition, running scm-eqc1 and cax-sco also runs cax-eqc1 and cax-eqc2. And running

scm-eqp1 and prp-spo1 also runs prp-eqp1 and prp-eqp2.

Infer New Data (RDFS+ Inferencing) 425

Inference Rule Reference

The tables below describe the RDFS-plus rules as well as the additional subset of OWL 2 RL rules

that Graph Lakehouse supports.

l RDFS-Plus Rules

l OWL 2 RL Rules

RDFS-Plus Rules

The tables below define the RDFS-plus inference rules.

Semantics of Class Axioms

Note
Because cax-eqc1 and cax-eqc2 (described in the table below) are implied rules that are
coupled with scm-eqc1 and cax-sco, including cax-eqc1 or cax-eqc2 in the WITH RULES

clause will result in an invalid inference rule name error. To run the cax-eqc1 and

cax-eqc2 rules, specify scm-eqc1 and cax-sco (scm-eqc1,cax-sco) in the WITH RULES

clause.

Rule Description IF THEN

cax-
eqc1

Two classes are synonymous. T(?c1,
owl:equivalentClass,
?c2)
T(?x, rdf:type, ?c1)

T(?x,
rdf:type, ?c2)

cax-
eqc2

Two classes are synonymous. T(?c1,
owl:equivalentClass,
?c2)
T(?x, rdf:type, ?c2)

T(?x,
rdf:type, ?c1)

cax-sco Members of a subclass are also members T(?c1, rdfs:subClassOf, T(?x,

RDFS-Plus Rules 426

Rule Description IF THEN

of the superclass. ?c2)
T(?x, rdf:type, ?c1)

rdf:type, ?c2)

Semantics of Axioms about Properties

Note
Because prp-eqp1 and prp-eqp2 (described in the table below) are implied rules that are
coupled with scm-eqp1 and prp-spo1, including prp-eqp1 or prp-eqp2 in the WITH RULES

clause will result in an invalid inference rule name error. To run the prp-eqp1 and

prp-eqp2 rules, specify scm-eqp1 and prp-spo1 (scm-eqp1,prp-spo1) in the WITH RULES

clause.

Rule Description IF THEN

prp-dom Infer the subject's type from
the predicate's domain.

T(?p, rdfs:domain, ?c)
T(?x, ?p, ?y)

T(?x, rdf:type,
?c)

prp-
eqp1

Two properties are
synonymous.

T(?p1, owl:equivalentProperty,
?p2)
T(?x, ?p1, ?y)

T(?x, ?p2, ?y)

prp-
eqp2

Two properties are
synonymous.

T(?p1, owl:equivalentProperty,
?p2)
T(?x, ?p2, ?y)

T(?x, ?p1, ?y)

prp-fp If predicate p is a functional
property, then a subject can
be related to only one specific
object by p.

T(?p, rdf:type,
owl:FunctionalProperty)
T(?x, ?p, ?y1)
T(?x, ?p, ?y2)

T(?y1,
owl:sameAs,
?y2)

prp-ifp If predicate p is an inverse T(?p, rdf:type, T(?x1,

RDFS-Plus Rules 427

Rule Description IF THEN

functional property, then a
specific object can be related
to only one subject by p.

owl:InverseFunctionalProperty)
T(?x1, ?p, ?y)
T(?x2, ?p, ?y)

owl:sameAs,
?x2)

prp-inv1 Two properties are the
inverse of each other.

T(?p1, owl:inverseOf, ?p2)
T(?x, ?p1, ?y)

T(?y, ?p2, ?x)

prp-inv2 Two properties are the
inverse of each other.

T(?p1, owl:inverseOf, ?p2)
T(?x, ?p2, ?y)

T(?y, ?p1, ?x)

prp-rng Infer the object's type from
the predicate's range.

T(?p, rdfs:range, ?c)
T(?x, ?p, ?y)

T(?y, rdf:type,
?c)

prp-
spo1

Relationships that are
described by a subproperty
also hold for the
superproperty.

T(?p1, rdfs:subPropertyOf, ?p2)
T(?x, ?p1, ?y)

T(?x, ?p2, ?y)

prp-
symp

The inverse is true for a
property.

T(?p, rdf:type,
owl:SymmetricProperty)
T(?x, ?p, ?y)

T(?y, ?p, ?x)

prp-trp Chains of relationships
collapse into a single
relationship.

T(?p, rdf:type,
owl:TransitiveProperty)
T(?x, ?p, ?y)
T(?y, ?p, ?z)

T(?x, ?p, ?z)

Semantics of Schema Vocabulary

Rule Description IF THEN

scm-cls Every class is its own T(?c, rdf:type, owl:Class) T(?c, rdfs:subClassOf, ?c)

RDFS-Plus Rules 428

Rule Description IF THEN

subclass and equivalent
class, and it is a subclass
of owl:Thing.

T(?c, owl:equivalentClass,
?c)
T(?c, rdfs:subClassOf,
owl:Thing)
T(owl:Nothing,
rdfs:subClassOf, ?c)

scm-
dom1

A property with domain c
also has domain c's
superclasses.

T(?p, rdfs:domain, ?c1)
T(?c1, rdfs:subClassOf,
?c2)

T(?p, rdfs:domain, ?c2)

scm-
dom2

A subproperty inherits the
domains of the
superproperties.

T(?p2, rdfs:domain, ?c)
T(?p1, rdfs:subPropertyOf,
?p2)

T(?p1, rdfs:domain, ?c)

scm-
eqc1

Equivalent classes are
subclasses of each other.

T(?c1,
owl:equivalentClass, ?c2)

T(?c1, rdfs:subClassOf,
?c2)
T(?c2, rdfs:subClassOf,
?c1)

scm-
eqc2

If two classes are
subclasses, they are also
equivalent classes.

T(?c1, rdfs:subClassOf,
?c2)
T(?c2, rdfs:subClassOf,
?c1)

T(?c1,
owl:equivalentClass, ?c2)

scm-
eqp1

Equivalent properties are
subproperties of each
other.

T(?p1,
owl:equivalentProperty,
?p2)

T(?p1, rdfs:subPropertyOf,
?p2)
T(?p2, rdfs:subPropertyOf,
?p1)

scm-
eqp2

If two properties are
subproperties, they are

T(?p1, rdfs:subPropertyOf,
?p2)

T(?p1,
owl:equivalentProperty,

RDFS-Plus Rules 429

Rule Description IF THEN

also equivalent properties. T(?p2, rdfs:subPropertyOf,
?p1)

?p2)

scm-
rng1

A property with range c
also has range c's
superclasses.

T(?p, rdfs:range, ?c1)
T(?c1, rdfs:subClassOf,
?c2)

T(?p, rdfs:range, ?c2)

scm-
rng2

A subproperty inherits the
ranges of its
superproperties.

T(?p2, rdfs:range, ?c)
T(?p1, rdfs:subPropertyOf,
?p2)

T(?p1, rdfs:range, ?c)

scm-sco owl:subClassOf
relationships are transitive

T(?c1, rdfs:subClassOf,
?c2)
T(?c2, rdfs:subClassOf,
?c3)

T(?c1, rdfs:subClassOf,
?c3)

scm-spo owl:subPropertyOf
relationships are
transitive.

T(?p1, rdfs:subPropertyOf,
?p2)
T(?p2, rdfs:subPropertyOf,
?p3)

T(?p1, rdfs:subPropertyOf,
?p3)

Note
The scm-dp and scm-op schema vocabulary rules are not run. Those rules add significant

compute overhead but do not result in meaningful inference results.

OWL 2 RL Rules

The tables below define the subset of OWL 2 RL inference rules that are supported.

RDFS-Plus Rules 430

Semantics of Equality

Rule Description IF THEN

eq-rep-
o

Describes the replacement property of the
owl:sameAs axiom.

T(?o,
owl:sameAs, ?o')
T(?s, ?p, ?o)

T(?s, ?p, ?o')

eq-rep-
p

Describes the replacement property of the
owl:sameAs axiom.

T(?p,
owl:sameAs, ?p')
T(?s, ?p, ?o)

T(?s, ?p', ?o)

eq-rep-
s

Describes the replacement property of the
owl:sameAs axiom.

T(?s,
owl:sameAs, ?s')
T(?s, ?p, ?o)

T(?s', ?p, ?o)

eq-sym Describes the symmetric property of the
owl:sameAs axiom.

T(?x,
owl:sameAs, ?y)

T(?y,
owl:sameAs, ?x)

eq-
trans

Describes the transitive property of the
owl:sameAs axiom.

T(?x,
owl:sameAs, ?y)
T(?y,
owl:sameAs, ?z)

T(?x,
owl:sameAs, ?z)

Semantics of Schema Vocabulary

Rule Description IF THEN

scm-
svf1

A property restriction c1 is a
subclass of c2 if they are both
someValuesFrom restrictions on
the same property and c1's target
class is a subclass of c2's target
class.

T(?c1,
owl:someValuesFrom,
?y1)
T(?c1, owl:onProperty,
?p)
T(?c2,
owl:someValuesFrom,

T(?c1,
rdfs:subClassOf,
?c2)

RDFS-Plus Rules 431

Rule Description IF THEN

?y2)
T(?c2, owl:onProperty,
?p)
T(?y1, rdfs:subClassOf,
?y2)

scm-
svf2

A property restriction c1 is a
subclass of c2 if they are both
someValuesFrom restrictions on
the same class where c1's target
property is a subproperty of c2's
target property.

T(?c1,
owl:someValuesFrom,
?y)
T(?c1, owl:onProperty,
?p1)
T(?c2,
owl:someValuesFrom,
?y)
T(?c2, owl:onProperty,
?p2)
T(?p1,
rdfs:subPropertyOf, ?p2)

T(?c1,
rdfs:subClassOf,
?c2)

scm-int T(?c, owl:intersectionOf,
?x)
LIST[?x, ?c1, ..., ?cn]

T(?c,
rdfs:subClassOf,
?c1)
T(?c,
rdfs:subClassOf,
?c2)
...
T(?c,
rdfs:subClassOf,
?cn)

RDFS-Plus Rules 432

Semantics of Classes

Rule Description IF THEN

cls-svf1 At least one object of a property is a
member of the specified class.

T(?x,
owl:someValuesFrom,
?y)
T(?x, owl:onProperty, ?p)
T(?u, ?p, ?v)
T(?v, rdf:type, ?y)

T(?u,
rdf:type,
?x)

cls-int1 An instance belongs to every one of the
specified classes.

T(?c, owl:intersectionOf,
?x)
LIST[?x, ?c1, ..., ?cn]
T(?y, rdf:type, ?c1)
T(?y, rdf:type, ?c2)
...
T(?y, rdf:type, ?cn)

T(?y,
rdf:type,
?c)

Inference Example

The following simple example demonstrates the inferences that Graph Lakehouse generates to

infer friendships in the sample Tickit data set. The example uses the following subset of triples, and

it describes the friend relationships using the owl:TransitiveProperty vocabulary:

friends.ttl

PREFIX owl: <http://www.w3.org/2002/07/owl#>

<friend> a owl:TransitiveProperty .

<person1>

rdf:type <person>

;<name> "Rafael Taylor"

;<like> "sports","theatre","classical","vegas","musicals"

;<dislike> "jazz","broadway"

;<friend> <person2>,<person4>

.

<person2>

rdf:type <person>

;<name> "Vladimir Humphrey"

RDFS-Plus Rules 433

;<like> "jazz","classical","vegas","musicals"

;<dislike> "broadway"

;<friend> <person3>

.

<person3>

rdf:type <person>

;<name> "Lars Ratliff"

;<like> "sports","rock","musicals"

;<dislike> "theatre","jazz","opera"

;<friend> <person1>

.

<person4>

rdf:type <person>

;<name> "Barry Roy"

;<like> "theatre"

;<dislike> "sports","jazz","musicals"

;<friend> <person5>

.

<person5>

rdf:type <person>

;<name> "Reagan Hodge"

;<like> "concerts","rock","vegas","musicals"

;<dislike> "jazz","broadway"

;<friend> <person1>

.

Loading friends.ttl into a graph named friends and querying the new graph for a list of friendships

produces the following results. The query returns 6 friendships:

SELECT *

FROM <friends>

WHERE { ?person <friend> ?friend . }

ORDER BY ?person

person | friend

--------+---------

person1 | person4

person1 | person2

person2 | person3

person3 | person1

person4 | person5

person5 | person1

6 rows

RDFS-Plus Rules 434

The query below generates inferences for the friends graph based on the rules for

owl:TransitiveProperty. The query creates the inferences in a graph namedmore-friends:

CREATE INFERENCES FROM <friends> INTO GRAPH <more-friends>

When the inferencing is complete, the following query returns the friend triples in the more-friends

graph. The query filters out triples for which the same person is the subject (?person) and object

(?friend):

SELECT *

FROM <more-friends>

WHERE {

?person <friend> ?friend.

FILTER(?person != ?friend).

}

ORDER BY ?person

person | friend

--------+---------

person1 | person5

person1 | person3

person2 | person5

person2 | person4

person2 | person1

person3 | person5

person3 | person2

person3 | person4

person4 | person2

person4 | person3

person4 | person1

person5 | person2

person5 | person4

person5 | person3

14 rows

Following the OWL 2 RL rules for owl:TransitiveProperty, Graph Lakehouse inferred 8 new

friendships from the 6 friendships in the original friend graph.

RDFS-Plus Rules 435

Validate Data with SHACL (Preview)

Graph Lakehouse supports using the W3C standard Shapes Constraint Language (SHACL) to

describe and validate your knowledge graphs.

Note
The SHACL feature is a Preview release, which means the implementation has recently been

completed, does not support the complete specification, and could be unstable. The feature is

available for trial usage, but Altair recommends that you do not rely on Preview features in

production environments.

This section provides an introduction to SHACL, information about shapes graph requirements and

constraints, instructions on creating and configuring shapes graphs and validating your data graphs

against the shapes, and interpreting the resulting validation graphs.

In this section:
Introduction to SHACL 437

Constraint Component Reference 438

Create a Shapes Graph 453

Validate a Data Graph 458

Validate Data with SHACL (Preview) 436

https://www.w3.org/TR/shacl/

Introduction to SHACL

SHACL is a modeling language for describing a set of conditions and constraints that data in

knowledge graphs must follow. The conditions are defined in structures called SHACL shapes,

which are in the form of RDF graphs called shapes graphs. The graphs that are validated against

shapes graphs are called data graphs.

Targets in the shapes graphs define the nodes, classes, and/or properties in the data graphs that

must conform to the shape, and constraints define how to validate the targeted data. There are two

types of shapes graphs: node shapes and property shapes. Node shapes define constraints on

focus nodes, and property shapes define constraints on the values for properties that are connected

to the focus nodes.

Shape Requirements

A shape is a URI or blank node that meets at least one of the following conditions in the shapes

graph:

l The shape is an instance of sh:NodeShape or sh:PropertyShape.

l The shape has at least one of the following predicates: sh:targetClass,

sh:targetNode, sh:targetObjectsOf or sh:targetSubjectsOf.

l The shape has a sh:property [parameter_list] predicate.

l The shape is a value of any of the constraint components described in Constraint Component

Reference.

Data Validation

The validation processor in Graph Lakehouse is invoked by running a SPARQL query. The

processor validates one or more data graphs against the constraints defined in one or more shapes

graphs and produces a report in the form of a validation graph. For more information, see Validate a

Data Graph.

Introduction to SHACL 437

Constraint Component Reference

This section describes each of the constraint components that Graph Lakehouse supports for node

and property shapes. Certain constraints are valid only in property shapes. And other constraints

are valid in both node and property shapes. When a constraint is applied to a particular property—

by including the sh:path <property_uri> predicate in the shape—the specified condition

applies only to that property. For example the following snippet from a shapes graph creates a

condition that requires values for the age property in the Person class to be between 0 and 130

(inclusive):

ex:PersonShape a sh:NodeShape ;

sh:targetClass ex:Person ;

sh:property [

sh:path ex:age ;

sh:minInclusive 0 ;

sh:maxInclusive 130 ;

]

If a constraint is applied to a node shape (the sh:path <property_uri> predicate is excluded),

the condition applies to all properties associated with the focus node. For example the following

constraints apply to all properties related to the Person node. All properties are required to have

values between 0 and 130 (inclusive):

ex:PersonShape a sh:NodeShape ;

sh:targetClass ex:Person ;

sh:property [

sh:minInclusive 0 ;

sh:maxInclusive 130 ;

]

Constraint Types

l Cardinality Constraints

l Logical Constraints

l Other Constraints

l Property Pair Constraints

Constraint Component Reference 438

l Shape-Based Constraints

l String-Based Constraints

l Value Range Constraints

l Value Type Constraints

Cardinality Constraints

Constraint Shape Type Data Type Description

sh:maxCount property int This constraint sets a limit on the
maximum number of values for a
property. The following example limits the
lastName property to one value.

sh:property [

sh:path ex:lastName ;

sh:maxCount 1;

sh:datatype xsd:string;

]

sh:minCount property int This constraint requires a minimum
number of values for a property. The
following example requires the
lastName property to have one value.

sh:property [

sh:path ex:lastName ;

sh:minCount 1;

sh:maxCount 1;

sh:datatype xsd:string

]

Constraint Component Reference 439

Logical Constraints

Constraint Shape Type Data Type Description

sh:or node, property URI list This constraint requires a node or property
to conform to at least one of the listed
shapes. The following example requires the
child property to contain a value that
conforms to the biological or adopted
shapes.

sh:property [

sh:path ex:child ;

sh:or (ex:biological ex:adopted)

]

sh:and node, property URI list This constraint requires a node or property
to conform to all of the listed shapes. The
following example requires the employee
property to conform to the person and
organization shapes.

sh:property [

sh:path ex:employee ;

sh:and (ex:person

ex:organization)

]

sh:not node, property URI This constraint defines a condition where a
node or property must not conform to any of
the listed shapes. The following example
specifies that the president property
cannot conform to the felon shape.

sh:property [

Constraint Component Reference 440

Constraint Shape Type Data Type Description

sh:path ex:president ;

sh:not ex:felon ;

]

sh:xone node, property URI list This constraint defines a condition where a
node or property must conform to one and
only one of the listed shapes. The following
example specifies that the child property
must conform to either the biological or
adopted shape but cannot conform to both
shapes.

sh:property [

sh:path ex:child ;

sh:xone (ex:biological

ex:adopted)

]

Other Constraints

Constraint Shape Type Data Type Description

sh:in node,
property

URI or
literal list

This constraint restricts a node or
property value to be one of those
specified. The following example
restricts the continent property to
contain one of three possible values.

sh:property [

sh:path ex:continent ;

sh:in (ex:Asia, ex:Europe,

ex:NorthAmerica);

Constraint Component Reference 441

Constraint Shape Type Data Type Description

]

sh:closed,
sh:ignoredProperties

node boolean,
URI list

The closed and optional
ignoredProperties constraints can
be used to limit the properties that are
allowed for a node. If sh:closed
true, only the properties that are
described in the shape are valid. You
can include ignoredProperties if
you want to list any properties that are
not described in the shape but should
be allowed for the target. In the
following example, the only allowed
properties for Employee are
rdf:type, id, and record.

ex:EmployeeShape a

sh:NodeShape;

sh:targetClass ex:Employee;

sh:closed true;

sh:ignoredProperties

(rdf:type)

sh:property [

sh:path ex:id ;

sh:datatype xsd:long;

]

sh:property [

sh:path ex:record ;

sh:class

sh:EmployeeRecord;

]

Constraint Component Reference 442

Constraint Shape Type Data Type Description

sh:hasValue node,
property

URI, literal This constraint requires a node or
property to have at least one value that
matches the specified sh:hasValue.
The following example requires the
genre property for the Book node to
have at least one value that is
ex:Mystery.

ex:BookShape

a sh:NodeShape ;

sh:targetClass ex:Book ;

sh:property [

sh:path ex:genre ;

sh:hasValue ex:Mystery ;

]

sh:sparql,
sh:select

node,
property

URI,
string

This SPARQL-based constraint can be
used to set restrictions based on the
specified SPARQL SELECT query. The
following pre-bound variables are
known in the SPARQL query:

l $this: subject

l $PATH: predicate

l ?value: object

The following example creates a

requirement for email addresses to be

strings that end in .com.

sh:property [

sh:path ex:email ;

Constraint Component Reference 443

Constraint Shape Type Data Type Description

sh:sparql [

a sh:SPARQLConstraint ;

sh:message "Email is a

string ending in .com" ;

sh:select """

SELECT $this ?value

WHERE {

$this $PATH ?value .

FILTER(DATATYPE

(?value) != xsd:string ||

(lcase(substr(str

(?value),strlen(str(?value))-

3))

not in

(".com",".net",".gov",".ed

u"))).

}

""" ;

];

]

Property Pair Constraints

Constraint Shape Type Data Type Description

sh:equals property URI This constraint requires a
property to have a value that is
equal to the specified value
(value1 = value2). The

Constraint Component Reference 444

Constraint Shape Type Data Type Description

following example requires the
value for the firstName
property to equal the value of
givenName.

sh:property [

sh:path ex:firstName ;

sh:equals ex:givenName;

]

sh:disjoint property URI This constraint requires a
property to have a value that is
not equal to the specified value
(value1 != value2). The
following example specifies that
the prefix label must not equal
the label value.

sh:property [

sh:path ex:prefLabel ;

sh:disjoint ex:label ;

]

sh:lessThan property URI This constraint requires a
property to have a value that is
less than the specified value
(value1 < value2). The
following example requires the
startDate value to be less
than the endDate value.

sh:property [

sh:path ex:startDate ;

Constraint Component Reference 445

Constraint Shape Type Data Type Description

sh:lessThan ex:endDate;

]

sh:lessThanOrEquals property URI This constraint requires a
property to have a value that is
less than or equal to the
specified value (value1 <=

value2). The following
example requires the
startDate value to be less
than or equal to the endDate
value.

sh:property [

sh:path ex:startDate ;

sh:lessThanOrEquals

ex:endDate;

]

Shape-Based Constraints

Constraint Shape Type Data Type Description

sh:node node, property URI list This constraint requires a node or property
to conform to the specified shape. The
following example requires that the
address property conforms to the
AddressShape.

sh:property [

sh:path ex:address ;

sh:minCount 1 ;

Constraint Component Reference 446

Constraint Shape Type Data Type Description

sh:node ex:AddressShape ;

]

sh:property node, property URI list This constraint is used to define the
property shape for a node or property.

String-Based Constraints

Constraint Shape Type Data Type Description

sh:minLength node, property int This constraint requires a literal value
or URI to meet a minimum character
length. The following example requires
the password property to have a value
that is at least 8 characters.

sh:property [

sh:path ex:password ;

sh:minLength 8 ;

]

sh:maxLength node, property int This constraint sets a limit on the
number of characters a literal value or
URI can have. The following example
limits values for the country property
to 60 characters.

sh:property [

sh:path ex:country ;

sh:maxLength 60 ;

]

Constraint Component Reference 447

Constraint Shape Type Data Type Description

sh:pattern,
sh:flags

node, property string,
string

The pattern and optional flags
constraint can be included to require a
property or node to match a regular
expression pattern. For the supported
regex syntax, see the Regular
Expression Syntax section of the W3C
XQuery 1.0 and XPath 2.0 Functions
and Operators specification.

Include flags if you want to include

optional modifier flags that further

define the pattern. See the Flags

section of the W3C Functions and

Operators specification.

The following example requires the

zipcode to match a string that

consists of exactly five digits (0-9).

sh:property [

sh:path ex:zipcode ;

sh:pattern "^\\d{5}$";

]

sh:languageIn property string list This constraint limits the language tags
that are allowed for a property. The
following example limits the
description property to English,
German, or French.

sh:property [

sh:path ex:description ;

sh:languageIn ("en", "de",

Constraint Component Reference 448

https://www.w3.org/TR/xpath-functions/#regex-syntax
https://www.w3.org/TR/xpath-functions/#regex-syntax
https://www.w3.org/TR/xpath-functions/#flags

Constraint Shape Type Data Type Description

"fr");

]

sh:uniqueLang property boolean This constraint creates a condition
where no two values can have the
same language tag. Each value must
have a unique tag. The following
example requires each label value to
have a unique language tag.

sh:property [

sh:path ex:label ;

sh:uniqueLang true ;

]

Value Range Constraints

Constraint Shape Type Data Type Description

sh:minExclusive node, property literal This constraint sets the minimum
value for a node or property,
excluding the value that is specified.
The following example requires the
minimum value for the length
property to be greater than 0.

sh:property [

sh:path ex:length ;

sh:minExclusive 0;

]

sh:maxExclusive node, property literal This constraint sets the maximum

Constraint Component Reference 449

Constraint Shape Type Data Type Description

value for a node or property,
excluding the value that is specified.
The following example requires the
maximum value for the price
property to be less than 100.00.

sh:property [

sh:path ex:price ;

sh:maxExclusive 100.00;

]

sh:minInclusive node, property literal This constraint sets the minimum
value for a node or property,
including the value that is specified.
The following example requires the
minimum value for the age property
to be greater than or equal to 0.

sh:property [

sh:path ex:age ;

sh:minInclusive 0;

]

sh:maxInclusive node, property literal This constraint sets the maximum
value for a node or property,
including the value that is specified.
The following example requires the
maximum value for the age property
to be less than or equal to 120.

sh:property [

sh:path ex:age ;

sh:maxInclusive 120;

Constraint Component Reference 450

Constraint Shape Type Data Type Description

]

Value Type Constraints

Constraint Shape Type Data Type Description

sh:nodeKind node, property URI This constraint requires the values for a
node or property to be of a certain type.
Valid nodeKind values are:

l sh:IRI: The value must be an IRI.

l sh:BlankNode: The value must
be a blank node.

l sh:Literal: The value must be a
literal.

l sh:BlankNodeOrIRI: The value
must be a blank node or IRI.

l sh:BlankNodeOrLiteral: The
value must be a blank node or

literal.

The following example requires the

birthDate property to contain literal

values.

sh:property [

sh:path ex:birthDate ;

sh:nodeKind sh:Literal ;

]

Constraint Component Reference 451

Constraint Shape Type Data Type Description

sh:datatype node, property URI This constraint requires each node or

property value to be the specified data

type. The following example requires the

age property to be an integer.

sh:property [

sh:path ex:age ;

sh:datatype xsd:integer ;

]

sh:class node, property URI list This constraint requires each node or
property to have an rdf:type that
matches one of the values specified in
sh:class. The following example
requires the address property to be a
PostalAddress.

sh:property [

sh:path ex:address ;

sh:class ex:PostalAddress;

]

Constraint Component Reference 452

Create a Shapes Graph

You can create a shapes graph by writing and loading a Turtle file or by running a SPARQL INSERT

query. This topic provides guidance and examples for creating and loading a shapes graph. For

information about the constraints that are supported in shapes graphs, see Constraint Component

Reference.

Important
Each shapes graph can contain up to 60 shapes. To load more than 60 shapes, create

multiple graphs.

l Defining Shapes in a TTL File

l Creating Shapes with an INSERT Query

Defining Shapes in a TTL File

The following example shows a .ttl file that configures shape constraints on employee data. The file

includes comments and messages that explain the constraints.

employee_shapes.ttl

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix ex: <http://example.org/> .

ex:EmployeeShape

a sh:NodeShape ;

sh:targetClass ex:Employee ;

sh:property [

sh:path ex:hasID ;

sh:minCount 1 ;

sh:maxCount 1 ;

sh:datatype xsd:string ;

sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]$" ;

sh:message "Every employee must have an ID that matches the pattern" ;

] ;

sh:property [

Create a Shapes Graph 453

sh:path ex:employeeType ;

sh:minCount 1 ;

sh:maxCount 1 ;

sh:datatype xsd:string ;

sh:in ("Manager" "Worker" "Contractor") ;

sh:message "Every employee is a manager, worker, or contractor" ;

] ;

sh:property [

sh:path ex:birthYear ;

sh:maxInclusive 2007 ;

sh:datatype xsd:integer ;

sh:message "Birth year must be 2007 or earlier" ;

] ;

sh:property [

sh:path ex:hasTitle ;

sh:datatype xsd:string ;

sh:minCount 1 ;

sh:message "Must have a title but may have more than one" ;

] ;

sh:or (

All employees must have a supervisor except for the President

[

sh:path ex:hasSupervisor ;

sh:minCount 1 ;

sh:maxCount 1 ;

sh:class ex:Employee ;

]

[

sh:path ex:hasTitle ;

sh:hasValue "President" ;

]

) ;

sh:or (

Every employee must have an hourly wage or salary

[

sh:path ex:hasSalary ;

sh:minCount 1 ;

sh:maxCount 1 ;

]

[

sh:path ex:hasWage ;

sh:minCount 1 ;

sh:maxCount 1 ;

Create a Shapes Graph 454

]

) ;

sh:property [

sh:path ex:hasSalary ;

sh:datatype xsd:double ;

sh:minInclusive 30000.00 ;

sh:message "Salary must be 30,000 or higher" ;

] ;

sh:property [

sh:path ex:hasWage ;

sh:datatype xsd:double ;

sh:minInclusive 15.00 ;

sh:message "Wage must be at least 15.00" ;

] .

To create the shapes graph, load the file to Graph Lakehouse. For example, the following query

loads the TTL file from a mounted file system into a graph named

<http://anzograph.com/employeeShapes>:

LOAD <file:/mnt/shared/data/employee_shapes.ttl> INTO GRAPH

<http://anzograph.com/employeeShapes>

For more information about loading files, see Load RDF Data from Files.

Creating Shapes with an INSERT Query

The example below shows an INSERT query that configures the same shape constraints as the TTL

example above. Running the query creates a shapes graph called

<http://anzograph.com/employeeShapes>.

employee_shapes.rq

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX ex: <http://example.org/>

INSERT DATA { GRAPH <http://anzograph.com/employeeShapes> {

ex:EmployeeShape

a sh:NodeShape ;

sh:targetClass ex:Employee ;

sh:property [

Create a Shapes Graph 455

sh:path ex:hasID ;

sh:minCount 1 ;

sh:maxCount 1 ;

sh:datatype xsd:string ;

sh:pattern "^[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]$" ;

sh:message "Every employee must have an ID that matches the pattern" ;

] ;

sh:property [

sh:path ex:employeeType ;

sh:minCount 1 ;

sh:maxCount 1 ;

sh:datatype xsd:string ;

sh:in ("Manager" "Worker" "Contractor") ;

sh:message "Every employee is a manager, worker, or contractor" ;

] ;

sh:property [

sh:path ex:birthYear ;

sh:maxInclusive 2007 ;

sh:datatype xsd:integer ;

sh:message "Birth year must be 2007 or earlier" ;

] ;

sh:property [

sh:path ex:hasTitle ;

sh:datatype xsd:string ;

sh:minCount 1 ;

sh:message "Must have a title but may have more than one" ;

] ;

sh:or (

All employees must have a supervisor except for the President

[

sh:path ex:hasSupervisor ;

sh:minCount 1 ;

sh:maxCount 1 ;

sh:class ex:Employee ;

]

[

sh:path ex:hasTitle ;

sh:hasValue "President" ;

]

) ;

sh:or (

Every employee must have an hourly wage or salary

[

Create a Shapes Graph 456

sh:path ex:hasSalary ;

sh:minCount 1 ;

sh:maxCount 1 ;

]

[

sh:path ex:hasWage ;

sh:minCount 1 ;

sh:maxCount 1 ;

]

) ;

sh:property [

sh:path ex:hasSalary ;

sh:datatype xsd:double ;

sh:minInclusive 30000.00 ;

sh:message "Salary must be 30,000 or higher" ;

] ;

sh:property [

sh:path ex:hasWage ;

sh:datatype xsd:double ;

sh:minInclusive 15.00 ;

sh:message "Wage must be at least 15.00" ;

] .

}

}

Create a Shapes Graph 457

Validate a Data Graph

Data graphs are validated by running a SPARQL query that lists the data graphs to validate and the

shapes graphs to validate the data against. Depending on the type of query that you run, Graph

Lakehouse returns tabular results or a validation graph that uses SHACL Validation Report

Vocabulary to report on any conformance and constraint violations. This topic describes the

validation query syntax and includes examples.

l Validation Query Syntax

l Validation Examples

Validation Query Syntax

There are two modes in which you can run a validation query: query mode and report mode. In
query mode, tabular results are returned. If 0 results are returned in query mode, that means the

data graphs conform to the shapes graphs. In report mode, results are inserted into a specified

graph, and you query the graph to review the validation results. The syntax for each mode is

described below.

Query Mode

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX ...

USING

<shapes_graph_uri>

[<shapes_graph2_uri>]

[...]

VALIDATE

<data_graph_uri>

[<data_graph2_uri>]

[...]

For example:

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX azg: <http://anzograph.com/>

USING azg:personShapes

VALIDATE azg:personData

Validate a Data Graph 458

https://www.w3.org/TR/shacl/#validation-report
https://www.w3.org/TR/shacl/#validation-report

Report Mode

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX ...

USING

<shapes_graph_uri>

[<shapes_graph2_uri>]

[...]

VALIDATE

<data_graph_uri>

[<data_graph2_uri>]

[...]

CREATE REPORT GRAPH <report_graph_uri>

For example:

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX azg: <http://anzograph.com/>

USING azg:personShapes

VALIDATE azg:personData

CREATE REPORT GRAPH azg:personReport

Validation Examples

l Sample Data Graph

l Query Mode Example

l Report Mode Example

Sample Data Graph

The examples below validate the data graph that is defined in the following INSERT query. The data

is validated against the shapes graph example in Create a Shapes Graph.

employee-data.rq

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX ex: <http://example.org/>

INSERT DATA {

Validate a Data Graph 459

GRAPH <http://anzograph.com/employeeData>

{

ex:Employee

a rdfs:Class .

ex:emp001

a ex:Employee ;

ex:hasID "000-12-3456" ;

ex:hasTitle "President" ;

ex:employeeType "Manager" ;

ex:birthYear "1953"^^xsd:integer ;

ex:hasSalary "100000"^^xsd:double .

ex:emp002

a ex:Employee ;

ex:hasID "000-56-3456" ;

ex:hasTitle "Foreman" ;

ex:employeeType "Worker" ;

ex:birthYear "1966"^^xsd:integer ;

ex:hasSupervisor ex:emp003 ;

ex:hasWage "20.20"^^xsd:double .

ex:emp003

a ex:Employee ;

ex:hasID "000-77-3232" ;

ex:hasTitle "Production Manager" ;

ex:employeeType "Manager" ;

ex:birthYear "1968"^^xsd:integer ;

ex:hasSupervisor ex:emp001 ;

ex:hasSalary "4000"^^xsd:double .

ex:emp004

a ex:Employee ;

ex:hasID "0" ;

ex:hasTitle "Fitter" ;

ex:employeeType "Worker" ;

ex:birthYear "1979"^^xsd:integer ;

ex:hasSupervisor ex:emp002 ;

ex:hasWage "17.20"^^xsd:double .

ex:emp005

a ex:Employee ;

ex:hasID "000-99-3492" ;

ex:hasTitle "Fitter" ;

ex:employeeType "Worker" ;

ex:hasSupervisor ex:emp002 ;

ex:birthYear "2000"^^xsd:integer ;

ex:hasWage "17.60"^^xsd:double .

Validate a Data Graph 460

ex:emp006

a ex:Employee ;

ex:hasID "000-78-5592" ;

ex:hasTitle "Filer" ;

ex:employeeType "Intern" ;

ex:birthYear "2003"^^xsd:integer ;

ex:hasSupervisor ex:emp002 ;

ex:hasWage "14.20"^^xsd:double .

ex:emp007

a ex:Employee ;

ex:hasID "000-77-3232" ;

ex:hasTitle "Sales Manager" ;

ex:hasTitle "Vice President" ;

ex:employeeType "Manager" ;

ex:birthYear "1962"^^xsd:integer ;

ex:hasSupervisor ex:emp001 ;

ex:hasSalary "80000"^^xsd:double .

ex:emp008

a ex:Employee ;

ex:hasID "000-31-4868" ;

ex:hasTitle "Fitter" ;

ex:employeeType "Worker" ;

ex:birthYear "2008"^^xsd:integer ;

ex:hasSupervisor ex:emp002 ;

ex:hasWage "15.00"^^xsd:double .

ex:emp009

a ex:Employee ;

ex:hasID "000-56-3336" ;

ex:hasTitle "Fitter" ;

ex:employeeType "Contractor" ;

ex:birthYear "2001"^^xsd:integer ;

ex:hasSupervisor ex:emp002 ;

ex:hasWage "15.00"^^xsd:double .

}

}

Query Mode Example

The following example performs validation on the sample data graph above. The validation is done

in query mode, where results are returned in tabular format:

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX azg: <http://anzograph.com/>

Validate a Data Graph 461

USING azg:employeeShapes

VALIDATE azg:employeeData

The results show that there are 5 violations:

focusNode | resultPath | value | constraint

| violation |

sourceShape | message

--------------------------+---------------------------------+--------+-----------------

---+--------------------------------------+----

------------+---

http://example.org/emp003 | http://example.org/hasSalary | 4000 |

http://www.w3.org/ns/shacl#MinInclusiveConstraintComponent |

http://www.w3.org/ns/shacl#Violation | _:b10737418398 | Salary must be 30,000 or higher

http://example.org/emp004 | http://example.org/hasID | 0 |

http://www.w3.org/ns/shacl#PatternConstraintComponent |

http://www.w3.org/ns/shacl#Violation | _:b15032385677 | Every employee must have an ID

that matches the pattern

http://example.org/emp006 | http://example.org/employeeType | Intern |

http://www.w3.org/ns/shacl#InConstraintComponent |

http://www.w3.org/ns/shacl#Violation | _:b6442451086 | Every employee is a manager,

worker, or contractor

http://example.org/emp006 | http://example.org/hasWage | 14.2 |

http://www.w3.org/ns/shacl#MinInclusiveConstraintComponent |

http://www.w3.org/ns/shacl#Violation | _:b10737418399 | Wage must be at least 15.00

http://example.org/emp008 | http://example.org/birthYear | 2008 |

http://www.w3.org/ns/shacl#MaxInclusiveConstraintComponent |

http://www.w3.org/ns/shacl#Violation | _:b6442451087 | Birth year must be 2007 or

earlier

5 rows

For each violation, the focusNode (subject), resultPath (predicate), value, constraint,

violation, sourceShape, and message (if one exists for the shape) is shown. In the first row,

employee 3 has a salary of $4,000, which violates the MinInclusiveConstraintComponent that says

salaries must be at least $30,000. In the second row, employee 4 has an ID value that violates

PatternConstraintComponent because it is too short. Rows 3 and 4 show that employee 6 has an

invalid employee type and a wage that is too low. And row 5 shows that employee 8 does not meet

the age requirement.

Validate a Data Graph 462

Report Mode Example

The following example performs validation on the sample data graph above. The validation is done

in report mode, where the results are saved to a graph rather than returned in tabular format:

PREFIX sh: <http://www.w3.org/ns/shacl#>

PREFIX azg: <http://anzograph.com/>

USING azg:employeeShapes

VALIDATE azg:employeeData

CREATE REPORT GRAPH azg:employeeReport

When the query is complete, you can query the new graph to view the results. First you can run a

simple ASK query to see whether or not the graph conforms to the shapes. For example, the query

below asks whether the value of <http://www.w3.org/ns/shacl#conforms> is t (true). If the

value is f (false), the ASK query returns false:

PREFIX sh: <http://www.w3.org/ns/shacl#>

ASK FROM <http://anzograph.com/employeeReport> { ?s sh:conforms "t" .}

false

If the data graph does not conform to the shapes graph, you can write additional queries to return

information about the violations. For example:

PREFIX sh: <http://www.w3.org/ns/shacl#>

SELECT ?focusNode ?resultPath ?value ?constraint ?violation ?sourceShape ?message

FROM <http://anzograph.com/employeeReport>

WHERE {

?s sh:focusNode ?focusNode ;

sh:resultPath ?resultPath ;

sh:value ?value ;

sh:sourceConstraintComponent ?constraint ;

sh:resultSeverity ?violation ;

sh:sourceShape ?sourceShape ;

sh:resultMessage ?message .

}

ORDER BY ?focusNode

LIMIT 100

The results show that there are 5 violations:

Validate a Data Graph 463

focusNode | resultPath | value | constraint

| violation |

sourceShape | message

--------------------------+---------------------------------+--------+-----------------

---+--------------------------------------+----

------------+---

http://example.org/emp003 | http://example.org/hasSalary | 4000 |

http://www.w3.org/ns/shacl#MinInclusiveConstraintComponent |

http://www.w3.org/ns/shacl#Violation | _:b10737418398 | Salary must be 30,000 or higher

http://example.org/emp004 | http://example.org/hasID | 0 |

http://www.w3.org/ns/shacl#PatternConstraintComponent |

http://www.w3.org/ns/shacl#Violation | _:b15032385677 | Every employee must have an ID

that matches the pattern

http://example.org/emp006 | http://example.org/employeeType | Intern |

http://www.w3.org/ns/shacl#InConstraintComponent |

http://www.w3.org/ns/shacl#Violation | _:b6442451086 | Every employee is a manager,

worker, or contractor

http://example.org/emp006 | http://example.org/hasWage | 14.2 |

http://www.w3.org/ns/shacl#MinInclusiveConstraintComponent |

http://www.w3.org/ns/shacl#Violation | _:b10737418399 | Wage must be at least 15.00

http://example.org/emp008 | http://example.org/birthYear | 2008 |

http://www.w3.org/ns/shacl#MaxInclusiveConstraintComponent |

http://www.w3.org/ns/shacl#Violation | _:b6442451087 | Birth year must be 2007 or

earlier

5 rows

For each violation, the focusNode (subject), resultPath (predicate), value, constraint,

violation, sourceShape, and message (if one exists for the shape) is shown. In the first row,

employee 3 has a salary of $4,000, which violates the MinInclusiveConstraintComponent that says

salaries must be at least $30,000. In the second row, employee 4 has an ID value that violates

PatternConstraintComponent because it is too short. Rows 3 and 4 show that employee 6 has an

invalid employee type and a wage that is too low. And row 5 shows that employee 8 does not meet

the age requirement.

Validate a Data Graph 464

Copy Graphs to Files

This topic provides instructions for using the COPY command to copy graphs from Graph

Lakehouse to compressed or uncompressed files on disk. You can copy a graph to a file if you

added or updated the data in a graph and want to be able to load that updated graph into another

Graph Lakehouse instance. Or, you may want to create a backup to restore data to a previous state

after upgrading or installing a new version of Graph Lakehouse.

By default, when you restart Graph Lakehouse, it automatically reloads the last state of graph data

from that stored in the <install_path>/persistence directory.

Note
Copying graph data to a file or directory does not remove the copied data from Graph

Lakehouse.

COPY Syntax

Copy data to files by running the following SPARQL query. Each of the options are described below.

COPY ALL | graph_uri_list TO <single_file_uri> | <directory_uri>

Argument Description

ALL Include the ALL keyword if you want to copy all graphs to files rather than listing
specific graphs. If you do not want to copy all graphs, specify a graph_uri_list.

graph_uri_
list

Use the format below if you want to copy a single graph or a list of graphs.
Separate multiple graphs with a space.

<graph_URI> [<graph2_URI> <graphN_URI> ...]

single_file_
uri

If you want to copy a graph or graphs to a single file, specify a file location URI in
the format below. When generating a single file on a cluster, the leader node
writes the file.

Copy Graphs to Files 465

Argument Description

<file:/path/filename.filetype[.gz]>

Where filetype is the file format to generate. Supported types are .ttl, .n3,
.nt, .nq, .quads, and .trig. If you want to compress the files, include the .gz
suffix.

Note
When copying from multiple graphs, make sure that you specify a quad

format such as .nq, .quads, or .trig to preserve the graph name
information in the data.

directory_uri If you want to copy a graph or graphs to many smaller files, specify a directory
location URI in the format below. When generating a directory of multiple files on a
cluster, each node creates files that contain the data that is stored in its slices. It is
important to choose a directory location that is shared between the nodes in the
cluster. Otherwise you have to retrieve the files from each node separately.

<dir:/path/dirname.filetype[.gz]>

Where filetype is the file format to generate. Supported types are .ttl, .n3,
.nt, .nq, .quads, and .trig. If you want to compress each of the files in the
directory, include the .gz suffix.

Note
When copying from multiple graphs, make sure that you specify a quad

format such as .nq, .quads, or .trig to preserve the graph name
information in the data.

Tip
By default, Graph Lakehouse creates 5 MB .gz files in the specified

directory. To configure Graph Lakehouse to create a different file size,

Copy Graphs to Files 466

Argument Description

you can change the settings file, settings.conf, to add copy_file_

size=<number_of_MB> to the file. For instructions on changing

settings, see Change System Settings.

COPY Examples

The example below copies data from the flights graph to a single flights.ttl.gz file on a shared file
system.

COPY <http://anzograph.com/flights> TO <file:/mnt/shared/data/flights.ttl.gz>

The example below copies data from two graphs, flights and airports, to a flight-data.trig.gz
directory on a shared file system. Using .trig format ensures that the graph names are included in

the files.

COPY <http://anzograph.com/flights> <http://anzograph.com/airports> TO

<dir:/mnt/shared/data/flight-data.trig.gz>

The example below copies the data from all graphs to a directory on a shared file system:

COPY ALL TO <dir:/mnt/shared/data/allgraphs.trig.gz>

Copy Graphs to Files 467

Schedule Automated Data Updates

There are often data update operations that must be performed on a regular or periodic basis, such

as retrieving updates from external data sources or exporting data. Graph Lakehouse provides a

CRON-like mechanism to automatically perform these repetitive operations. These operations are

managed entirely within the database rather than being controlled by the configuration of external

control files.

There are two primary aspects to creating and configuring automated or scheduled operations

within Graph Lakehouse:

1. Create and define the contents of one or more Cron graphs, each of which specify the

database operations to perform for one or more Cron jobs. Each Cron graph is defined as a

collection of RDF triples, with each triple specifying a particular scheduled job attribute or

parameter. The Cron graph includes configuration settings that control other aspects of each

scheduled job, such as a job's scheduled execution time (particular dates and times or

intervals), retry options, error handling policies, and so on.

2. Update the scheduled Cron graph job settings in the Graph Lakehouse settings.conf file to
include the Cron graphs you want to execute. The settings.conf file contains two settings to

control the scheduling and execution of Cron graphs, cron_graphs and cron_graphs_
recheck.

This topic provides instructions for setting up automated database operations and describes the

configuration options and best practices available to control the scheduling, prioritization, error

handling, and other aspects of running jobs.

l Create a Cron Graph

l Load a Cron Graph

l Configure Graph Lakehouse to Run Cron Jobs

l Monitor Job Execution and Errors

Schedule Automated Data Updates 468

Create a Cron Graph

A Cron graph is defined in a TTL file that contains a collection of RDF triples that define

configuration and scheduling information for one or more Cron jobs. A Cron graph can contain any

number of Cron jobs, and each job can have custom scheduling and error-handling policies.

The content below shows the syntax for a Cron graph file. Descriptions of each job parameter are

provided below.

filename.ttl

PREFIX azg: <http://www.anzograph.com/> .

<job_name> azg:Schedule | Delay "<duration_value>"^^xsd:duration ;

azg:Statement "<statement>" ;

azg:ErrorPolicy "<policy>" ;

[azg:BaseTime "<datetime_value>"^^xsd:dateTime ;]

[azg:RetryInterval "<duration_value>"^^xsd::duration ;]

[azg:RetryCount <integer_value> ;]

[azg:RunAfterStartup "true | false"] .

[<job2> azg:Schedule | Delay "<duration_value>"^^xsd:duration ;

azg:Statement "<statement>" ;

azg:ErrorPolicy "<policy>" ;

...

]

Note
If any required triples are missing or invalid, the associated Cron graph job is rejected and

returns an error. (See Monitor Job Execution and Errors.)

Parameter Description

Schedule | Delay Each job is required to include either azg:Schedule or azg:Delay. Both
parameters accept an xsd:duration data type value, as described in
xsd:duration in the W3C specification. If BaseTime is also specified, the
azg:Schedule duration is added to the BaseTime value to produce the
job's next scheduled execution time. If azg:Delay is specified, the

Schedule Automated Data Updates 469

https://www.w3.org/TR/xmlschema11-2/#duration

Parameter Description

execution of the associated job is delayed by the specified interval (in
seconds) from the time the job last completed.

Note
These options set "scheduled request times," not guaranteed start

times. If the system is busy enough that a given job would have

multiple outstanding requested start times, only the last one is

executed. If Graph Lakehouse is stopped and subsequently

restarted, Cron jobs return to their normal scheduled interval times.

For example, for nightly jobs scheduled for execution at midnight, a

skipped midnight job will not be performed until midnight of the

next day.

Statement This required parameter defines the database operation (any valid
SPARQL statement) to be performed when the corresponding job is
executed. You can specify multiple statements by separating each
statement by double semicolon characters (;;), e.g.,
statement1;;statement2. Each statement is executed as a separate
transaction following ACID principles.

Note
Specifying SPARQL statements in a separate file rather than as a

text string (for example, <file:/path/job1.rq>) is not currently

supported.

ErrorPolicy To specify what happens when Graph Lakehouse encounters an error in
processing a job, all jobs require an azg:ErrorPolicy parameter. Each job
must contain exactly one error policy. The list below describes the valid
policy values:

l AbortDatabase: The most conservative policy. Any critical job

Schedule Automated Data Updates 470

Parameter Description

failure produces a crash-dump Xray.

l Ignore: The most liberal policy. The error information is recorded
in the sth_errors system table and included in manually

generated Xrays, but no feedback is returned while the job is

processed.

l Disable: If an error occurs, this value directs Graph Lakehouse
not to attempt to run the Cron job again.

l BlockUsers: Similar to AbortDatabase, this policy causes all
subsequent user-issued SELECT queries to error out with a "Cron

failed, contact your system administrator" message.

To unblock users from running SELECT queries, you can restart

the database or run a SET selects_blocked TO false

query. For example:

azgi -c "SET selects_blocked TO false"

Note
If RetryInterval is specified in for a job, error policy actions are

postponed until the number of retries is reached.

BaseTime This optional parameter specifies the time to use as the base for other
timing-related settings. If azg:BaseTime is not specified, Graph
Lakehouse's start time is used to determine the Cron job's first start time.
For example, if Graph Lakehouse was started at 2 PM on Sunday, May 12,
and azg:Schedule "1Day"^^xsd:duration was set, then the job
would run every day at 2 PM.

RetryInterval This optional parameter specifies the duration to wait before retrying the job
if the job errors out. The job will be continually retried until the first success

Schedule Automated Data Updates 471

Parameter Description

or until the RetryCount value is reached. Afterwards, the job returns to its
normal scheduled time.

RetryCount This optional parameter specifies the number of times to retry a job if it
errors out. If azg:RetryCount is specified, RetryInterval must also be
specified. When the number of retries reaches the retry count, the specified
ErrorPolicy for this job is performed. If the Ignore error policy is specified,
the associated job resumes its normal schedule time.

RunAfterStartup This optional parameter accepts a "true" or "false" value that indicates
whether the associated job should run shortly after Graph Lakehouse
startup. If azg:RunAfterStartup "true", the azg:Schedule value is
ignored.

Example Cron Graph File

The following content provides a simple example of a Cron graph file, named cron1.ttl, which

schedules two jobs in the same graph:

PREFIX azg: <http://www.anzograph.com/> .

<job1> azg:BaseTime "2020-04-07:11:32"^^xsd:dateTime .

<job1> azg:Schedule "1Day"^^xsd:duration .

<job1> azg:ErrorPolicy "AbortDatabase" .

<job1> azg:RetryInterval "1Hour"^^xsd::duration .

<job1> azg:RetryCount 23 .

<job1> azg:Statement "REFRESH VIEW <testView1>" .

<job2> azg:BaseTime "2020-07-08:00:00"^^xsd:dateTime .

<job2> azg:Schedule "1Day"^^xsd:duration .

<job2> azg:ErrorPolicy "Ignore" .

<job2> azg:Statement "REFRESH VIEW <testView2>" .

In this example, the subject defines the job names: job1 for scheduling and configuration of one
scheduled job, and job2 for the scheduling and configuration of a second job. Each predicate
specifies a particular attribute or parameter of a scheduled job.

Schedule Automated Data Updates 472

Tip
Each Cron graph is assigned a different Cron thread. The Cron thread acts as a "virtual user"

that evaluates when to run the next job defined within the same graph. Each Cron thread runs

only one job at a time per graph. If two jobs are scheduled for the same time, they are run

sequentially. To execute Cron jobs concurrently, you can define Cron jobs in separate graphs,

since jobs in different graphs are run using different Cron threads. For example, you could

create one graph named "quickjobs" that defines many shorter jobs and create another graph

that runs longer-executing jobs. Then the jobs from the two graphs could be run concurrently.

Load a Cron Graph

Once you have created a Cron graph file, you load the Cron graph into Graph Lakehouse using the

following LOAD command:

LOAD <file:/<path>/<filename>.ttl> INTO GRAPH <graph_name>

For example:

LOAD <file:/tmp/cron1.ttl> INTO GRAPH <CronGraph1>

In this example, the triples stored in the cron1.ttl file are loaded into a graph named CronGraph1. It
is this name, CronGraph1, that is added to the cron_graphs setting in <install_
path>/config/settings.conf to run the scheduled jobs defined in CronGraph1. More details

about configuring Graph Lakehouse to run Cron jobs are included in Configure Graph Lakehouse to

Run Cron Jobs.

Tip
As an alternative to specifying the graph name as part of the LOAD query, you can specify the

name of the Cron graph within the triples file. For example:

PREFIX azg: <http://www.anzograph.com/> .

GRAPH <CronGraph1> {

<job1> azg:BaseTime "2020-04-07:11:32"^^xsd:dateTime .

...

<job1> azg:Statement "REFRESH VIEW <testView1>" .

<job2> azg:BaseTime "2020-07-08:00:00"^^xsd:dateTime .

Schedule Automated Data Updates 473

...

<job2> azg:Statement "REFRESH VIEW <testView2>" .

}

You could then load the Cron graph using the following LOAD command:

LOAD <file:/path/cron1.ttl>

Configure Graph Lakehouse to Run Cron Jobs

To configure Graph Lakehouse to run the jobs within Cron graphs, edit the <install_
path>/config/settings.conf configuration file to specify values for the following two settings:

l cron_graphs: A comma-separated list of the Cron graph names to enable. For example,

cron_graphs=CronGraph1, CronGraph2.

l cron_graphs_recheck: The interval (in number of seconds) to wait before re-checking the
cron_graphs value to determine if there are changes, i.e, new or deleted graph names. For

example, cron_graphs_recheck=300.

If a Cron graph is non-existent or empty, the associated Cron thread periodically checks at

the specified interval whether the named graph is now loaded and has new jobs.

After changing settings.conf, restart Graph Lakehouse to apply the configuration changes.

Monitor Job Execution and Errors

Details about scheduled job run are logged to the following Graph Lakehouse system tables.

System
Table

Logging Details

sth_query SPARQL statements executed from jobs are logged to this table. To identify Cron job
queries, look for the text cron: in the label column.

sth_cron_
events

Activities related to execution of Cron jobs by their associated Cron threads are
logged to this table. You can monitor this table for failed entries in the event column
and take corrective action based on the failures.

Schedule Automated Data Updates 474

System
Table

Logging Details

sth_cron_
graph

All scans of the Cron graphs (including Cron graph refreshes) are logged to this table.

sth_errors All errors arising from scheduled job execution are logged to this table. If an error is
caused by one of a Cron graph's job configuration settings, the basic_text column
value will begin with Cron:. The Cron Graph Errors section below includes a list of
Cron graph related errors.

You can query Graph Lakehouse's system tables using SPARQL queries in the following format:

SELECT * | list_of_variables

WHERE { table 'table_name' }

For example:

SELECT *

WHERE { table 'sth_cron_events' }

LIMIT 100

Tip
Entries in the sth_cron_events and sth_errors system tables are, by default, also

spooled to disk so that they are incorporated into Crashdumps and Xrays.

Cron Graph Errors

The table below lists the errors that are returned for errors related to Cron job processing.

Cron Graph Error Error Message

CronInvalidPredicate "Cron: Invalid predicate"

CronOneDuration "Cron: Multiple durations are being requested"

Schedule Automated Data Updates 475

Cron Graph Error Error Message

CronOneStatement "Cron: Multiple statements are being requested"

CronOneFirstTime "Cron: Multiple base/first times are being requested"

CronMissingStatement "Cron: Missing Statement to execute"

CronMissingErrorPolicy "Cron: Missing ErrorPolicy to execute"

CronConflictingErrorPolicy "Cron: ErrorPolicy must be 'Ignore' if no RetryCount is specified"

CronUnknownErrorPolicy "Cron: Unknown ErrorPolicy"

CronSingleErrorPolicy "Cron: Only a single ErrorPolicy allowed per subject"

CronSingleStatement "Cron: Only a single Statement allowed per subject"

CronSingleFirstTime "Cron: Only a single FirstTime allowed per subject"

CronMustBeLiteralNotIRI "Cron: Object must be a literal, cannot be an IRI"

CronWrongType "Cron: Object wrong type"

CronStatementFailed "Cron: Statement failed to execute, see system table sth_errors
for more information"

CronRetryCountIncons "Cron: Specifying an RetryCount requires a RetryInterval"

CronRetryCountPos "Cron: RetryCount must be greater than 0"

CronIntervalPos "Cron: Schedule, Delay, RetryInterval must be greater than 0"

Schedule Automated Data Updates 476

Cron Graph Error Error Message

CronMissingRetryCount "Cron: Retry requires a RetryCount unless ErrorPolicy is Ignore"

CronBlockingUsers "All SELECTS blocked, contact your system administrator"

To unblock users from running SELECT queries, you can restart

the database or run a SET selects_blocked TO false

query.

Schedule Automated Data Updates 477

Access & Analyze Data

This section includes information about the ways you can access the data that is stored in Graph

Lakehouse.

In this section:
Use the Query & Admin Console 479

Use the Graph Lakehouse CLI 493

Use Third-Party Visualization Tools 498

Access the SPARQL and RDF Endpoints 509

Access Data with OData Protocol 518

Create and Save Views 537

Save Queries for Reuse 544

SPARQL Query Language Reference 552

Cypher Query Language Reference 964

Access & Analyze Data 478

Use the Query & Admin Console

This topic provides information about using the Graph Lakehouse front end user interface, referred

to here as the Query & Admin Console.

l Log in to the Console

l Tour the Console

Log in to the Console

The user interface supports the latest Safari, Google Chrome, Mozilla Firefox, and Microsoft Edge

browsers.

1. Depending on whether you deployed Graph Lakehouse using Docker, Kubernetes with Helm,

or the RHEL/Rocky installer, follow the appropriate instructions below to access the user

interface:

Deployment Instructions

Desktop
Container
Engine

You can use the desktop application to open the Graph Lakehouse
container in a browser, or open a browser and go to the following URL:
http://127.0.0.1.

If you specified a port other than 80 for the host HTTP port when you

deployed Graph Lakehouse, include that port in the URL. For

example, http://127.0.0.1:8888.

Linux
Container
Engine

If you are accessing a container image on a remote Linux host, note
the IP address of the host, and then open a browser and go to the
following URL: https://<host_IP_address>.

If you mapped the container's HTTPS (8443) port to port 443 on the

host when you deployed Graph Lakehouse, you do not need to specify

a port. If you specified a port other than 443, include the port in the

Use the Query & Admin Console 479

Deployment Instructions

URL. For example, https://10.100.0.1:8888.

Tip
If you are using Docker locally on a Linux machine and need to

know the IP address of the Graph Lakehouse container, you can

run the following command:

sudo docker inspect <container_name> | grep

'"IPAddress"' | head -n 1

For example:

sudo docker inspect anzograph | grep

'"IPAddress"' | head -n 1

"IPAddress": "172.17.0.2"

Kubernetes
with Helm

Using the Graph Lakehouse cluster or external IP obtained from the
kubectl get service command, open a browser and go to the
following URL: https://<IP_address>.

EL9 Installer Use the following URL to access the console: https://<host_IP_
address>:<https_port>.

Note
If you use the HTTPS endpoint, your browser may warn you that the connection is not

private. The warning is normal behavior. Graph Lakehouse servers use self-signed

certificates, and browsers automatically trust only the certificates from well-known

certificate authorities. For more information about certificate warnings, see Security

Certificate Errors on the DigiCert website. Depending on your browser, follow the

Use the Query & Admin Console 480

https://www.digicert.com/ssl-support/certificate-not-trusted-error.htm
https://www.digicert.com/ssl-support/certificate-not-trusted-error.htm

appropriate instructions below to either bypass the warning and continue to the console

or configure the browser to trust the certificate:

l On Chrome, click the Advanced link at the bottom of the page and then click the

Proceed to ip (unsafe) link.

l On Safari, click the Show Details button and then click Visit Website to import
the certificate.

l On Firefox, click Advanced and then click Add Exception. On the next screen,
click Add Security Exception to confirm the exception for the endpoint.

The browser displays the login screen.

2. On the login screen, type the username and password for the admin user that you set up

during the deployment. For Docker installs, type admin as the user name and Passw0rd1 as
the password.

Use the Query & Admin Console 481

3. Then click Sign In. After successful authentication, the Query Console tab is displayed.

Tour the Console

The Query & Admin Console application top menu bar provides two tab selections, Query Console
(Query Console Tab) and Admin (Admin Tab). On the right side of the screen, the top menu
provides the DB Status option, the Server Context drop-down menu, and the user drop-down
menu. The list below describes each item.

l DB Status shows the status of the database. A check mark icon indicates that the database

is running, and an X icon indicates the database is stopped. Click DB Status to access the
options to start, stop, or restart the database:

l The Server Context menu enables you to manage the connections to multiple Graph
Lakehouse instances as well as set up an LDAP configuration for authentication.

l The user menu includes options to log out of the console, view the product license, and

access the documentation (Help). The Settings option takes you to the Server Configuration
page for server context and LDAP configuration, and the About option displays information
about the current Graph Lakehouse database and front end versions running in your

environment. The Product License option displays information about the current Graph

Lakehouse license and allotted resources. In addition, this option provides links to request

Use the Query & Admin Console 482

new or enhanced licenses and upload new license keys. See Install or Upgrade a License for

more information about licensing options and requesting a new license.

Query Console Tab

When you open the Query Console tab, the left sidebar navigation pane, labeled Query List,

displays a number of predefined menu options and groups.

The Console provides two default queries, Count Statements and Total Statements. The Count
Statements query returns a list of each named graph and the number of statements or triples in the

graph. The Total Statements query returns the total number of statements in all named graphs.

Clicking the Add Query button lets you enter and run new queries and other SPARQL statements.

The Add Group button lets to define new menu option groups to organize queries, and the More
button lets you import from and export queries to your local file system environment. Clicking on the
three-stacked dot icon () next to an existing query lets you rename, export, or delete the query.

In the right side window, the Console provides an editing and display window along with various

button, checkboxes, and windows, pertaining to your current sidebar menu or query selection. For

example, if you've already loaded the sample tickit graph into Graph Lakehouse, selecting the

Count Statements option would display the following:

Use the Query & Admin Console 483

At the top of the right-side window, the Console displays the Server Context drop-down menu, the
Auto Clear Results checkbox and Run, Settings, and Copy buttons, which let you run the
displayed query or perform other actions. If you choose the Add Query option, the Console clears

the right-side query window, allowing you to enter a new query or SPARQL query.

Note
As you enter a new query, the Console validates the syntax of the SPARQL statement you are

entering. If you specify syntax that is invalid, the Console displays the invalid syntax in red. In
that case, you can click on the red Info () icon to see suggested or allowed syntax elements

you can enter at a specific position in your SPARQL statement.

Below the SPARQL query window, the Console displays the results from running a query, along with

options to control the results format, limits to page size, and so on. You can toggle between Table
and Response options, to show the query result in either a tabular format, or when you click

Response, view the query result in the specified format, by default, JSON.

Use the Query & Admin Console 484

Admin Tab

When you open the Admin tab, the left sidebar navigation panel displays a variety of menu options

pertaining to the common operations that an Graph Lakehouse administrator or analyst might

perform. This section provides a basic description of each option and provides references to

additional information.

General

The General tab selection displays the database and console version information, database start

time, and license status. It also provides details such as the number of cores utilized on the Graph

Lakehouse server or cluster, memory usage, and total memory resources available to Graph

Lakehouse.

Clicking the Upgrade License button takes you to the Graph Lakehouse License Offerings web
site, allowing you to view various product download and licensing options. For instructions on

upgrading the license, see Install or Upgrade a License.

Use the Query & Admin Console 485

Graphs

The Graphs menu option displays a list of the graphs in memory as well as a count of the number of
triples that each graph contains. For example:

If you want to delete a graph from the database, click the trash can icon () in the row for the graph

that you want to drop. The console displays a dialog box to confirm that you want to delete the

graph. Click OK to remove the graph.

Views

The Views menu option displays a list of the views that have currently been defined in Graph
Lakehouse. For example:

Use the Query & Admin Console 486

For each view, the display shows the view name, the type (materialized or non-materialized), and

the query on which the view was defined. If you want to delete a view from the database, click the
trash can icon () in the row for the view that you want to delete. The console displays a dialog box

to confirm that you want to delete the view. Click OK to remove the view.

Queries

The Admin Queries menu option provides access to the query history log, which shows a list of the
queries that have been run against Graph Lakehouse. To view the list, select the Queries menu
option. The following display hows the query history and provides the option to cancel all running

queries. For example:

Use the Query & Admin Console 487

For each query, the screen shows the query ID, label, and status, as well as the start time and

duration in milliseconds. The last column shows the query text. You can click the new window icon (
) next to a query to copy that query into the Query editing window where you can edit and/or re-run

the query.

OData (Preview)

Graph Lakehouse provides a "Data on Demand" service that allows users to define RESTful API

endpoints using Open Data Protocol (OData)-based data feeds, which allow web-based access to

Graph Lakehouse graph data. The RESTful API endpoints allow web clients to use simple HTTP

messages to publish and edit resources that are identified using URLs and are defined in a data

model.

The OData (Preview) menu option lets you view existing Data on Demand endpoints as well as

create new endpoints. The following screen shows an example of a Data on Demand endpoint that

provides access to a Tickit graph.

Use the Query & Admin Console 488

For more information and instructions on creating Data on Demand endpoints, see Access Data

with OData Protocol.

Query Contexts

The Admin Query Contexts menu option lets you manage query contexts, which define sensitive
data source connection details like keys, tokens, and user credentials. Queries that are run against

a source can simply reference the keys in a context to avoid including sensitive information in the

request. The following screen shows the display of currently defined query contexts and the options

to add new context configurations as well as edit or delete contexts.

Use the Query & Admin Console 489

For more information and instructions on creating Query Contexts, see Use a Query Context.

Diagnostics

The Admin Diagnostics menu option displays and lets you download any existing Xray snapshot
diagnostic files that Graph Lakehouse has generated in response to an error or database crash.

When Altair Support requests Graph Lakehouse diagnostic files for troubleshooting an issue, you

can quickly retrieve the files here.

There are two types of Graph Lakehouse diagnostic files:

l Xray: Xrays are generated on-demand. If you encounter an error and the database remains
running, you generate an Xray to produce the diagnostic files.

l Crash: If you encounter an error that crashes the database, Graph Lakehouse automatically
generates a crash file that contains diagnostic information about the crash.

Note
See Getting Support for more information about the files, troubleshooting issues, and

obtaining Altair Engineering Inc. support.

To retrieve an Xray file:

Use the Query & Admin Console 490

1. Select the Diagnostics menu option from the Admin sidebar panel. The console displays the

available options. For example:

2. If you want to retrieve an xray, click the Download Xray snapshot link. Graph Lakehouse
creates the xray and produces a tarball with a .xray extension. The console downloads the

.xray file to your computer.

3. If you want to retrieve a crash dump, click the Refresh button to refresh the list of available
crash dump .xray files. Click the file name that you want to download. The console

downloads the .xray file to your computer.

Note
Xray and crash dump files that you download are already compressed. Do not

compress the files before sending them to Altair when they are requested for

troubleshooting an issue.

Extension Library

The Admin Extensions menu option provides a display of extension libraries and extensions
currently installed in Graph Lakehouse. From the list of libraries, you can expand or collapse library

items to show all the extensions defined within those libraries. For example:

Use the Query & Admin Console 491

For the library and extension display, you can click the Info icon next to an item to obtain additional

information about that library or extension.

User Role Management

This option only appears if you have enabled Graph Lakehouse access control. Selecting the User
Role Management option lets you create roles and define permissions that control access to Graph
Lakehouse data and determine the operations users can perform after they log in. For more

information, see Create and Manage Roles from the Console.

Use the Query & Admin Console 492

Use the Graph Lakehouse CLI

You can use the AZGI command line interface to run commands and access data in Graph

Lakehouse. AZGI uses SSL protocol to interact with the database. The client exists in the

<install_path>/bin directory. In a container deployment, the installation path is

/opt/anzograph. On RHEL/Rocky deployments, the installation path is customizable. The default

path is /opt/altair/anzograph. In a cluster, use azgi on the leader node only.

Tip
Graph Lakehouse also includes an alternate command line interface (AZGBOLT), which uses

the Bolt protocol and enables you to run Cypher queries. For information, see Using the

Cypher CLI (AZGBOLT).

AZGI Syntax

This section describes the available azgi command options. To view the list of options from the

command line, run azgi -help.

azgi [-f <filename>] [-c "<command>"] [-set <param>=<value>] [-h <host_url>] [-p

<port>]

[-u <username>:<password>] [-v] [-timer] [-raw] [-csv] [-json] [-xml] [-silent]

[-nohead] [-noprogress] [-maxwid <width>] [-wide]

[-nossl] [-o <file>] [-certs <directory>] [-context <json_file>]

-f <filename>

Runs the specified SPARQL query file. For example, the following command runs the query or

queries in the query.rq file:

azgi -f /home/user/query.rq

-c "<command>"

Runs the command in quotation marks. For example, this command runs a query:

azgi -c "select distinct ?eventname from <http://anzograph.com/tickit>

where {?event <http://anzograph.com/tickit/eventname> ?eventname} limit 100"

Use the Graph Lakehouse CLI 493

You can include multiple -c options to run multiple commands. For example, this command runs

two queries:

azgi -c "select * from <http://anzograph.com/tickit> where {?s ?p ?o}"

-c "select distinct ?likes from <http://anzograph.com/tickit> where

{?person <http://anzograph.com/like> ?likes}"

And this command sets the query_label setting to "events" before running the query:

azgi -c "set query_label to 'events'" -c "select distinct ?event

from <http://anzograph.com/tickit> where

{?event <http://anzograph.com/eventname> ?event} limit 100"

-set <param>=<value>

Sets or changes parameter values in query files. For example this command runs the query in the

query_summary.rq file with the $query parameter set to 2:

azgi -set query=2 -f query_summary.rq

-h <host_url>

Connects to a remote Graph Lakehouse server. For example, the following statement runs a

query against Graph Lakehouse on host 10.104.55.27:

azgi -h 10.104.55.27 -c "select * from <http://anzograph.com/tickit>

where {?s ?p ?o} limit 100"

-p <port>

Used to connect to the database on a non-default port. The default azgi port is 8256.

-u <username>:<password>

Connects to the database with credentials (basic authentication). If you type -u <username> and

exclude the password, the client prompts for the password. For example, the following command

uses basic authentication to run a query:

azgi -u admin:Passw0rd1 -c "select ?g where {graph ?g {?s ?p ?o}} limit 10"

-v

Displays verbose output such as client connection details. For example:

Use the Graph Lakehouse CLI 494

azgi -v -c "select distinct ?p from <http://anzograph.com/tickit>

where {<http://anzograph.com/tickit/person1> ?p ?o}"

Connecting to host=localhost port=8256

IPv4: connected

POST /sparql HTTP/1.1

Host: Anon

Accept: application/sparql-results+xml

User-Agent: azgi

Connection: keep-alive

Content-Length: 106

Content-Type: application/sparql-query

select distinct ?p from ...

HTTP/1.1 200 OK

Date: Fri, 14 Apr 2023 21:37:16 GMT

Server: AnzoGraph

Access-Control-Allow-Origin: *

X-AnzoGraph-QueryExecution-Time: 2837

Connection: close

Content-Type: application/sparql-results+xml; charset=utf-8

...

-timer

Reports query execution time in milliseconds.

-raw

Returns query results in raw XML, JSON, or CSV format, depending on what format you request.

-csv

Returns results in CSV format.

-json

Returns results in JSON format.

-xml

Returns results in XML format.

Use the Graph Lakehouse CLI 495

-silent

Suppresses the query output.

-nohead

Suppresses headings in query results.

-noprogress

Suppresses the progress messages that are displayed for queries that are inflight.

-maxwid <width>

Overrides the default maximum column width of 50 characters for tabular query results. Using the

-wide option described below is equivalent to maxwid 60000.

-wide

Increases the column width for tabular query results from the default 50 characters to 60,000

characters. Equivalent to -maxwid 60000.

-nossl

Instructs the client to make a non-SSL (HTTP) connection to the database. When using AZGI to

send a request to a remote Graph Lakehouse server, include the -h <host_url> and -p

<port> options when using -nossl. The default HTTP port is 7070. For example:

azgi -nossl -h 10.100.0.20 -p 7070 -c "select (count(*) as ?cnt) where {?s ?p ?o}"

-o <file>

Writes the response to the specified file. If the file exists, it is overwritten.

Note
When you include this option to redirect output to a file, all progress messages will also be

written to the file unless you also specify the -noprogress option. Altair recommends that

you include -noprogress any time you output results to a file.

Use the Graph Lakehouse CLI 496

-certs <directory>

Instructs the client to make a certified secure connection to the database. The Graph Lakehouse

certificates are ca.crt, serv.crt (public key), and serv.key (private key) in the <install_
path>/config directory. When sending requests to a remote Graph Lakehouse server, you can

copy the certificates to the server where you are using AZGI. For example, the following

command runs a query on a remote Graph Lakehouse server. The command makes a certified

connection using the Graph Lakehouse certificates, which were copied to the

/home/user/certs directory:

azgi -h 10.10.10.01 -certs /home/user/certs

-c "select ?g where {graph ?g {?s ?p ?o}} limit 100"

This command runs the same query from the Graph Lakehouse server.

azgi -certs /opt/altair/anzograph/config

-c "select ?g where {graph ?g {?s ?p ?o}} limit 100"

-context <json_file>

Specifies the query context file on the Graph Lakehouse server file system to use with the

request. Context files are JSON-formatted files with key-value pairs that provide connection

details, such as user credentials, keys, and tokens, for authentication against data sources. For

more information, see Use a Query Context.

Use the Graph Lakehouse CLI 497

Use Third-Party Visualization Tools

A variety of graph visualization applications can be used to access data in Graph Lakehouse via the

SPARQL endpoint (see Access the SPARQL and RDF Endpoints for information). For

demonstrations, Altair utilizes two third-party applications:

l Apache Zeppelin: Altair offers an Apache Zeppelin Docker image for download. The
Zeppelin image includes a custom SPARQL interpreter for securely connecting to Graph

Lakehouse.

l Jupyter Notebook: Existing Jupyter Notebook or JupyterLab environments can run queries
against the Graph Lakehouse SPARQL endpoint.

This topic provides information about integrating Zeppelin with Graph Lakehouse. It also provides

instructions for accessing Graph Lakehouse from your existing Jupyter installation.

l Zeppelin Notebook Integration

l Jupyter Notebook Integration

Zeppelin Notebook Integration

This section provides instructions for deploying the Cambridge Semantics Apache Zeppelin image

with Docker, connecting to Graph Lakehouse, and optionally downloading and running the tutorial

notebook. The Zeppelin deployment includes an integrated SPARQL interpreter that enables users

to make a secure, authenticated connection to Graph Lakehouse using gRPC protocol.

1. Deploying Zeppelin

2. Connecting to Graph Lakehouse

3. Downloading the Tutorial Notebook

Use Third-Party Visualization Tools 498

https://hub.docker.com/r/cambridgesemantics/contrib-zeppelin/

Deploying Zeppelin

Tip
If you use Docker on Linux, you might want to follow the steps in Post-installation steps for

Linux to make sure that a non-root user can run Docker commands and you do not need to

include "sudo" in the commands below.

1. If necessary, start Docker for Linux or the Docker Desktop application for Mac or Windows. If

you are on Mac, open the Terminal app. If you are on Windows, open PowerShell.

Note
Docker caches images on the docker host. If you have deployed a Zeppelin container

previously, that image is cached on the host and will be used to redeploy Zeppelin. If

you want to deploy the latest release, first pull the latest image. To do so, run the

following command from the command line, and then proceed to the next step.

docker pull cambridgesemantics/contrib-zeppelin:latest

You can deploy alternate Zeppelin versions by replacing the "latest" tag with any of the

tags that are available on the Cambridge Semantics Zeppelin Docker Hub site.

2. If you are deploying the Zeppelin container for the first time, Altair recommends that you

create a directory on the local file system where Zeppelin notebooks can be saved. When

you deploy Zeppelin, you can map the notebook directory in the container to the notebook

directory on the local file system. This way the notebooks are shared, and if you remove the

Zeppelin container, the local file system retains a copy of any notebooks you created. If you

redeploy Zeppelin later, the new container can be mapped to the same local directory and

access the existing notebooks. To create the directory, navigate to a location on the host and

run the following command to create a notebook directory in the current directory:

mkdir $PWD/notebook

Use Third-Party Visualization Tools 499

https://docs.docker.com/install/linux/linux-postinstall/
https://docs.docker.com/install/linux/linux-postinstall/
https://hub.docker.com/r/cambridgesemantics/contrib-zeppelin/tags

Note
On Mac and Linux, Docker is configured by default to allow local directories to be

shared with containers. On Mac, the /Users, /Volumes, /private, and /tmp directories

are shared. If necessary, you can configure additional locations in Docker Preferences
> Resources > File Sharing. On Windows, Docker is not configured to share local

directories by default. Configure sharing by going to Docker Settings > Resources >
File Sharing and selecting the C checkbox to share the C drive. Then click Apply &
Restart to apply the change.

3. Run the following Docker command to deploy the Zeppelin container. The command instructs

Docker to start Zeppelin and configure HTTP access to the application by mapping the

container port to the HTTP port on the local host. In addition, the -v

$PWD/notebook:/notebook statement creates the bridge between the notebook directory

you created on the local file system and the container’s /notebook directory.

Note
The last line in the command varies. Choose one option depending on whether you

want only the application that is empty of notebooks or the image that contains several

Altair-supplied sample notebooks that demonstrate Graph Lakehouse's Data Science

functions.

docker run -p <http_host_port>:8080 --name=<container_name> \

-v $PWD/notebook:/notebook \

-e ZEPPELIN_NOTEBOOK_DIR='/notebook' \

-e ZEPPELIN_WEBSOCKET_MAX_TEXT_MESSAGE_SIZE=10240000 \

-d cambridgesemantics/contrib-zeppelin:<tag> \

To deploy Zeppelin without notebooks, end the command with the following

line:

/zeppelin/bin/zeppelin.sh

To deploy Zeppelin with sample notebooks, end the command with this line:

/bin/bash /docker-entrypoint.sh

The list below describes each of the parameters:

Use Third-Party Visualization Tools 500

l host_http_port is the port on the local host to use for HTTP access to the Zeppelin

user interface. In the container, the user interface binds to port 8080 for HTTP access.

Altair recommends that you specify 8080 to map the container's HTTP port to port 8080

on the local host. If port 8080 is in use, specify an alternate port for host_http_port.

l container_name is the short name to use to identify the Zeppelin container. For
example, zeppelin.

l tag is the tag from the Cambridge Semantics Zeppelin Docker Hub site that identifies

the version of Zeppelin to deploy. If you pulled an image in the first step, this tag should

match the tag from the pull command. Usually the latest tag is specified so the most
recent release is deployed.

l /zeppelin/bin/zeppelin.sh: Ending the command with this line excludes Altair's sample
notebooks from the image. The base Zeppelin application will be deployed, and it will

not include sample notebooks.

l /bin/bash /docker-entrypoint.sh: Ending the command with this line includes Altair's
sample notebooks in the image. The Zeppelin application will be deployed and pre-

loaded with many sample notebooks that demonstrate the data science functions of

Graph Lakehouse.

For example, the following command deploys Zeppelin with all of the sample notebooks:

docker run -p 8080:8080 --name=zeppelin \

-v $PWD/notebook:/notebook \

-e ZEPPELIN_NOTEBOOK_DIR='/notebook' \

-e ZEPPELIN_WEBSOCKET_MAX_TEXT_MESSAGE_SIZE=10240000 \

-d cambridgesemantics/contrib-zeppelin:latest \

/bin/bash /docker-entrypoint.sh

This command deploys an empty Zeppelin container without any sample notebooks:

docker run -p 8080:8080 --name=zeppelin \

-v $PWD/notebook:/notebook \

-e ZEPPELIN_NOTEBOOK_DIR='/notebook' \

-e ZEPPELIN_WEBSOCKET_MAX_TEXT_MESSAGE_SIZE=10240000 \

-d cambridgesemantics/contrib-zeppelin:latest \

/zeppelin/bin/zeppelin.sh

Use Third-Party Visualization Tools 501

https://hub.docker.com/r/cambridgesemantics/contrib-zeppelin/tags

Note
Windows PowerShell will not run the command above in its current format. Copy the

command and paste it into a text editor. In the editor, remove the line breaks and \

characters. Then paste the edited version into PowerShell and run it.

When the prompt returns the container ID, the container is running. For example:

6c67e9f111cb55fb9a44208ce1802256acf459acbce1e0250b70646492d32642

Zeppelin is now installed and ready to use. On Mac and Windows, you can open Zeppelin from the

Docker Dashboard, or you can open a browser and go to the following URL:

http://127.0.0.1:port

Where port is the HTTP port that you specified in the Docker run command, typically 8080.

On Linux, open a browser and go to the following URL:

https://host_IP_address:port

Where host_ip_address is the IP address of the host server, and port is the HTTP port that you

specified in the Docker run command, typically 8080.

Note
If you are using Docker locally on a Linux machine or you have the Graph Lakehouse and

Zeppelin containers in the same Docker instance and need to know the IP address of the

Zeppelin container, you can run the following command:

docker inspect container_name | grep '"IPAddress"' | head -n 1

For example:

docker inspect zeppelin | grep '"IPAddress"' | head -n 1

"IPAddress": "172.17.0.3"

If you are running Docker locally on a Windows computer, you can run the following

command:

Use Third-Party Visualization Tools 502

docker inspect zeppelin | select-string '"IPAddress"'

l If you included the sample notebooks, the Cambridge Semantics index page is displayed,

which lists the sample notebooks that are included in the image. For example:

Each notebook provides details and example usage for one of the Graph Lakehouse Data

Science functions. You can click a notebook name to open the file. It might take some time to

load all of the contents. To run the queries in a sample notebook or write and run your own

queries run against Graph Lakehouse, connect Zeppelin to Graph Lakehouse by following

the instructions in Connecting to Graph Lakehouse below. For more information about the

data science functions, see Data Science Library. For information about using Zeppelin, see

the Zeppelin Documentation.

l If you excluded notebooks, the Zeppelin Welcome page is displayed:

Use Third-Party Visualization Tools 503

http://zeppelin.apache.org/docs/0.9.0-SNAPSHOT/index.html

Connect Zeppelin to your Graph Lakehouse deployment by following the instructions in

Connecting to Graph Lakehouse below. If you want to get started with a sample notebook,

see Downloading the Tutorial Notebook.

Connecting to Graph Lakehouse

To connect Zeppelin to Graph Lakehouse, you first choose an interpreter for Zeppelin to use to

connect with Graph Lakehouse and then specify the connection parameter settings needed to

establish the interpreter connection with the Graph Lakehouse database.

Important
To connect to an Graph Lakehouse database, you must first have installed Graph Lakehouse,

and the database must be accessible by the Zeppelin Docker container. For more information,

see Altair recommends that you deploy Graph Lakehouse on a host server that has at least 16

GB of RAM available. To request a license, contact Altair Customer Support. For more

information on licensing, see Licensing Methods and Install or Upgrade a License..

1. On the top right of the Zeppelin screen, click the anonymous drop-down list and select
Interpreter. The Interpreters screen opens.

2. In the Search interpreters field at the top of the screen, type "sparql" and find the SPARQL
interpreter. For example:

Use Third-Party Visualization Tools 504

3. Click the edit button and modify the interpreter to enter your Graph Lakehouse deployment
details and make a secure connection to the database. The list below describes each

interpreter setting:

l anzo.graph.host: The IP address of the Graph Lakehouse host. If Graph Lakehouse is

running in the same Docker instance as Zeppelin, run the following command to return

the Graph Lakehouse container IP address:

docker inspect container_name | grep '"IPAddress"' | head -n 1

For example:

docker inspect anzograph | grep '"IPAddress"' | head -n 1

This command returns the IP address of the Graph Lakehouse Docker container as

shown below:

"IPAddress": "172.17.0.2",

Note
If you are running Docker locally on a Windows computer, you can run the

following command:

docker inspect anzograph | select-string '"IPAddress"'

l anzo.graph.password: The password for the user in the anzo.graph.user field. On
Docker deployments, specify Passw0rd1.

RHEL/Rocky Deployments: Use the Admin username and password that was created
during the installation.

l anzo.graph.port: The gRPC port for Graph Lakehouse. The default value is 5700. Do
not change this value.

l anzo.graph.trust.all: Instructs Zeppelin to trust the Graph Lakehouse SSL certificates.
Accept the default value of true.

Use Third-Party Visualization Tools 505

l anzo.graph.user: The username to use to log in to Graph Lakehouse. On Docker
deployments, specify admin.

4. When you finish adding the connection details, click Save at the bottom of the screen.

Zeppelin displays a dialog box that asks if you want to restart the interpreter with the new

settings. Click OK to configure the connection.

5. When the interpreter restart is complete, click the Zeppelin logo at the top of the screen to

return to the index screen.

Downloading the Tutorial Notebook

If you deployed the Zeppelin image that does not contain sample notebooks and you want to import

a notebook to get started with, follow the instructions in this section to download and import the

Graph Lakehouse Tutorial Notebook.

1. Click the link below to download the Tutorial Notebook to your computer.

Download the Graph Lakehouse Tutorial Zeppelin Notebook

2. Extract the downloaded notebook ZIP file on your computer. The ZIP file contains

AnzoGraph-Zeppelin-Tutorial.json.

3. On the Zeppelin Welcome or the Algorithm Index screen if you have the sample notebooks,

click Import note. Zeppelin displays the Import New Note screen.

4. On the import screen, click Select JSON File, and then select the AnzoGraph-Zeppelin-
Tutorial.json file to import. Zeppelin imports the note and lists the new file under the filter text

Use Third-Party Visualization Tools 506

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/AnzoGraph-Zeppelin-Tutorial.zip

box on the home page or in the Notebook menu. For example:

Click the link to open the notebook. It might take some time to load all of the contents. To run
a query in the file, click the run () button for the paragraph. For more information about using

Zeppelin, see the Zeppelin Documentation.

Jupyter Notebook Integration

This section provides information about accessing Graph Lakehouse with your existing Jupyter

Notebook or JupyterLab installation. If you do not have Jupyter Notebook or JupyterLab installed,

follow the instructions in Installing Jupyter on the Jupyter website to install Jupyter Notebook and its

prerequisites.

Accessing Graph Lakehouse from a Jupyter Notebook

1. Since Graph Lakehouse runs SPARQL queries, make sure that the Jupyter SPARQL kernel

is installed. To install the kernel, run the following commands:

pip install sparqlkernel

jupyter sparqlkernel install --user

2. Connect to the Graph Lakehouse SPARQL endpoint by adding the following text to a cell in

the notebook and then running the cell.

%endpoint http://hostname/sparql

%auth basic admin Passw0rd1

Where hostname is the IP address of the Graph Lakehouse instance. If Graph Lakehouse is

running in a Docker container on the same server as Jupyter, you can run the following

command to return the container IP address:

Use Third-Party Visualization Tools 507

http://zeppelin.apache.org/docs/0.9.0-SNAPSHOT/index.html
http://jupyter.org/install

docker container inspect container_name | grep IP

For example:

docker container inspect anzograph | grep IP

Once the notebook is connected to the Graph Lakehouse endpoint, you can run SPARQL queries

against Graph Lakehouse.

Use Third-Party Visualization Tools 508

Access the SPARQL and RDF Endpoints

Graph Lakehouse supports the standard W3C SPARQL 1.1 Protocol and SPARQL 1.1 Graph Store

HTTP Protocol for sending and receiving SPARQL requests between client applications and Graph

Lakehouse. Since Graph Lakehouse adheres to RDF and SPARQL standards, developers do not

need to learn a proprietary protocol or query language to incorporate Graph Lakehouse into their

existing graph-based infrastructure. There are thousands of available SPARQL client libraries for

querying SPARQL and graph store endpoints. In addition, tutorials, such as Bob DuCharme's

weblog, provide helpful information about SPARQL HTTP protocol.

Note
Graph Lakehouse also provides Bolt protocol support for execution of Cypher-based queries,

either from Graph Lakehouse's Cypher-based CLI (AZGBOLT) or from other Cypher-based

applications that use the Bolt protocol. For more information, see Using the Cypher CLI

(AZGBOLT) and Using Bolt Protocol.

This topic provides information about the Graph Lakehouse SPARQL and RDF Graph Store

endpoints and describes the supported HTTP methods and parameters.

l Endpoint Types and HTTP Methods

l Endpoint Base URLs

l Authentication and Request Parameters

l Example HTTP Requests

Endpoint Types and HTTP Methods

The table below describes the SPARQL and RDF Graph Store HTTP endpoints. Both of the

endpoints can be used to send requests through the Graph Lakehouse front end or directly to the

database (back end).

Access the SPARQL and RDF Endpoints 509

https://www.google.com/search?q=sparql+client+library&oq=sparql+client+library&aqs=chrome.0.69i59j69i60.2564j0j7&sourceid=chrome&ie=UTF-8
http://www.snee.com/bobdc.blog/2012/03/playing-with-sparql-graph-stor.html
http://www.snee.com/bobdc.blog/2012/03/playing-with-sparql-graph-stor.html

Important
The front end requires that you use Basic Authentication to connect. The back end does not

support authentication. When deciding whether to access an endpoint via the front end or

back end, consider whether the client application supports authentication. See Authentication

and Request Parameters below for more information.

Endpoint Description

SPARQL The SPARQL endpoint accepts HTTP GET and POST methods. Use GET to
read data from the endpoint (SELECT, ASK, CONSTRUCT, DESCRIBE
queries), and use POST to update data via the endpoint (INSERT, INSERT
DATA, CREATE, DELETE, DELETE DATA, DROP queries). Update queries
must use the POST method, but read-only queries can be submitted using GET
or POST.

RDF
Graph Store

The RDF graph store endpoint supports create, read, update, and delete
(CRUD) operations and enables programmers to work with RDF graphs in a
way that is similar to REST-style interfaces. The graph store endpoint supports
GET, POST, UPDATE, and DELETE HTTP methods.

Tip
Typically, users configure client applications to connect to the SPARQL endpoint as it

supports GET operations and update operations via POST. However, to use DELETE and

UPDATE methods specifically, connect to the RDF graph store endpoint.

Endpoint Base URLs

This base URL that you use to connect to an Graph Lakehouse endpoint depends on whether you

want to connect to the SPARQL endpoint or the RDF Graph Store endpoint. This section provides

details about the base URLs for each endpoint:

Access the SPARQL and RDF Endpoints 510

l SPARQL Endpoint Base URL

l RDF Graph Store Endpoint Base URL

SPARQL Endpoint Base URL

To connect to the Graph Lakehouse SPARQL endpoint, use the following base URL:

protocol://hostname:port/sparql

The table below describes each of the base URL components:

Component Description

protocol The protocol to use for the connection: http for HTTP protocol or https for SSL
protocol.

Tip
SPARQL HTTP or HTTPS protocol can be enabled and disabled via the

enable_sparql_protocol and enable_ssl_protocol settings.

hostname The DNS name or IP address of the Graph Lakehouse host server. For clusters,
this is the name or IP address of the leader server.

port The port number for the endpoint. The port that you specify depends on the
protocol and whether the request is sent to the Graph Lakehouse front end or
back end.

Note
The front end requires that you use Basic Authentication to connect.

The back end does not support authentication. Consider whether the

client application supports authentication when specifying the port.

l Front end: If the front end ports were mapped to the default HTTP (80)

and HTTPS (443) ports on the local host when the front end was

Access the SPARQL and RDF Endpoints 511

Component Description

deployed, do not specify a port. If the front end ports were mapped to

non-default HTTP and HTTPS ports, specify the appropriate port based

on the protocol.

l Back end: The port is either the HTTP sparql_protocol_port or the

HTTPS ssl_protocol_port. By default, the HTTP SPARQL protocol port is

7070, and the HTTPS SSL protocol port is 8256.

sparql The path for the SPARQL endpoint.

For example, the following base URLs connect to the front end HTTP and HTTPS SPARQL

endpoints. Because the ports for this deployment are mapped to the default HTTP and HTTPS ports

on the local host, the port does not need to be specified in the URL:

http://10.100.10.20/sparql

https://10.100.10.20/sparql

The example URLs below connect to the back end HTTP and HTTPS SPARQL endpoints. In the

examples, Graph Lakehouse is using the default SPARQL protocol and SSL protocol ports:

http://10.100.10.20:7070/sparql

https://10.100.10.20:8256/sparql

RDF Graph Store Endpoint Base URL

To connect to the Graph Lakehouse RDF graph store endpoint, use the following base URL:

protocol://hostname:port/endpoint_path

The table below describes each of the base URL components:

Component Description

protocol The protocol to use for the connection: http for HTTP protocol or https for SSL

Access the SPARQL and RDF Endpoints 512

Component Description

protocol.

Tip
SPARQL HTTP or HTTPS protocol can be enabled and disabled via the

enable_sparql_protocol and enable_ssl_protocol settings.

hostname The DNS name or IP address of the Graph Lakehouse host server. For clusters,
this is the name or IP address of the leader server.

port The port number for the endpoint. The port that you specify depends on the
protocol and whether the request is sent to the Graph Lakehouse front end or
back end.

Note
The front end requires that you use Basic Authentication to connect.

The back end does not support authentication. Consider whether the

client application supports authentication when specifying the port.

l Front end: If the front end ports were mapped to the default HTTP (80)

and HTTPS (443) ports on the local host when the front end was

deployed, do not specify a port. If the front end ports were mapped to

non-default HTTP and HTTPS ports, specify the appropriate port

based on the protocol.

l Back end: The port is either the HTTP sparql_protocol_port or the

HTTPS ssl_protocol_port. By default, the HTTP SPARQL protocol port

is 7070, and the HTTPS SSL protocol port is 8256.

endpoint_path The path for the RDF graph store endpoint. The path that you specify depends
on whether the request is being sent to the front end or back end:

l Front end: The front end path is data.

Access the SPARQL and RDF Endpoints 513

Component Description

l Back end: The back end path is rdf-graph-store.

For example, the following base URLs connect to the front end HTTP and HTTPS RDF graph store

endpoints. Because the ports for this deployment are mapped to the default HTTP and HTTPS ports

on the local host, the port does not need to be specified in the URL:

http://10.100.10.20/data

https://10.100.10.20/data

The example URLs below connect to the back end HTTP and HTTPS RDF graph store endpoints. In

the examples, Graph Lakehouse is using the default SPARQL protocol and SSL protocol ports:

http://10.100.10.20:7070/rdf-graph-store

https://10.100.10.20:8256/rdf-graph-store

Authentication and Request Parameters

The Graph Lakehouse front end SPARQL and RDF Graph Store endpoints require that you use

Basic Authentication. The default credentials for the front end are Username:admin and
Password:Passw0rd1. The back end does not require user authentication.

For information about the supported HTTP header and request parameters for the SPARQL

endpoint, see the SPARQL 1.1 Protocol specification. For information about HTTP parameters for

the RDF graph store endpoint, see the SPARQL 1.1 Graph Store HTTP Protocol specification.

Note
CONSTRUCT query results are always returned in RDF format. Accept, Content-Type, and

format parameters are ignored.

Example HTTP Requests

This section includes sample HTTP requests using different languages:

Access the SPARQL and RDF Endpoints 514

https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/

l cURL Example

l Python Example

cURL Example

The following example, using the curl command, shows how you can specify a SPARQL query

using Graph Lakehouse endpoint URLs. To query Graph Lakehouse using cURL, the queries must

be URL encoded. The command statement below shows the general syntax you could use to make

cURL HTTP requests:

curl base_endpoint_url [--insecure] -u username:password [-H "header_argument"]

--data-urlencode "query=query_text" | query@file.rq

For example, the following cURL request is sent to the front end SPARQL endpoint and returns 10

triples from the sample Tickit graph. The statement returns results in CSV format:

curl https://10.10.10.100/sparql --insecure -u admin:Passw0rd1 -H "Accept: text/csv"

--data-urlencode "query=select ?s ?p ?o from <tickit> where {?s ?p ?o} order by ?p

limit 10"

s,p,o

person39003,birthday,1986-09-12

person33946,birthday,1988-12-24

person10199,birthday,1953-04-13

person41860,birthday,1976-06-25

person13789,birthday,1981-06-23

person30637,birthday,1978-11-26

person38857,birthday,1960-01-07

person24661,birthday,1992-11-21

person17029,birthday,1993-03-08

person43904,birthday,1962-01-06

The following cURL request sent to the back end SPARQL endpoint (without the insecure or
username options) would return the same result.

curl http://10.10.10.100:7070/sparql -H "Accept: application/sparql-results+csv"

--data-urlencode "query=select ?s ?p ?o from <tickit> where {?s ?p ?o} order by ?p

limit 10"

Access the SPARQL and RDF Endpoints 515

https://www.w3schools.com/tags/ref_urlencode.asp

This example uses cURL to run a query contained in a file. Since the statement does not include a

header argument, Graph Lakehouse returns results in XML format:

curl https://10.10.10.100/sparql --insecure -u admin:Passw0rd1 --data-urlencode

query@/home/user/queries/sales_totals.rq

Python Example

You can also use the Graph Lakehouse SPARQL endpoint URL to execute SPARQL commands

from programs such as Python or Javascript. Graph Lakehouse provides a Python library file,

azg3.py, located in the <install_path>/lib/py_modules directory, to help you get started
using Python to run SPARQL queries. You can click the following link to see the contents of the

Python library file:

azg3.py

The azg3.py module includes two functions for executing SPARQL queries:

azg3.run_query(sparql_endpoint, SPARQL_query_string [, format])

Runs the specified SPARQL query "query_string" at the SPARQL endpoint host location

"sparql_endpoint". By default, this function returns the results as a Python dictionary map in the

SPARQL1.1 results format (see https://www.w3.org/TR/sparql11-results-json). To output results

using an alternate "raw string" format, you may also specify a different format, with possible format

options xml, json, or csv.

azg3.create_dataframe(sparql_endpoint, SPARQL_query_string)

Runs the specified SPARQL query "query_string" on the SPARQL endpoint host "sparql_

endpoint". This function returns results as a Pandas data frame object, for example:

df = azg3.create_dataframe("10.102.0.56:7070" , "SELECT... ")

To execute SPARQL queries from Python applications, you need to first have installed Python 3,
and the NumPy and Pandas libraries on your client machine with network access to a deployed
Graph Lakehouse environment. The easiest way to install these packages is to install the Anaconda

distribution, which automatically installs Python 3 along with a number of scientific and data analysis

Access the SPARQL and RDF Endpoints 516

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/azg3.py
https://www.w3.org/TR/sparql11-results-json

packages (including NumPy and Pandas) that may be helpful in performing analytic queries and

calculations. (See https://www.anaconda.com/distribution for information about installing the

Anaconda distribution.)

After creating the Python environment on a client machine:

1. Copy the <install_path>/lib/py_modules directory to your client machine:

$HOME/py_modules

2. Update your PYTHONPATH environment variable to include the Python module location:

export PYTHONPATH=$HOME/py_modules

Note
If you already have PYTHONPATH defined on your computer, copy the Python az3.py

library file there instead.

For Python programs from which you want to run SPARQL queries, you will need to import the

azg3.py library file. You can then use either of the two functions, azg3.run_query or azg3.create_
dataframe to specify the SPARQL query to run as well as the location of the Graph Lakehouse
server to target, for example, "10.102.0.56:7070".

Tip
Along with the azg3.py file, the Graph Lakehouse distribution also includes a demo program,

azg3run.py in the <install_path>/lib/py_modules directory, which allows you to
execute SPARQL queries against an existing Graph Lakehouse database.

Access the SPARQL and RDF Endpoints 517

https://www.anaconda.com/distribution/

Access Data with OData Protocol

The Graph Lakehouse front end application includes a Data on Demand service that enables users

to generate Open Data Protocol (OData)-based feeds that can be used to access data

programmatically via a RESTful API or from third-party business intelligence tools such as TIBCO

Spotfire, Tableau, and Microsoft Power BI.

OData facilitates the creation and consumption of queryable and interoperable RESTful APIs in a

simple and standard manner. The protocol enables web clients to use simple HTTP messages to

publish and edit resources that are identified using URLs and are defined in a data model. OData

shares some similarities with JDBC and ODBC. Like ODBC, OData is not limited to relational

databases. The Graph Lakehouse Data on Demand service follows the OData Version 4.0

specification, which defines the standard URL conventions, query options, and a metadata schema

that describes the data model. The topics in this section provide information about creating and

accessing Data on Demand endpoints.

In this section:
Create a Data on Demand Endpoint 519

Access a Data on Demand Endpoint 522

OData Reference 529

Access Data with OData Protocol 518

Create a Data on Demand Endpoint

This topic provides instructions for creating a Data on Demand endpoint for a graph or view. When

you create an endpoint, the Data on Demand service generates a service root URL that you can use

to connect to the endpoint programmatically or from applications.

Note
The Data on Demand service is included in the Graph Lakehouse front end, and endpoints

must be created from the Query & Admin Console. For instructions on deploying the front end

if it is not installed, see Deploy the Frontend Container.

1. In the Query & Admin Console, click the Admin tab. Then click the OData (Preview) menu
item. The OData REST Endpoint Configuration screen is displayed. For example:

2. Click the Create New button at the top of the screen. The Create New Data On Demand

Configuration dialog box is displayed. For example:

Create a Data on Demand Endpoint 519

3. Configure the Data on Demand endpoint by specifying the following options:

l Endpoint Name: Required field that specifies the name of this endpoint. This value is
added to the service root URL that is generated for the endpoint.

l Endpoint Description: Optional field that lists a short description of the endpoint.

l Select Graphs or Views to Expose: Required field that specifies the graph or view to

expose in the endpoint. You can press Ctrl and click to select multiple graphs or views.

Note
Labeled Property Graphs are not available for selection. OData is based on OWL

and OWL does not support RDF*.

l Select Graph or View Containing Ontology: Optional field that specifies the graph or
view that contains the ontology that you want to expose in the endpoint.

Note
If an ontology does not exist, leave the field blank. The Data on Demand service

automatically generates one when you save the configuration.

4. When you have finished configuring the endpoint, click Save to create the endpoint. The
service generates an ontology, if needed, and then displays the endpoint details. For

example:

The Data on Demand endpoint is ready for access via OData protocol.

5. To get the connection string for the entire graph or view that was exposed, use the OData
V4/SQL-ODBC service URL that is listed under Connection Strings. For example:

Create a Data on Demand Endpoint 520

6. If your application requires you to view one table at a time or you are only interested in

viewing a specific class, click Class Specific Connection Strings to expand the field and
view the connection strings for each class in the ontology. For example:

For convenience, the class-specific connection strings include the format parameter for

specifying the output format. You can click the For URL Format drop-down list to set the
output format to CSV, JSON, or XML.

For information about accessing OData endpoints, see Access a Data on Demand Endpoint.

Create a Data on Demand Endpoint 521

Access a Data on Demand Endpoint

Since Graph Lakehouse's Data on Demand service conforms to the OData standard, any tool that

supports the OData V4 REST API can access a Data on Demand endpoint to leverage data in

Graph Lakehouse. This topic provides information about getting an OData connection string,

endpoint authentication, and it includes examples of accessing endpoints from applications and

programs. For instructions on creating endpoints, see Create a Data on Demand Endpoint.

l Retrieving an OData Connection String

l Using Authentication

l Accessing an Endpoint from an Application

l Accessing an Endpoint Programmatically

Retrieving an OData Connection String

Follow the instructions below to retrieve the connection string to use for a Data on Demand

endpoint.

1. In the Graph Lakehouse user interface, click the Admin tab. Then click the OData (Preview)
menu item. The OData REST Endpoint Configuration screen is displayed, which lists the

existing endpoints. For example:

Access a Data on Demand Endpoint 522

2. If necessary, click the name of the endpoint for which you want to retrieve the connection

string.

3. To get the connection string for the entire graph or view that was exposed, use the OData
V4/SQL-ODBC service URL that is listed under Connection Strings. For example:

4. If your application requires you to view one table at a time or you are only interested in

viewing a specific class, click Class Specific Connection Strings to expand the field and
view the connection strings for each class in the ontology. For example:

For convenience, the class-specific connection strings include the format parameter for

specifying the output format. You can click the For URL Format drop-down list to set the
output format to CSV, JSON, or XML.

Using Authentication

Connections to Data on Demand endpoints must be authenticated using Basic Authentication. For

Docker deployments, the default credentials are:

l Username: admin

l Password: Passw0rd1

Access a Data on Demand Endpoint 523

Accessing an Endpoint from an Application

This section provides guidance on accessing a Data on Demand endpoint from an application that

supports the OData REST API. It includes an example that configures an OData connection in

TIBCO Spotfire. The example steps can also be applied to OData connections in other similar

business intelligence tools.

The first step is to connect to the OData endpoint using the Spotfire Data sources user interface.

When setting up the OData connection, the Service URL is the OData/ODBC URL from the Data on

Demand endpoint configuration details in the user interface. The OData connection uses the Graph

Lakehouse user interface credentials for authentication.

Once the connection is established, Sportfire prompts the user to select the classes and properties

to work with. In this example, the FeatureID property from the Probe class and the symbol property
from the Gene class are selected:

Access a Data on Demand Endpoint 524

Once the properties are chosen, the data is loaded in Spotfire and can be used to inform existing

analytics and data visualizations or create new ones.

Accessing an Endpoint Programmatically

This topic provides guidance on accessing Data on Demand endpoints programmatically by

showing some example implementations using R and Python.

l Accessing an Endpoint with R (Through RStudio)

l Accessing an Endpoint with Python (Through a Linux Terminal)

Accessing an Endpoint with R (Through RStudio)

The following example shows how to connect to an OData endpoint from RStudio. The example

uses the R programming language to access a Data on Demand endpoint and pull in data via a

standard dataframe. New or existing R scripts can then be used with the data.

The first step in accessing data from RStudio is to prepare the R script that will construct the target

URL and retrieve the resulting information via HTTP. The example script below accesses a pre-

configured "SampleData" endpoint. The script has sections for filtering the results as well as

expanding the selection to include information from multiple classes:

Access a Data on Demand Endpoint 525

require("httr")

require("jsonlite")

require("rstudioapi")

user <- rstudioapi::showPrompt("Username", "Enter AnzoGraph username", "admin")

pw <- rstudioapi::askForPassword(paste("Enter password for",user,sep=" "))

Data on Demand endpoint

odata <- "http://10.100.0.10/odatarest/SampleData"

Start from Probe class

startClass <- "Probe?"

Filter results for Homo sapiens species

filterKw <- "$filter="

filterVal <- "Species eq 'Hs'"

urlify <- URLencode(filterVal)

filterStr <- paste(filterKw,urlify,sep="")

Select properties of interest (FeatureID) from base class

selectKw <- "&$select="

selectVal <- "FeatureID"

selectStr <- paste(selectKw,selectVal,sep="")

Select properties of interest (symbol) from Gene class

via corresponds_to property on base Probe class

expandKw <- "&$expand="

expandClass <- "corresponds_to"

expandProps <- "symbol"

expSelStr <- "$select="

expandStr <- paste(expandKw,expandClass,"(",expSelStr,expandProps,")",sep="")

Specify format

format <- "&$format=json"

Generate OData URL using fragments above

url <- paste(odata,startClass,filterStr,selectStr,expandStr,format,sep="")

Access OData endpoint

resultRaw <- GET(url, (authenticate(user,pw, type = "basic")))

resultTxt <- content(resultRaw, "text")

resultJson <- fromJSON(resultTxt, flatten = TRUE)

Access a Data on Demand Endpoint 526

print(url)

Read results into dataframe

resultDataFrame <- as.data.frame(resultJson)

View(resultDataFrame)

Executing the above R script from RStudio results in a dataframe that represents columns from the

Probe and Gene classes.

Accessing an Endpoint with Python (Through a Linux Terminal)

Many users have existing Python scripts to use with data in Graph Lakehouse or a familiarity with

Python that would make exploring, retrieving, and leveraging the data easier. The following example

shows how to connect to an OData endpoint by executing a Python script from a Linux terminal.

The first step in accessing data using Python is to prepare the Python script that will construct the

target URL and retrieve the resulting information via HTTP. The example script below accesses a

pre-configured "SampleData" endpoint. The script has sections for filtering the results as well as

expanding the selection to include information from multiple classes (the same filter and class

properties that were used in the R example above).

import requests

import getpass

from urllib.parse import urlparse

un = getpass.getpass(prompt='Username: ')

pw = getpass.getpass(prompt='Password: ')

OData endpoint

odata = 'https://10.100.0.10/odatarest/SampleData/'

data on demand url

Start from Lease class

startClass = "Probe?"

Filter results

filterKw = "$filter="

filterVal = "Species eq 'Hs'"

urlify = urlparse(filterVal)

filterStr = filterKw + urlify.geturl()

Access a Data on Demand Endpoint 527

Select properties of interest (start date, missed payments, lease status) from base

class

selectKw = "&$select="

selectVal = "FeatureID"

selectStr = selectKw + selectVal

Select properties of interest (name, social security number, credit score) from

Individual class

expandKw = "&$expand="

expandClass = "corresponds_to"

expandProps = "symbol"

expSelStr = "$select="

expandStr = expandKw + expandClass + "(" + expSelStr + expandProps + ")"

Specify format

format = "&$format=text/csv"

Generate OData URL using fragments above

url = odata + startClass + filterStr + selectStr + expandStr + format

Access OData endpoint

r = requests.get(url, auth=(un, pw), verify=False)

print("URL")

print(url)

print("CONTENT")

print(r.content.decode('unicode_escape'))

print(type(r))

print(type(r.content))

In this example, the output is returned in CSV format (rather than JSON, as in the R example).

Access a Data on Demand Endpoint 528

OData Reference

The Data on Demand service follows the OData Version 4.0 specification, which defines the

standard URL conventions and query options. This topic provides a quick reference for learning

OData basics and viewing the supported string operators and output formats. It also provides some

example queries.

l OData URL Conventions

l Supported Query Operators

l Example OData Requests

OData URL Conventions

An OData service URL has three main parts:

1. The Service Root URL that AnzoGraph provides. The service root URL is the metadata that
describes all of the available feeds (tables). For information about viewing the service root

URL for an endpoint, see Retrieving an OData Connection String.

2. The optional Resource Path that narrows the scope of the available data to the table (class)
level, property level, or the schema.

3. The Query Options for analyzing the data.

For example, the following OData URL shows the service root from the Data on Demand service, a

resource path that narrows the scope of the data to the Employees table (class), and query options

that filter the result set to show data for the NA region only:

http://10.100.0.10/odatarest/Northwind/Employees?$filter=contains(Region, 'NA')

____________________________________/ ________/ __________________________/

Service Root URL Resource Path Query Options

Note
OData requests need to be URL-encoded. Typically you can configure programs to encode

requests automatically. And browsers encode URLs that are pasted into the address bar.

OData Reference 529

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html

Supported Query Operators

OData query options are used to dynamically query data via the endpoint and control the amount

and order of the data returned. The Data on Demand service supports the following OData query

operators. See Example OData Requests below for example queries that employ the operators.

Operator Description

$count Used to count the number of matching resources in the result set.

$expand Used to retrieve related data and include it in the results. When you query data via
OData, the default response does not include related entities. The $expand option
provides flexibility for exploring data across the data model. It allows the related
information to be embedded in the response.

$filter Used to filter a result set. The expression specified with $filter is evaluated for each
resource identified by the resource path, and only items where the expression
evaluates to true are included in the response.

$format Used to specify the output format for the results. The supported formats are
text/CSV, JSON, and XML. For example: $format=json

$metadata Used to return the schema, entity set, and property metadata.

$orderby Used to return results in ascending (asc) or descending (desc) order. If asc or desc
is not specified, solutions are returned in ascending order.

$select Used to specify the subset of properties to include in the result set.

$skip Used to specify the number of solutions to exclude in the results. The $top and
$skip OData query options are similar to the LIMIT and OFFSET clauses in
SPARQL queries.

$top Used to limit the number of solutions that are returned.

OData Reference 530

Example OData Requests

This section demonstrates the use of OData query operators by providing examples of common

types of OData requests.

The examples below are run against a sample graph, called LeagueGM, that contains data about
the teams and players in a small local baseball league. The Data on Demand endpoint is named

LeagueData. The following service root URL was created by the Data on Demand service:

http://10.100.0.10/odatarest/LeagueGM

Note
For readability, the examples below abbreviate "http://10.100.0.10/odatarest" to

dataondemand. In addition, the examples are not URL-encoded.

The data has Leagues, Teams, Players, and Positions classes (or entities in OData). The image

below shows a graph view of the data model:

To view details about the properties and values for each class, you can click a link below to view the

data for that class. The data is in JSON format.

Leagues Teams Players Positions

l Counting an Entity

l Counting a Property of an Entity

OData Reference 531

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/Leagues.json
https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/Teams.json
https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/Players.json
https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/Positions.json

l Filtering Data via Text Search

l Selecting Properties and Ordering Results

l Expanding the Results to Include Related Entities

Counting an Entity

The request below returns the number of teams in the graph. Adding the resource path Teams to
the request narrows the scope to the Teams entity (or class).

dataondemand/LeagueGM/Teams/$count

Result

4

This request returns the number of players:

dataondemand/LeagueGM/Players/$count

Result

12

Counting a Property of an Entity

The request below counts the number of players on the Al Thomas team. The request uses the

team_key to identify the team and the TeamToPlayer to identify each player.

dataondemand/LeagueGM/Teams('aHR0cDovL2NzaS5jb20vVGVhbXMvMQ')/TeamToPlayer/$count

Result

3

This request counts the number of positions played by James Smith:

dataondemand/LeagueGM/Players

('aHR0cDovL2NzaS5jb20vUGxheWVycy8y')/PlayerToPosition/$count

Result

2

OData Reference 532

Filtering Data via Text Search

The request below filters the results to show data for the TeamName that equals "Black Sox." The

request also returns results in JSON format:

dataondemand/LeagueGM/Teams?$filter=TeamName eq 'Black Sox'&$format=json

Result

{

"@odata.context": "https://10.100.0.10/odatarest/LeagueGM/$metadata#Teams",

"value": [

{

"teams_key": "aHR0cDovL2NzaS5jb20vVGVhbXMvMg",

"TeamId": 2,

"teamtoleague_key": [

"aHR0cDovL2NzaS5jb20vTGVhZ3Vlcy8x"

],

"TeamName": "Black Sox",

"teamtoplayer_key": [

"aHR0cDovL2NzaS5jb20vUGxheWVycy80",

"aHR0cDovL2NzaS5jb20vUGxheWVycy81",

"aHR0cDovL2NzaS5jb20vUGxheWVycy82"

]

}

]

}

This request filters the data to find the players whose name contains "Ted."

dataondemand/LeagueGM/Players?$filter=contains(PlayerName,'Ted')

The request can also use "startswith" in place of contains to filter specifically for player names that

start with "Ted."

dataondemand/LeagueGM/Players?$filter=startswith(PlayerName,'Ted')

Result

{

"@odata.context": "https://10.100.0.10/odatarest/LeagueGM/$metadata#Players",

"value": [

{

OData Reference 533

"players_key": "aHR0cDovL2NzaS5jb20vUGxheWVycy8xMA",

"playertoposition_key": [

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzM",

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzI"

],

"PlayerId": 10,

"playertoteam_key": [

"aHR0cDovL2NzaS5jb20vVGVhbXMvNA"

],

"PlayerName": "Ted James",

"DefensiveRating": 92.55

},

{

"players_key": "aHR0cDovL2NzaS5jb20vUGxheWVycy84",

"playertoposition_key": [

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzI",

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzEw"

],

"PlayerId": 8,

"playertoteam_key": [

"aHR0cDovL2NzaS5jb20vVGVhbXMvMw"

],

"PlayerName": "Ted Sale",

"DefensiveRating": 77.33

}

]

}

Selecting Properties and Ordering Results

The request below selects player names and their defensive ratings. The results are ordered by

defensive rating in descending order so that the player with the highest defensive rating is listed

first. The request also formats the results in text/csv.

dataondemand/LeagueGM/Players?$select=PlayerName,DefensiveRating&$orderby=DefensiveRati

ng desc&$format=text/csv

Result

PlayerName,DefensiveRating

James Smith,98.33

Alex Granderson,98.22

Matt Butler,95.66

OData Reference 534

Tim Hooper,93.43

Steve Jones,93.28

Ted James,92.55

Fred Wynn,88.68

Jared Bonds,86.34

Billy Roper,83.44

Mike Magazine,78.33

Ted Sale,77.33

Chris Underwood,66.22

Expanding the Results to Include Related Entities

The request below uses the $expand operator to retrieve data from the Players entity and include

the related Positions data for each player. For this example, the request limits the number of results

returned to 2 players by adding $top=2:

dataondemand/LeagueGM/Players?$expand=PlayerToPosition&$top=2

Result

{

"@odata.context": "https://10.100.0.10/odataorest/LeagueGM/$metadata#Players",

"value": [

{

"players_key": "aHR0cDovL2NzaS5jb20vUGxheWVycy8x",

"playertoposition_key": [

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzg"

],

"PlayerId": 1,

"playertoteam_key": [

"aHR0cDovL2NzaS5jb20vVGVhbXMvMQ"

],

"PlayerName": "Steve Jones",

"DefensiveRating": 93.28,

"PlayerToPosition": [

{

"positions_key": "aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzg",

"PositionId": 8,

"ShortName": "CF",

"positiontoplayer_key": [

"aHR0cDovL2NzaS5jb20vUGxheWVycy8xMg",

"aHR0cDovL2NzaS5jb20vUGxheWVycy8x"

],

OData Reference 535

"Description": "Centerfield"

}

]

},

{

"players_key": "aHR0cDovL2NzaS5jb20vUGxheWVycy8xMA",

"playertoposition_key": [

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzI",

"aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzM"

],

"PlayerId": 10,

"playertoteam_key": [

"aHR0cDovL2NzaS5jb20vVGVhbXMvNA"

],

"PlayerName": "Ted James",

"DefensiveRating": 92.55,

"PlayerToPosition": [

{

"positions_key": "aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzI",

"PositionId": 2,

"ShortName": "C",

"positiontoplayer_key": [

"aHR0cDovL2NzaS5jb20vUGxheWVycy84",

"aHR0cDovL2NzaS5jb20vUGxheWVycy8xMA"

],

"Description": "Catcher"

},

{

"positions_key": "aHR0cDovL2NzaS5jb20vUG9zaXRpb25zLzM",

"PositionId": 3,

"ShortName": "1B",

"positiontoplayer_key": [

"aHR0cDovL2NzaS5jb20vUGxheWVycy83",

"aHR0cDovL2NzaS5jb20vUGxheWVycy8xMA"

],

"Description": "First Base"

}

]

}

]

}

OData Reference 536

Create and Save Views

Graph Lakehouse includes support for creating views. Views enable users to simplify logic by hiding

the underlying complexity of the data or SPARQL operations, combine data from one or more

graphs or other views, or mask sensitive information from some users. You can create virtual views,

where Graph Lakehouse stores only the view definition, or materialized views, where Graph

Lakehouse stores a copy of the data that the view creates as well as the view definition. This topic

provides information about creating and using views.

Tip
Graph Lakehouse also enables you to create named query definitions. See Save Queries for

Reuse for more information.

There are two ways to create a named view, depending on whether you want to create a view

definition that is saved in the triplestore and can be referenced in various queries or whether you

want to write a view inline to be referenced once in the query that immediately follows the inline view

definition. This topic provides instructions for creating each type of named view:

l Create and Save a View for Reuse: Follow these instructions to create and save a named

view for future use.

l Create a View Inline for One-Time Use: Follow these instructions to create a named view

inline for single use.

Create and Save Views 537

Create and Save a View for Reuse

Use the following syntax to create a view and save the view definition for future use:

CREATE [OR REPLACE] [MATERIALIZED] VIEW <view_uri> AS

CONSTRUCT {

query

}

Include the OR REPLACE keywords when you want to replace a previously defined view with the

same name. Include the MATERIALIZED keyword if you want Graph Lakehouse to store a copy of

the data that the view constructs. If you exclude MATERIALIZED, Graph Lakehouse stores only the

view definition.

To reference a view in subsequent queries, use view_uri as a graph URI in FROM clauses or

GRAPH patterns. For example:

SELECT *

FROM <view_uri>

WHERE { ?s ?p ?o . }

Or

SELECT *

FROM <tickit>

FROM NAMED <view_uri>

WHERE {

?person <birthday> ?bday .

GRAPH <view_uri> { ?person <age> ?age. }

}

Create and Save a View for Reuse 538

Create a View Inline for One-Time Use

If you want to create a named view on-the-fly to reference in a query that you are writing, you can

include a WITH clause to define a named view at the beginning of that query.

Note
Graph Lakehouse does not save the view definition for named views that are defined in a

WITH clause. The named view can only be referenced in the query that immediately follows

the WITH clause; it is not available to use in subsequent queries. To create a named view

whose definition is persisted and can be referenced in future queries, use the CREATE

OR REPLACE syntax.

WITH Syntax

WITH (VIEW <view_uri> AS construct_query)

[(...)]

Where construct_query is the query that constructs the view that you want to name and

reference as a graph URI in the main query. You can define multiple named views in one WITH

clause. For example, the WITH clause below defines a view named friends. The friends view is

listed as a graph in the FROM clause in the main query:

WITH

(VIEW <friends> AS

CONSTRUCT { ?s <friend> ?friend }

WHERE { GRAPH <tickit> {

?s <friend> ?friend .

filter (?s = <person1> || ?s = <person2>)

}

}

)

SELECT *

FROM <friends>

WHERE { ?s ?p ?o }

ORDER BY ?s

s | p | o

--------+--------+-------------

Create a View Inline for One-Time Use 539

person1 | friend | person20018

person1 | friend | person11678

person1 | friend | person12081

person1 | friend | person12316

person1 | friend | person11549

person1 | friend | person13826

person1 | friend | person26733

person1 | friend | person3005

person1 | friend | person27710

person1 | friend | person29554

person1 | friend | person14472

...

73 rows

WITH Syntax 540

Examples

The example queries in this section run against the Graph Lakehouse sample Tickit data set, which

captures sales activity for a fictional Tickit website where people buy and sell tickets for sporting

events, shows, and concerts. You can load and explore this data set. For more information, see

Working with SPARQL and the Tickit Data.

In the sample Tickit data set, the sales1 data includes values for the following properties or

predicates:

SELECT ?p

FROM <tickit>

WHERE {

<sales1> ?p ?o .

}

p

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

dateid

sellerid

eventid

commission

saletime

listid

pricepaid

qtysold

buyerid

10 rows

A sales manager might want to create a view so that the sales team can review ticket sales data

without viewing the commission paid to their team members. This query creates a view that

suppresses the commission values for sales1:

CREATE VIEW <no-commission> AS

CONSTRUCT {?s ?p ?o}

WHERE { GRAPH <tickit> {

?s ?p ?o .

FILTER(?p != <commission>)

FILTER(?s = <sales1>)

Examples 541

}

}

Querying the sales1 data using the new view shows the following results:

SELECT ?p ?o

FROM <no-commission>

WHERE { ?s ?p ?o . }

p | o

--+----------------------

buyerid | person21191

listid | listing1

pricepaid | 728.000000

sellerid | person36861

eventid | event7872

qtysold | 4

http://www.w3.org/1999/02/22-rdf-syntax-ns#type | sales

saletime | 2008-02-18T02:36:48Z

dateid | date1875

9 rows

The example below creates a materialized view called "ages." The view constructs a new age

predicate and calculates the approximate age value for each person in the sample Tickit data set.

CREATE MATERIALIZED VIEW <ages> AS

CONSTRUCT { ?person <age> ?age . }

WHERE { GRAPH <tickit> {

SELECT ?person ((YEAR(?date))-(YEAR(xsd:dateTime(?birthdate))) AS ?age)

WHERE {

?person <birthday> ?birthdate .

BIND(xsd:dateTime(NOW()) AS ?date)

}

}

}

Running the following query against the view, shows the approximate age of each person.

SELECT *

FROM <ages>

WHERE { ?s ?p ?o . }

LIMIT 10

Examples 542

s | p | o

------------+-----+----

person40149 | age | 39

person30658 | age | 23

person6893 | age | 30

person12131 | age | 22

person33027 | age | 69

person24690 | age | 55

person9306 | age | 76

person4808 | age | 54

person45368 | age | 25

person34994 | age | 59

10 rows

Examples 543

Save Queries for Reuse

Similar to the Create and Save Views functionality, Graph Lakehouse enables you to create query

definitions that you can reference as subqueries in other queries. Naming queries for later use

enables you to simplify complex queries and quickly add commonly used subqueries to other

queries. Using named queries can also increase query performance since Graph Lakehouse can

identify and execute repetitive patterns once and then reuse the results.

There are two ways to create a named query, depending on whether you want to create a query

definition that is saved in the triplestore and can be used as a subquery in various queries or

whether you want to write a query inline to be used once in the query that immediately follows the

inline named query definition. This topic provides instructions for creating each type of named

query:

l Create and Save a Query for Reuse: Follow these instructions to create and save a named

query for future use.

l Create a Query Inline for One-Time Use: Follow these instructions to create a named query

inline for single use.

Save Queries for Reuse 544

Create and Save a Query for Reuse

Use the following syntax to create a query and save the query definition so that you can run the

query as a subquery in subsequent queries:

CREATE [OR REPLACE] QUERY <query_URI> AS

query_text

Include the OR REPLACE keywords when you want to replace a previously defined query with the

same name. For example, the query below creates a named query called total_profit.

PREFIX tickit: <http://anzograph.com/tickit/>

CREATE OR REPLACE QUERY <total_profit> AS

SELECT ?event (sum(?qty) as ?tickets) (sum(?comm) as ?commission_paid)

(sum(?price) as ?total_paid

FROM <http://anzograph.com/tickit>

WHERE {

?sales tickit:qtysold ?qty .

?sales tickit:eventid ?eventid .

?eventid tickit:eventname ?event .

?sales tickit:commission ?comm .

?sales tickit:pricepaid ?price .

}

GROUP BY ?event

ORDER BY ?event

To reference a predefined query as a subquery, use the following syntax in the WHERE clause:

{ QUERY <query_URI> }

For example, the query below includes the predefined query, total_profit, as a subquery:

SELECT ?event ?tickets ((?total_paid - ?commission_paid) as ?profit)

FROM <http://anzograph.com/tickit>

WHERE { QUERY <total_profit> }

ORDER BY desc(?profit)

LIMIT 10

event | tickets | profit

-----------------+---------+---------------

Mamma Mia! | 3658 | 965135.900000

Spring Awakening | 3025 | 826926.750000

The Country Girl | 2871 | 773978.550000

Create and Save a Query for Reuse 545

Macbeth | 2733 | 733193.000000

Jersey Boys | 2781 | 690095.450000

Legally Blonde | 2272 | 683895.550000

Chicago | 2535 | 672344.050000

Spamalot | 2199 | 607160.950000

Hedda Gabler | 1891 | 561865.300000

Thurgood | 1894 | 543895.450000

10 rows

Note
When you include a FROM clause in a named query, Graph Lakehouse always applies that

FROM list to the query. If the named query becomes a subquery in another query, the

subquery does not inherit the FROM clause from the main query. If the named query does not

include a FROM clause, Graph Lakehouse applies the FROM clause from the main query.

Create and Save a Query for Reuse 546

Create a Query Inline for One-Time Use

If you want to create a named query on-the-fly to use in a query that you are writing, you can include

a WITH clause to define a named query at the beginning of that query.

Note
Graph Lakehouse does not save the query definition for named queries that are defined in a

WITH clause. The named query can only be referenced in the query that immediately follows

the WITH clause; it is not available to use in subsequent queries. To create a named query

whose definition is persisted and can be referenced in future queries, use the CREATE

OR REPLACE syntax..

WITH Syntax

WITH (QUERY <query_name> AS select_query)

[(...)]

Where select_query is the query that you want to name and reference in the WHERE clause of

the main query. You can define multiple named queries in one WITH clause. For example, the WITH

clause below defines a query named profit. The profit query is then referenced as a subquery in the
main query:

PREFIX tickit: <http://anzograph.com/tickit/>

WITH

(QUERY <profit> AS

SELECT ?event (sum(?qty) as ?tickets) (sum(?comm) as ?commission_paid)

(sum(?price) as ?total_paid)

FROM <http://anzograph.com/tickit>

WHERE {

?sales tickit:qtysold ?qty .

?sales tickit:eventid ?eventid .

?eventid tickit:eventname ?event .

?sales tickit:commission ?comm .

?sales tickit:pricepaid ?price .

}

GROUP BY ?event

)

SELECT ?event ?tickets ((?total_paid - ?commission_paid) as ?profit)

Create a Query Inline for One-Time Use 547

FROM <tickit>

WHERE { QUERY <profit> }

ORDER BY desc(?profit)

LIMIT 10

WITH Syntax 548

Examples

The example queries in this section run against the Graph Lakehouse sample Tickit data set, which

captures sales activity for a fictional Tickit website where people buy and sell tickets for sporting

events, shows, and concerts. You can load and explore this data set. For more information, see

Working with SPARQL and the Tickit Data.

The example below creates a named query and uses it to query the sample Tickit data set to identify

possible ticket scalpers by calculating the average price per ticket for events and then finding cases

where tickets are listed for a higher price.

PREFIX tickit: <http://anzograph.com/tickit/>

WITH (QUERY <avg_price> AS

SELECT ?eventname (avg(?priceperticket) as ?avg_price)

WHERE {

?listing tickit:eventid ?eventid .

?eventid tickit:eventname ?eventname .

?listing tickit:priceperticket ?priceperticket .

}

GROUP BY ?eventname

)

SELECT ?sellername ?avg_price ?priceperticket ?eventname ?listtime

FROM <http://anzograph.com/tickit>

WHERE {

{ QUERY <avg_price> }

?listing tickit:listtime ?listtime .

?listing tickit:priceperticket ?priceperticket .

?listing tickit:sellerid ?seller .

?seller tickit:firstname ?firstname .

?seller tickit:lastname ?lastname .

BIND(CONCAT(?firstname, " ", ?lastname) AS ?sellername)

FILTER (?priceperticket > ?avg_price)

}

ORDER BY ?avg_price ?listtime ?sellername ?eventname

LIMIT 10

sellername | avg_price | priceperticket | eventname | listtime

------------------+------------+----------------+-----------------+---------------

Garrett Rasmussen | 249.181818 | 277.000000 | White Christmas | 2008-01-

01T01:03:16Z

Ivan Trevino | 249.181818 | 415.000000 | White Christmas | 2008-01-

Examples 549

01T01:03:17Z

Liberty Hopkins | 249.181818 | 2120.000000 | White Christmas | 2008-01-

01T01:03:53Z

Jenette Norton | 249.181818 | 1031.000000 | White Christmas | 2008-01-

01T01:04:15Z

Tana Mcguire | 249.181818 | 455.000000 | White Christmas | 2008-01-

01T01:07:02Z

Lee Prince | 249.181818 | 377.000000 | White Christmas | 2008-01-

01T01:14:34Z

Aileen Nicholson | 249.181818 | 413.000000 | White Christmas | 2008-01-

01T01:14:40Z

Wylie Kemp | 249.181818 | 372.000000 | White Christmas | 2008-01-

01T01:14:48Z

Allistair Yang | 249.181818 | 491.000000 | White Christmas | 2008-01-

01T01:15:54Z

Quinn Porter | 249.181818 | 977.000000 | White Christmas | 2008-01-

01T01:17:19Z

10 rows

The example below uses a WITH clause to define the subquery, locations, which queries the

example Tickit data to return a list of the locations for events that took place in February:

PREFIX tickit: <http://anzograph.com/tickit/>

WITH (QUERY <locations> AS

SELECT ?name ?where

WHERE {

?e tickit:venueid ?v .

?v tickit:venuename ?where .

?e tickit:dateid ?d .

?d tickit:month ?when .

?e tickit:eventname ?name .

filter (?when = "FEB")

}

)

SELECT *

FROM <http://anzograph.com/tickit>

WHERE {

{QUERY <locations>}

}

ORDER BY ?where ?name

LIMIT 100

Examples 550

name | where

---+----------------------

G. Love and Special Sauce | ARCO Arena

Oasis | ARCO Arena

Rush | ARCO Arena

Smash Mouth | ARCO Arena

Steve Miller Band | ARCO Arena

The Guess Who | ARCO Arena

Tokio Hotel | ARCO Arena

Projekt Revolution | AT&T Center

Chromeo | AT&T Park

Citizen Cope | AT&T Park

Counting Crows and Maroon 5 | AT&T Park

Extreme | AT&T Park

Oliver Dragojevic | AT&T Park

Nashville Star | Air Canada Centre

Stone Temple Pilots | Air Canada Centre

Taylor Swift | Air Canada Centre

Wallflowers | Air Canada Centre

ZZ Top | Air Canada Centre

Dirty Dancing | Al Hirschfeld Theatre

...

100 rows

Examples 551

SPARQL Query Language Reference

Graph Lakehouse implements the standard SPARQL forms and functions described in the W3C

SPARQL 1.1 Query Language specification. In addition to supporting the standard functions, Graph

Lakehouse also provides several SQL-like and Microsoft Excel-like functions as well as support for

more advanced operations like window aggregates, advanced grouping sets, and graph algorithms.

In addition to the built-in functions, Graph Lakehouse includes extension libraries that offer

advanced Data Science, Geospatial, Matrix, Apache Arrow, and other utility packages. The topics in

this section describe the supported built-in functions and extension libraries.

Tip
Most examples included in this section run against the Graph Lakehouse sample Tickit data

set, which captures sales activity for a fictional Tickit website where people buy and sell

tickets for sporting events, shows, and concerts. For more information on loading and

analyzing this data set, see Working with SPARQL and the Tickit Data.

In this section:
Built-in Functions 553

Extension Libraries 704

SPARQL Query Language Reference 552

https://www.w3.org/TR/sparql11-query/

Built-in Functions

The topics in this section provide descriptions, usage information, and examples for the Graph

Lakehouse standard and advanced built-in functions.

In this section:
Aggregate Functions 553

Casting Functions 568

Date and Time Functions 579

Graph Algorithms 597

Hash Functions 614

Informational or Testing Functions 619

Logical Functions 625

Math Functions 636

Property Paths 657

String Functions 658

Update Functions 681

Window Aggregate and Ranking Functions 686

Advanced Grouping Sets 702

Aggregate Functions

This topic describes the aggregate functions in Graph Lakehouse. For information about window

aggregates, see Window Aggregate and Ranking Functions.

l AVG: Calculates the average (arithmetic mean) value for a group of numbers.

l CHOOSE_BY_MAX: Returns the value from a group that corresponds to the maximum value

from another group.

l CHOOSE_BY_MIN: Returns the value from a group that corresponds to the minimum value

from another group.

Built-in Functions 553

l COUNT: Counts the number of values that exist for a group.

l GROUP_CONCAT: Concatenates a group of strings into a single string.

l MAX: Returns the maximum value from a group of values.

l MEDIAN: Returns the median number out of a group of numbers.

l MIN: Returns the minimum value from a group of values.

l MODE: Returns the mode (the value that occurs most frequently) from a group of values.

l MODE_PERCENT: Calculates the percentage of values in a group that belong to the mode.

l SAMPLE: Returns an arbitrary value from the specified group of values.

l SUM: Calculates the sum of the numbers within a group.

l VAR: Calculates the unbiased (sample) variance of a group of numbers.

l VARP: Calculates the biased (population) variance of a group of numbers.

Typographical Conventions

The following list describes the conventions used to document function syntax:

l CAPS: Although SPARQL is case-insensitive, SPARQL keywords in this section are written in

uppercase for readability.

l [argument]: Brackets indicate an optional argument or keyword.

l |: Means OR. Indicates that you can use one or more of the specified options.

Note
A GROUP BY statement is required for queries that contain aggregate functions if the results

clause lists non-aggregate variables. Include all non-aggregated variables in the GROUP BY

statement.

AVG

This function calculates the average (arithmetic mean) value for a group of numbers.

Aggregate Functions 554

Syntax

AVG(number)

Argument Type Description

number numeric The numeric value for which to calculate the average.

Returns

Type Description

number The arithmetic mean of the input values.

Examples

The following example queries the sample Tickit data set to determine the average number of seats

in the venues in each state. Since the results clause contains a non-aggregated variable (?state), a

GROUP BY clause is required for grouping on ?state.

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?state (ROUND(AVG(?seats)) AS ?avg_seats)

FROM <http://anzograph.com/tickit>

WHERE {

?s tickit:venuestate ?state .

?s tickit:venueseats ?seats .

}

GROUP BY ?state

ORDER BY ?state

state | avg_seats

------+-----------

CA | 50309

CO | 63285

DC | 41888

FL | 62603

GA | 60620

IL | 48244

IN | 63000

Aggregate Functions 555

LA | 72000

MA | 54342

MD | 70229

MI | 53391

MN | 64035

MO | 59217

NC | 73298

NJ | 80242

NY | 48764

OH | 56035

ON | 50516

PA | 53931

TN | 68804

TX | 56915

WA | 57058

WI | 57561

23 rows

The query below calculates the average total price for all of the listings in the sample Tickit data set:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT (AVG(?numtickets*?priceperticket) AS ?avg_total_price)

FROM <http://anzograph.com/tickit>

WHERE {

?listing tickit:priceperticket ?priceperticket .

?listing tickit:numtickets ?numtickets .

}

avg_total_price

3034.42

1 rows

CHOOSE_BY_MAX

This function calculates the maximum value for one group and returns the value from another group

that corresponds to the maximum from the first group.

Syntax

CHOOSE_BY_MAX(test, value)

Aggregate Functions 556

Argument Type Description

test any type The group of values from which to find the maximum value.

value any type The group of values from which to return the value that corresponds to
the maximum value of test.

Returns

Type Description

input
type

The value from the value group that corresponds to the maximum value from the test
group.

CHOOSE_BY_MIN

This function calculates the minimum value for one group and returns the value from another group

that corresponds to the minimum from the first group.

Syntax

CHOOSE_BY_MIN(test, value)

Argument Type Description

test any type The group of values from which to find the minimum value.

value any type The group of values from which to return the value that corresponds to
the minimum value of test.

Returns

Type Description

input The value from the value group that corresponds to the minimum value from the test

Aggregate Functions 557

Type Description

type group.

COUNT

This function counts the number of values that exist for a group.

Syntax

COUNT[(DISTINCT (] (value)

Argument Type Description

DISTINCT N/A Include the optional DISTINCT keyword to limit the results to the
unique values.

value any type The group of values to count.

Returns

Type Description

long The number of values in the group.

Example

The following example queries the sample Tickit data set to count the number of people who have

the same last name:

SELECT ?lastname (COUNT(?person) AS ?count)

FROM <http://anzograph.com/tickit>

WHERE {

?person <http://anzograph.com/tickit/lastname> ?lastname .

}

GROUP BY ?lastname

ORDER BY desc(?count)

LIMIT 10

Aggregate Functions 558

lastname | count

----------+-------

Harding | 72

Ashley | 70

Stein | 70

Mason | 70

Fuentes | 69

Christian | 69

Murphy | 69

Madden | 69

Clements | 68

Chandler | 68

10 rows

GROUP_CONCAT

This function concatenates a group of strings into a single string.

Syntax

GROUP_CONCAT (group ; [SEPARATOR = "separator_char"] ; [ROW_LIMIT = max_rows] ;

[PRE = "prefix"] ; [VALUE_SERIALIZE = serialize] ; [DELIMIT_BLANKS = separate_

blanks] ;

[MAX_LENGTH = string_length] ; [SUFFIX = "suffix"])

Argument Type Description

group string The group of strings to concatenate.

separator_
char

string Optional argument that defines the separator to use between the
values in returned strings. When SEPARATOR is omitted, Graph
Lakehouse separates values with a space.

max_rows int Optional argument that puts a maximum limit on the number of
rows to retrieve for the group. When ROW_LIMIT is omitted, the
default is unlimited. Note that Graph Lakehouse performs the
GROUP_CONCAT for each slice separately and combines the
results from each slice. The ROW_LIMIT is applied to each slice,
not the total result. Therefore, the total number of values that are

Aggregate Functions 559

Argument Type Description

concatenated will be larger than the specified limit, proportional to
the number of slices in the cluster.

prefix string Optional string to add as a prefix to the resulting string.

serialize boolean Optional argument that indicates whether returned values should
be serialized with the value's data type. When VALUE_SERIALIZE
is omitted, the default is false.

separate_
blanks

boolean Optional argument that indicates whether to delimit blanks with the
SEPARATOR value. When DELIMIT_BLANKS is omitted, the
default is false.

string_length int Optional argument that limits the resulting strings to a maximum
character length. Graph Lakehouse has a 2MB (~2,000,000
characters) limit on the length of strings and displays an error if
GROUP_CONCAT returns a string that is longer than 2000000.
When MAX_LENGTH is omitted, the default is unlimited.

suffix string Optional argument that defines a suffix to add to the resulting
strings. When SUFFIX is omitted, Graph Lakehouse adds an
empty string as the suffix.

Returns

Type Description

string The concatenated string.

Aggregate Functions 560

Example

The query below concatenates the list of friends for 10 people in the sample Tickit data set. Since

the GROUP_CONCAT expression includes ROW_LIMIT=2, Graph Lakehouse limits the records to

two for each slice (or shard) of data.

SELECT ?person (GROUP_CONCAT(?id;SEPARATOR=",";ROW_LIMIT=2) AS ?friends)

FROM <http://anzograph.com/tickit>

WHERE {

?person <http://anzograph.com/tickit/friend> ?friend .

BIND(STRAFTER(STR(?friend), "http://anzograph.com/tickit/") as ?id)

}

GROUP BY ?person

ORDER BY ?person

LIMIT 10

person | friends

--+--

http://anzograph.com/tickit/person1 |

person2894,person20624,person33618,person47127

http://anzograph.com/tickit/person10 | person3136,person22714,person2509,person24535

http://anzograph.com/tickit/person100 |

person42775,person29725,person27334,person24553

http://anzograph.com/tickit/person1000 | person19040,person39066,person2236,person9089

http://anzograph.com/tickit/person10000 |

person43706,person37085,person18874,person31270

http://anzograph.com/tickit/person10001 | person3389,person44830,person4720,person307

http://anzograph.com/tickit/person10002 |

person46462,person43989,person46491,person31130

http://anzograph.com/tickit/person10003 |

person31544,person19595,person23460,person28465

http://anzograph.com/tickit/person10004 |

person11070,person19845,person11172,person24252

http://anzograph.com/tickit/person10005 |

person33888,person9467,person35761,person47709

10 rows

MAX

This function returns the maximum value from a group of values.

Aggregate Functions 561

Syntax

MAX(value)

Argument Type Description

value any type except
boolean

The group of values for which to return the maximum
value.

Returns

Type Description

input type The maximum value from the group.

Example

The following example queries the sample Tickit data to list the top 10 events with the highest

number of tickets sold in one transaction:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?event (MAX(?tickets) AS ?max_tickets)

FROM <http://anzograph.com/tickit>

WHERE {

?listing tickit:numtickets ?tickets .

?listing tickit:eventid ?id .

?id tickit:eventname ?event .

}

GROUP BY ?event

ORDER BY desc(?max_tickets)

LIMIT 10

event | max_tickets

-----------------+-------------

Akon | 30

Beatles LOVE | 30

The Country Girl | 30

Sarah Brightman | 30

Jesse Lacey | 30

Aggregate Functions 562

Spring Awakening | 30

Le Reve | 30

Das Rheingold | 30

Macbeth | 30

King Lear | 30

10 rows

MEDIAN

This function returns the median value from a group of numbers. The median is the number in the

group where half of the numbers are greater than the number and half are less than the number.

Syntax

MEDIAN(number)

Argument Type Description

number numeric The group of numeric values for which to calculate the median.

Returns

Type Description

number The median for the group.

MIN

This function returns the minimum value from a group of values.

Syntax

MIN(value)

Argument Type Description

value any type except
boolean

The group of values for which to return the minimum
value.

Aggregate Functions 563

Returns

Type Description

input type The minimum value from the group.

Example

The following example queries the sample Tickit data to list the 10 events with the lowest price paid

for tickets:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?event (MIN(?paid) AS ?min_paid)

FROM <http://anzograph.com/tickit>

WHERE {

?s tickit:pricepaid ?paid .

?s tickit:eventid ?id .

?id tickit:eventname ?event .

}

GROUP BY ?event

ORDER BY ?min_paid

LIMIT 10

event | min_paid

---------------------+----------

Legally Blonde | 20

Spring Awakening | 20

Green Day | 20

Keb Mo | 20

Thurgood | 20

King Lear | 20

Macbeth | 20

The Country Girl | 20

Ringo Starr | 20

August: Osage County | 20

10 rows

MODE

This function returns the mode from a group of values. The mode is the value that occurs most

frequently in the group.

Aggregate Functions 564

Syntax

MODE(value)

Argument Type Description

value any type The group of values for which to return the mode.

Returns

Type Description

input type The mode from the group.

MODE_PERCENT

This function calculates the percentage of values in a group that belong to the mode.

Syntax

MODE_PERCENT(value)

Argument Type Description

value numeric The group of values for which to calculate the mode percent.

Returns

Type Description

double The percentage of values that belong to the mode.

SAMPLE

This function returns an arbitrary value from the specified group of values.

Aggregate Functions 565

Syntax

SAMPLE(value)

Argument Type Description

value any type The group of values from which to choose a sample value.

Returns

Type Description

input type The arbitrary value from the group.

SUM

This function calculates the sum of the numbers within a group.

Syntax

SUM(number)

Argument Type Description

number numeric The group of numbers to sum.

Returns

Type Description

number The sum of the values in the group.

Aggregate Functions 566

Example

The following example queries the sample Tickit data set to determine the most unpopular events

by returning the 10 events with the least number of ticket sales. The query uses the SUM aggregate

function to calculate the total tickets for each event.

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?event ?category (SUM(?qty) AS ?total_tickets)

FROM <http://anzograph.com/tickit>

WHERE {

?sales tickit:qtysold ?qty .

?sales tickit:eventid ?eventid .

?eventid tickit:eventname ?event .

?eventid tickit:catid ?catid .

?catid tickit:catname ?category .

}

GROUP BY ?event ?category

ORDER BY ?total_tickets

LIMIT 10

event | category | total_tickets

----------------+----------+---------------

White Christmas | Musicals | 35

Joshua Radin | Pop | 75

Martina McBride | Pop | 101

Beach Boys | Pop | 112

Linda Ronstadt | Pop | 116

Teena Marie | Pop | 124

Indigo Girls | Pop | 125

Billy Idol | Pop | 141

Mogwai | Pop | 146

Stephenie Meyer | Pop | 151

10 rows

VAR

This function calculates the unbiased (sample) variance for a group of numbers.

Syntax

VAR(value)

Aggregate Functions 567

Argument Type Description

value numeric The numeric value that defines the set of numbers for which to
measure the variance.

Returns

Type Description

number The unbiased variance for the group.

VARP

This function calculates the biased (population) variance for a group of numbers.

Syntax

VARP(value)

Argument Type Description

value number The value that defines the set of numbers for which to measure the
population variance.

Returns

Type Description

double The biased variance for the group.

Casting Functions

This topic describes the functions that are available for coercing data types in Graph Lakehouse.

l BNODE: Creates a blank node.

l DATATYPE: Returns the data type of the given value.

Casting Functions 568

l DATETIME (or xsd:dateTime): Returns a dateTime value from the given string, long, or

dateTime.

l DUR_TO_USECS: Casts a duration value to microseconds.

l ENCODE_FOR_URI: Encodes the specified string as a URI.

l FORMATDATETIME: Converts a value to a string in the specified dateTime format.

l FORMATDURATION: Converts a value into a string in the specified duration format.

l HEX: Converts a long value to a hexadecimal string.

l HEX2DEC: Converts a hexadecimal string to a long value.

l PARSEDATE: Attempts to convert the given string to a date, time, or dateTime value.

l RADIANS: Converts to radians an angle value that is in degrees.

l SERIALIZE: Creates a string representation of the input value.

l STR: Casts a value to a string.

l URI: Casts a string to a URI.

l USECS_TO_DUR: Converts a microseconds value to a duration.

l UUID: Generates a Universally Unique Identifier (UUID).

Typographical Conventions

The following list describes the conventions used to document function syntax:

l CAPS: Although SPARQL is case-insensitive, SPARQL keywords in this section are written in

uppercase for readability.

l [argument]: Brackets indicate an optional argument or keyword.

l |: Means OR. Indicates that you can use one or more of the specified options.

BNODE

This function creates a blank node.

Casting Functions 569

Syntax

BNODE([value])

Argument Type Description

value string An optional string value from which to create the blank node.

Returns

Type Description

blank node The generated blank node.

DATATYPE

This function returns the data type of the given value.

Syntax

DATATYPE(value)

Argument Type Description

value any The value for which to return the data type.

Returns

Type Description

data type URI The data type.

DATETIME (or xsd:dateTime)

This function returns a dateTime value from the given long, double, date, or time value.

Casting Functions 570

Syntax

DATETIME(value)

Argument Type Description

value long, double, date, time The value from which to return a dateTime.

Returns

Type Description

dateTime The dateTime value.

DUR_TO_USECS

This function calculates the time in microseconds from a duration value.

Syntax

DUR_TO_USECS(value)

Argument Type Description

value duration The duration value from which to calculate the time in
microseconds.

Returns

Type Description

long The number of microseconds.

Example

SELECT (DUR_TO_USECS("PT2H11M48.376S"^^xsd:duration) as ?microseconds)

Casting Functions 571

microseconds

7908376000

1 rows

ENCODE_FOR_URI

This function encodes the specified string as a URI and returns a string in URI format.

Syntax

ENCODE_FOR_URI(text)

Argument Type Description

text string The string value to encode as a URI.

Returns

Type Description

string The string as a URI.

Example

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT DISTINCT (ENCODE_FOR_URI(?eventname) as ?event)

FROM <http://anzograph.com/tickit>

WHERE {

?s tickit:eventid ?eventid .

?eventid tickit:eventname ?eventname .

}

ORDER BY ?event

LIMIT 10

event

.38%20Special

3%20Doors%20Down

70s%20Soul%20Jam

Casting Functions 572

A%20Bronx%20Tale

A%20Catered%20Affair

A%20Chorus%20Line

A%20Christmas%20Carol

A%20Doll%27s%20House

A%20Man%20For%20All%20Seasons

A%20Midsummer%20Night%27s%20Dream

10 rows

HEX

This function converts a long value to a hexadecimal string.

Syntax

HEX(value)

Argument Type Description

value long The value to convert to a hexadecimal string.

Returns

Type Description

string The hex value.

HEX2DEC

This function converts a hexadecimal string to a long value.

Syntax

HEX2DEC(value)

Argument Type Description

value string The hexadecimal string to convert.

Casting Functions 573

Returns

Type Description

long The converted value.

FORMATDATETIME

This function converts a value into a string with the specified dateTime format.

Syntax

FORMATDATE(value, format)

Argument Type Description

value long, double,
date, time,
dateTime

The value to convert to a string in the specified format.

format string The format to use for the resulting dateTime string. Graph
Lakehouse supports YYYY-MM-DDThh:mm:ss format.

Returns

Type Description

string The dateTime as a string.

FORMATDURATION

This function converts a value into a string with the specified duration format.

Syntax

FORMATDURATION(value, format)

Casting Functions 574

Argument Type Description

value long, string,
duration

The value to convert to a string in the specified format.

format string The format to use for the resulting duration string. Graph
Lakehouse supports PnYnMnDTnHnMnS format.

Returns

Type Description

string The duration as a string.

PARSEDATE

This function attempts to convert the given string to a date, time, or dateTime value.

Syntax

PARSEDATE(value [, output_type])

Argument Type Description

value string The string or plain literal value to convert to a date, time, or dateTime.

output_type URI An optional URI (xsd:date, xsd:time, or xsd:dateTime) that
specifies the type of value to return. If output_type is not specified,
dateTime is returned.

Returns

Type Description

date, time, or dateTime The conversion of the string to the desired type.

Casting Functions 575

RADIANS

This function converts to radians an angle value that is in degrees.

Syntax

RADIANS(angle)

Argument Type Description

angle double The angle value to convert to radians.

Returns

Type Description

double The angle in radians.

SERIALIZE

This function returns a string representation of the input value.

Syntax

SERIALIZE(value)

Argument Type Description

value any type except URI The value for which to generate a string representation.

Returns

Type Description

string The string representation of the input value.

Casting Functions 576

STR

This function casts the specified value to a string.

Syntax

STR(value)

Argument Type Description

value any The value to convert to a string.

Returns

Type Description

string The value as a string.

URI

This function casts the specified string to a URI.

Syntax

URI(value)

Argument Type Description

value string The value to convert to a URI.

Returns

Type Description

URI The value as a URI.

Casting Functions 577

USECS_TO_DUR

This function converts a number of microseconds in long, duration, or string format to a duration

value.

Syntax

USECS_TO_DUR(value)

Argument Type Description

value long, duration, string The microseconds value to convert to a duration.

Returns

Type Description

duration The input value as a duration.

Example

SELECT (USECS_TO_DUR(76555373888) as ?duration)

duration

PT21H15M55.373888S

1 rows

UUID

This function generates a Universally Unique Identifier (UUID).

Syntax

UUID()

Casting Functions 578

Returns

Type Description

URI The UUID.

Date and Time Functions

This topic describes the date, time, and duration functions in Graph Lakehouse.

l DATE: Returns an xsd:date value based on the specified year, month, and day.

l DATETIME (or xsd:dateTime): Returns a dateTime value from the given long, double, date,

or time value.

l DAY: Returns the day of the month from the specified date or dateTime.

l DAYSFROMDURATION: Returns the days portion of a duration value.

l DUR_TO_MILLIS: Calculates the time in milliseconds from a duration value.

l DUR_TO_USECS: Converts a duration value to microseconds.

l FORMATDATETIME: Converts a value to a string in the specified dateTime format.

l FORMATDURATION: Converts a value into a string in the specified duration format

l HOURS: Returns the hour portion of the given time or dateTime value.

l MASKEDDATETIME: Replaces the year, month, day, hour, minute, second, and millisecond

values for the given date or dateTime value with the new date and time values that you

specify.

l MILLIS_TO_DUR: Converts milliseconds to a duration value.

l MINUTES: Returns the minutes portion of the given time or dateTime value.

l MONTH: Returns the month portion of the given date or dateTime value.

l NOW: Returns the current server date and time.

l NOWMILLIS: Returns the current server date and time in epoch milliseconds.

Date and Time Functions 579

l PARSEDATE: Attempts to convert the given string to a date, time, or dateTime value.

l SECONDS_DBL: Returns the seconds portion of the given dateTime value.

l TIME: Returns an xsd:time value based on the specified hour, minute, and second values.

l TIMEZONE: Returns as a duration the timezone from a dateTime value.

l TODAY: Returns today's date based on the server date.

l TOMILLIS: Converts a date or dateTime value to milliseconds.

l TZ: Returns as a string the timezone from a dateTime value.

l USECS_TO_DUR: Converts a microseconds value to a duration.

l WEEKDAY: Returns the day of the week from a date or dateTime value.

l WEEKNUM: Returns the week of the year in which the given date or dateTime occurs.

l YEAR: Returns the year portion of the given dateTime value.

l YEARDAY: Returns the day of the year in which the given date or dateTime occurs.

Typographical Conventions

The following list describes the conventions used to document function syntax:

l CAPS: Although SPARQL is case-insensitive, SPARQL keywords in this section are written in

uppercase for readability.

l [argument]: Brackets indicate an optional argument or keyword.

l |: Means OR. Indicates that you can use one or more of the specified options.

DATE

This function returns an xsd:date value based on the specified year, month, and day values.

Syntax

DATE(year, month, day)

Date and Time Functions 580

Argument Type Description

year long A number that represents the year.

month long A number that represents the month.

day long A number that represents the day.

Returns

Type Description

date The date according to the input values.

DATETIME (or xsd:dateTime)

This function returns a dateTime value from the given long, double, date, or time value.

Syntax

DATETIME(value)

Argument Type Description

value long, double, date, time The value from which to return a dateTime.

Returns

Type Description

dateTime The dateTime value.

DAY

This function returns the day of the month from the specified date or dateTime value.

Date and Time Functions 581

Syntax

DAY(value)

Argument Type Description

value date, dateTime The value from which to return the day of the month.

Returns

Type Description

int The day of the month.

DAYSFROMDURATION

This function returns the days portion of a duration value.

Syntax

DAYSFROMDURATION(value)

Argument Type Description

value duration The duration value from which to return the days.

Returns

Type Description

long The number of days in the duration.

DUR_TO_MILLIS

This function calculates the time in milliseconds from a duration value.

Date and Time Functions 582

Syntax

DUR_TO_MILLIS(value)

Argument Type Description

value duration The duration value from which to calculate the time in milliseconds.

Returns

Type Description

long The number of milliseconds.

DUR_TO_USECS

This function calculates the time in microseconds from a duration value.

Syntax

DUR_TO_USECS(value)

Argument Type Description

value duration The duration value from which to calculate the time in
microseconds.

Returns

Type Description

long The number of microseconds.

Example

SELECT (DUR_TO_USECS("PT2H11M48.376S"^^xsd:duration) as ?microseconds)

Date and Time Functions 583

microseconds

7908376000

1 rows

FORMATDATETIME

This function converts a value into a string with the specified dateTime format.

Syntax

FORMATDATE(value, format)

Argument Type Description

value long, double,
date, time,
dateTime

The value to convert to a string in the specified format.

format string The format to use for the resulting dateTime string. Graph
Lakehouse supports YYYY-MM-DDThh:mm:ss format.

Returns

Type Description

string The dateTime as a string.

FORMATDURATION

This function converts a value into a string with the specified duration format.

Syntax

FORMATDURATION(value, format)

Date and Time Functions 584

Argument Type Description

value long, string,
duration

The value to convert to a string in the specified format.

format string The format to use for the resulting duration string. Graph
Lakehouse supports PnYnMnDTnHnMnS format.

Returns

Type Description

string The duration as a string.

HOURS

This function returns the hour portion of the given dateTime value.

Syntax

HOURS(value)

Argument Type Description

value time, dateTime The dateTime value from which to return the hours portion.

Returns

Type Description

int The hour.

MASKEDDATETIME

This function replaces the year, month, day, hour, minute, second, and millisecond values for the

given date or dateTime value with the new date and time values that you specify.

Date and Time Functions 585

Syntax

MASKEDDATETIME(value, year, month, day, hour, minute, second, milliseconds)

Argument Type Description

value date,
dateTime

The date or dateTime for which to replace the year, month,
date, hour, minute, second, and milliseconds values.

year int The year to include in the resulting dateTime value.

month int The month to include in the resulting dateTime value.

day int The day to include in the resulting dateTime value.

hour int The hour to include in the resulting dateTime value.

minute int The minutes value to include in the resulting dateTime value.

second int The seconds value to include in the resulting dateTime value.

milliseconds int The milliseconds value to include in the resulting dateTime
value.

Returns

Type Description

dateTime The dateTime value with the specified input values.

MILLIS_TO_DUR

This function converts milliseconds to a duration value.

Date and Time Functions 586

Syntax

MILLIS_TO_DUR(value)

Argument Type Description

value long, double, duration, string The number of milliseconds.

Returns

Type Description

duration The duration value.

MINUTES

This function returns the minutes portion of the given time or dateTime value.

Syntax

MINUTES(value)

Argument Type Description

value time, dateTime The value from which to return the minutes portion.

Returns

Type Description

int The minutes portion of the input value.

MONTH

This function returns the month portion of the given date or dateTime value.

Date and Time Functions 587

Syntax

MONTH(value)

Argument Type Description

value date, dateTime The value from which to return the month portion.

Returns

Type Description

int The month number.

Example

The query below uses the MONTH function to determine the most popular month to hold events,

based on the number of events that occur in each month.

SELECT ?month (COUNT(?eventid) AS ?num_events)

FROM <http://anzograph.com/tickit>

WHERE {

{ SELECT ?eventid (MONTH(?eventtime) AS ?month)

WHERE {

?eventid <http://anzograph.com/tickit/starttime> ?eventtime .

?sale <http://anzograph.com/tickit/eventid> ?eventid .

}

}

}

GROUP BY ?month

ORDER BY DESC(?num_events)

month | num_events

------+------------

3 | 34935

9 | 34346

10 | 33856

7 | 33770

5 | 33638

Date and Time Functions 588

11 | 33599

8 | 33542

12 | 33022

4 | 32864

6 | 32418

2 | 22503

1 | 6460

12 rows

NOW

This function returns the current server date and time.

Syntax

NOW()

Returns

Type Description

dateTime The current server date and time.

NOWMILLIS

This function returns the current server date and time in epoch milliseconds.

Syntax

NOWMILLIS()

Returns

Type Description

long The current server date and time in milliseconds.

PARSEDATE

This function attempts to convert the given string to a date, time, or dateTime value.

Date and Time Functions 589

Syntax

PARSEDATE(value [, output_type])

Argument Type Description

value string The string or plain literal value to convert to a date, time, or dateTime.

output_type URI An optional URI (xsd:date, xsd:time, or xsd:dateTime) that
specifies the type of value to return. If output_type is not specified,
dateTime is returned.

Returns

Type Description

date, time, or dateTime The conversion of the string to the desired type.

SECONDS_DBL

This function returns the seconds portion of the given time or dateTime value.

Syntax

SECONDS_DBL(value)

Argument Type Description

value time, dateTime The value from which to return the seconds portion.

Returns

Type Description

double The seconds portion of the input value.

Date and Time Functions 590

TIME

This function returns an xsd:time value based on the specified hour, minute, and second values.

Syntax

TIME(hour, minute, second)

Argument Type Description

hour long A number that represents the hour.

minute long A number hat represents the minute.

second long, double A number that represents the seconds.

Returns

Type Description

time The time according to the input values.

TIMEZONE

This function returns the timezone part of a dateTime value as a duration.

Syntax

TIMEZONE(value)

Argument Type Description

value dateTime The value from which to retrieve the timezone.

Date and Time Functions 591

Returns

Type Description

duration The timezone.

TODAY

This function returns today's date based on the server date.

Syntax

TODAY()

Returns

Type Description

date Today's date according to the server.

TOMILLIS

This function converts a date or dateTime value to the number of milliseconds.

Syntax

TOMILLIS(value)

Argument Type Description

value date, dateTime The value to convert to milliseconds.

Returns

Type Description

long The number of milliseconds.

Date and Time Functions 592

TZ

This function returns the timezone part of a dateTime value as a string.

Syntax

TZ(value)

Argument Type Description

value dateTime The value from which to retrieve the timezone.

Returns

Type Description

string The timezone.

USECS_TO_DUR

This function converts a number of microseconds in long, duration, or string format to a duration

value.

Syntax

USECS_TO_DUR(value)

Argument Type Description

value long, duration, string The microseconds value to convert to a duration.

Returns

Type Description

duration The input value as a duration.

Date and Time Functions 593

Example

SELECT (USECS_TO_DUR(76555373888) as ?duration)

duration

PT21H15M55.373888S

1 rows

WEEKDAY

This function returns the day of the week from a date or dateTime value.

Syntax

WEEKDAY(value [, day_number_start])

Argument Type Description

value date,
dateTime

The date or dateTime value from which to return the day of the
week.

day_
number_
start

long An optional value of 1, 2, or 3 that defines how the days of the
week are represented as numbers.

l 1 means Sunday is day 1. Saturday is day 7.

l 2 means Monday is day 1. Sunday is day 7.

l 3 means Monday is day 0. Sunday is day 6.

If day_number_start is not specified, the default value is 1.

Returns

Type Description

int The day of the week from the input values.

Date and Time Functions 594

WEEKNUM

This function returns the week of the year in which the given date or dateTime occurs.

Syntax

WEEKNUM(value [, day_week_begins])

Argument Type Description

value date,
dateTime

The date or dateTime value from which to return the week
number.

day_week_
begins

long An optional value of 1 or 2 that defines which day the weeks
start on.

l 1 means a new week starts on Sunday.

l 2 means a new week starts on Monday.

If day_week_begins is not specified, the default value is

1.

Returns

Type Description

int The week of the year the input value falls in.

YEAR

This function returns the year portion of the given dateTime value.

Syntax

YEAR(value)

Date and Time Functions 595

Argument Type Description

value dateTime The dateTime value to return the year from.

Returns

Type Description

int The year portion of the input values.

Example

The example below uses the NOW and YEAR functions to calculate the approximate ages of 10

people in the sample Tickit data set. The resulting age values are approximations because the

calculation excludes days and months.

SELECT ?person ((YEAR(?date))-(YEAR(xsd:dateTime(?birthdate))) AS ?age)

FROM <http://anzograph.com/tickit>

WHERE {

?person <http://anzograph.com/tickit/birthday> ?birthdate .

BIND(xsd:dateTime(NOW()) AS ?date)

}

ORDER BY ?person

LIMIT 10

person | age

--+-----

http://anzograph.com/tickit/person1 | 55

http://anzograph.com/tickit/person10 | 75

http://anzograph.com/tickit/person100 | 32

http://anzograph.com/tickit/person1000 | 38

http://anzograph.com/tickit/person10000 | 77

http://anzograph.com/tickit/person10001 | 27

http://anzograph.com/tickit/person10002 | 75

http://anzograph.com/tickit/person10003 | 69

http://anzograph.com/tickit/person10004 | 50

http://anzograph.com/tickit/person10005 | 72

10 rows

Date and Time Functions 596

YEARDAY

This function returns the day of the year from the specified date or dateTime value.

Syntax

YEARDAY(value)

Argument Type Description

value date, dateTime The value to return the day of the year from.

Returns

Type Description

int The day of the year.

Graph Algorithms

Graph Lakehouse offers graph algorithms for exploring and computing metrics for graphs, nodes,

and relationships. This section describes each of the algorithms.

Tip
All graph algorithm example queries are run against a sample dataset that is available for

download. See Sample Data for Graph Algorithm Queries for information.

In this section:

Centrality Algorithms

Centrality algorithms identify important nodes in a graph:

l PageRank: Ranks the nodes in a graph by their relative importance or influence. Google

uses PageRank to rank websites in their search engine results.

Graph Algorithms 597

l Betweenness Centrality: Detects the amount of influence a vertex has over the flow of

information in a graph.

PageRank

The PageRank algorithm ranks the nodes in a graph by their relative importance or influence.

PageRank determines each node's ranking by identifying the number of links to the node, the

outbound links from the node, and the quality of the links. The quality of a link is determined by the

importance (PageRank) of the connected nodes. For labeled property graphs, the PageRank

algorithm accepts an edge property that can be considered a relationship weight to factor into the

PageRank calculation.

Syntax

The PageRank algorithm is available in the graphalgo extension library

(http://cambridgesemantics.com/anzograph/graphalgo#page_rank) and is

implemented as a procedure. To incorporate the PageRank algorithm in a query, use the following

syntax in the FROM clause. The arguments that are links are described below.

SELECT triple_patterns_and_expressions

The FROM clause lists the URI for the page_rank alogrithm and

includes in parentheses the input parameters for the algorithm.

FROM <http://cambridgesemantics.com/anzograph/graphalgo#page_rank>

(

<graph_URI>,

<edge_URI>,

[<weighted_property>,]

[damping_factor,]

[max_iterations,]

[error_tolerance,]

[normalized]

)

WHERE {

...

}

Argument Range Description

graph_URI URI The URI of the target graph.

Graph Algorithms 598

Argument Range Description

edge_URI URI The URI of the edge that connects the nodes to rank.

weighted_
property

URI Optional argument that defines the URI of the relationship
property on the edge_URI that contains values to be factored in as
a weight when calculating the importance of the nodes. When this
property is omitted, page_rank is unweighted.

damping_
factor

0.0 - 1.0 Optional argument that represents the edge traversal probability.
The damping factor is an estimate of the probability that a user will
stay on the page rather than follow the link (edge). The damping_
factor value is subtracted from 1.0 in the calculation. The default
value is 0.85.

max_
iterations

1 - 100 Optional argument that specifies the maximum number of times to
iterate through the graph to adjust approximate PageRank values.
The default value is 40.

error_
tolerance

0.0 - 0.1 Optional argument that specifies the error tolerance to use. If the
sum of the error values for all nodes is below this tolerance value,
PageRank iterations are stopped. The default value is 1e-8.

normalized boolean Optional argument that controls whether to produce PageRank
values that are between 0 and 1. The default value is false.

Examples

The example below uses the unweighted PageRank algorithm to find the 10 most connected

airports. The edge to operate on is defined as the hasRouteTo URI, which links the airport nodes.

SELECT ?airport ?rank

FROM <http://cambridgesemantics.com/anzograph/graphalgo#page_rank>(

<http://anzograph.com/airline_flight_network>,

<http://anzograph.com/flights/hasRouteTo>

Graph Algorithms 599

)

WHERE

{

?airport ?p ?rank .

}

ORDER BY desc(?rank)

LIMIT 10

The results show that ORD (Chicago O'Hare) has the highest PageRank. It has the highest number

of links to other airports.

airport | rank

---+---------

http://anzograph.com/flights/Airport/ORD | 13.4122

http://anzograph.com/flights/Airport/DFW | 13.1632

http://anzograph.com/flights/Airport/ATL | 12.8073

http://anzograph.com/flights/Airport/DEN | 10.3813

http://anzograph.com/flights/Airport/IAH | 8.38149

http://anzograph.com/flights/Airport/SLC | 6.90182

http://anzograph.com/flights/Airport/MSP | 6.24396

http://anzograph.com/flights/Airport/SFO | 5.50728

http://anzograph.com/flights/Airport/PHX | 5.27483

http://anzograph.com/flights/Airport/LAX | 5.24546

10 rows

By including the edge property, <http://anzograph.com/flights/distanceMiles>, the

example below uses the weighted PageRank algorithm to find the 10 most connected airports

where distance between the airports is factored into the calculation.

SELECT ?airport ?rank

FROM <http://cambridgesemantics.com/anzograph/graphalgo#page_rank>(

<http://anzograph.com/airline_flight_network>,

<http://anzograph.com/flights/hasRouteTo>,

<http://anzograph.com/flights/distanceMiles>

)

WHERE

{

?airport ?p ?rank .

}

ORDER BY desc(?rank)

LIMIT 10

Graph Algorithms 600

airport | rank

---+--------

http://anzograph.com/flights/Airport/ORD | 2.445

http://anzograph.com/flights/Airport/ATL | 1.935

http://anzograph.com/flights/Airport/DFW | 1.68

http://anzograph.com/flights/Airport/SLC | 1.17

http://anzograph.com/flights/Airport/MSP | 0.915

http://anzograph.com/flights/Airport/DTW | 0.66

http://anzograph.com/flights/Airport/SFO | 0.66

http://anzograph.com/flights/Airport/FLL | 0.5325

http://anzograph.com/flights/Airport/ANC | 0.5325

http://anzograph.com/flights/Airport/DEN | 0.5325

10 rows

Betweenness Centrality

Betweenness centrality is a measure of the amount of influence a vertex has over the flow of

information in a graph. The amount of influence is determined by the number of shortest paths that

pass through a vertex. The Betweenness Centrality algorithm computes the shortest path between

each pair of vertices in a graph and assigns a score to each vertex based on the number of shortest

paths that intersect it. Vertices that frequently lie on the shortest paths between other nodes have

higher betweenness centrality scores.

Syntax

To incorporate the Betweenness Centrality algorithm in a query, include the following SERVICE call

in the WHERE clause.

SERVICE <csi:betweenness>

{

[] <csi:binding-vertex> ?binding_vertex_variable ;

<csi:binding-centrality> ?centrality_variable ;

<csi:edge-label> <edge_uri> .

}

Argument Range Description

binding-
vertex

variable Required argument that defines the name to use for the result
column that lists the source nodes (vertices).

Graph Algorithms 601

Argument Range Description

binding-
centrality

variable Required argument that defines the name to use for the result
column that lists the computed centrality score.

edge-label URI Required argument that lists the edge URI that defines the graph to
operate on. The graph is the set of vertices that are connected by
this URI.

Example

The example below uses the Betweenness Centrality algorithm to find the 10 airports with the

highest centrality. The edge to operate on is defined as the hasRouteTo URI, which links the

airport vertices.

prefix : <http://anzograph.com/data#>

prefix fl: <http://anzograph.com/flights/>

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix skos: <http://www.w3.org/2004/02/skos/core#>

SELECT *

FROM <http://anzograph.com/airline_flight_network>

WHERE

{

SERVICE <csi:betweenness>

{

[] <csi:binding-vertex> ?airport ;

<csi:binding-centrality> ?centrality ;

<csi:edge-label> <http://anzograph.com/flights/hasRouteTo> .

}

}

ORDER BY desc(?centrality)

LIMIT 10

airport | centrality

---+--------------

http://anzograph.com/flights/Airport/ORD | 18985.371039

http://anzograph.com/flights/Airport/DFW | 17718.273941

http://anzograph.com/flights/Airport/ATL | 16286.345255

http://anzograph.com/flights/Airport/DEN | 12421.967745

Graph Algorithms 602

http://anzograph.com/flights/Airport/SLC | 8304.111011

http://anzograph.com/flights/Airport/MSP | 6835.823598

http://anzograph.com/flights/Airport/IAH | 6022.854234

http://anzograph.com/flights/Airport/SEA | 4895.147059

http://anzograph.com/flights/Airport/SFO | 4696.686488

http://anzograph.com/flights/Airport/DTW | 3978.338284

10 rows

Community Detection Algorithms

Community detection algorithms evaluate clusters of nodes and determine whether they have a

tendency to strengthen or break apart:

l Connected Components: Identifies the connected nodes in an undirected graph.

l Label Propagation: Detects structures in a graph by propagating labels throughout the graph

and forming groups based on the label propagation.

l Triangle Enumeration: Identifies each triangle in a graph.

l Triangle Count: Determines the number of triangles that a graph includes and calculates the

average clustering coefficient for the resulting network of nodes.

l Vertex Triangle Count: Determines the number of triangles that a vertex is a member of and

computes the clustering coefficient for the vertex.

Connected Components

The Connected Components algorithm identifies the connected vertices in an undirected graph. The

algorithm returns a unique connected component ID for each vertex in the graph.

Syntax

To incorporate the Connected Components algorithm in a query, include the following SERVICE call

in the WHERE clause.

SERVICE <csi:connected_components>

{

[] <csi:binding-vertex> ?binding_vertex_variable ;

<csi:binding-id> ?component_id_variable ;

<csi:edge-label> <edge_uri> ;

Graph Algorithms 603

[<csi:graph> <graph_uri>] .

}

Argument Range Description

binding-
vertex

variable Required argument that defines the name to use for the result
column that lists the source nodes (vertices).

binding-id variable Required argument that defines the name to use for the result
column that lists the assigned component identifiers.

edge-label URI Required argument that lists the edge URI that connects the nodes
or vertices.

graph URI Optional argument that specifies the graph to query.

Label Propagation

The Label Propagation algorithm detects structures in a graph by propagating labels throughout the

graph and forming groups based on the label propagation.

Syntax

To incorporate the Label Propagation algorithm in a query, include the following SERVICE call in the

WHERE clause.

SERVICE <csi:label_propagation>

{

[] <csi:binding-vertex> ?vertex_variable ;

<csi:binding-label> ?label_variable ;

<csi:edge-label> <edge_uri> ;

[<csi:max-iterations> number_of_iterations] .

}

Argument Range Description

binding- variable Required argument that defines the name to use for the result

Graph Algorithms 604

Argument Range Description

vertex column that lists the source nodes (vertices).

binding-
label

variable Required argument that defines the name to use for the result
column that lists the assigned label values.

edge-label URI Required argument that lists the edge URI that defines the graph to
operate on. The graph is the set of vertices that are connected by
this URI.

max-
iterations

1 - 100 Optional argument that specifies the maximum number of times to
iterate through the graph. The default value is 5.

Triangle Enumeration

The Triangle Enumeration algorithm identifies each of the triangles that exist in the specified graph.

A triangle is defined as three nodes that are connected by three edges (a-b, b-c, c-a).

Syntax

To incorporate the Triangle Enumeration algorithm in a query, include the following SERVICE call in

the WHERE clause.

SERVICE <csi:triangles>

{

[] <csi:binding-vertex1> ?vertex1_variable ;

<csi:binding-vertex2> ?vertex2_variable ;

<csi:binding-vertex3> ?vertex3_variable ;

<csi:edge-label> <edge_uri> .

}

Argument Range Description

binding-
vertex1

variable Required argument that defines the name to use for the result
column that lists the first node in the triangle.

Graph Algorithms 605

Argument Range Description

binding-
vertex2

variable Required argument that defines the name to use for the result
column that lists the second node in the triangle.

binding-
vertex3

variable Required argument that defines the name to use for the result
column that lists the third node in the triangle.

edge-label URI Required argument that lists the edge URI that defines the graph to
operate on. The graph is the set of vertices that are connected by
this URI.

Triangle Count

The Triangle Count algorithm determines the number of triangles that a graph includes and

calculates the average clustering coefficient for the resulting network of nodes. A triangle is defined

as three nodes that are connected by three edges (a-b, b-c, c-a).

Syntax

To incorporate the Triangle Count algorithm in a query, include the following SERVICE call in the

WHERE clause.

SERVICE <csi:triangles>

{

[] <csi:binding-average-clustering-coefficient> ?binding_avg_cc_variable ;

<csi:binding-triangle-count> ?triangle_count_variable ;

<csi:edge-label> <edge_uri> .

}

Argument Range Description

binding-
average-
clustering-
coefficient

variable Required argument that defines the name to use for the result
column that lists the average clustering coefficient value. The
algorithm returns a double value that indicates the average degree
to which the nodes in the network tend to cluster.

Graph Algorithms 606

Argument Range Description

binding-
triangle-
count

variable Required argument that defines the name to use for the result
column that lists the number of triangles in the graph.

edge-label URI Required argument that lists the edge URI that defines the graph to
operate on. The graph is the set of vertices that are connected by
this URI.

Vertex Triangle Count

The Vertex Triangle Count algorithm counts number of triangles that a vertex is a member of and

computes the clustering coefficient for the vertex. A triangle is defined as three nodes that are

connected by three edges (a-b, b-c, c-a).

Syntax

To incorporate the Vertex Triangle Count algorithm in a query, include the following SERVICE call in

the WHERE clause.

SERVICE <csi:triangles>

{

[] <csi:binding-vertex> ?vertex_variable ;

<csi:binding-vertex-triangle-count> ?triangle_count_variable ;

<csi:binding-clustering-coefficient> ?binding_cc_variable ;

<csi:edge-label> <edge_uri> .

}

Argument Range Description

binding-
vertex

variable Required argument that defines the name to use for the result
column that lists each vertex.

binding-
vertex-
triangle-

variable Required argument that defines the name to use for the result
column that lists the number of triangles that a vertex belongs to.

Graph Algorithms 607

Argument Range Description

count

binding-
clustering-
coefficient

variable Required argument that defines the name to use for the result
column that lists the clustering coefficient value for each node. The
algorithm returns a double value that indicates the degree to which
the node tends to cluster with other nodes.

edge-label URI Required argument that lists the edge URI that defines the graph to
operate on. The graph is the set of vertices that are connected by
this URI.

Path Finding Algorithms

Path finding algorithms identify the shortest path or evaluate the availability and quality of paths:

l All Paths: Lists all of the paths that exist between two nodes in a graph.

l Shortest Path: Finds the shortest path (the path with the least cost) from a source node to the

other nodes in a graph.

All Paths

The All Paths algorithm finds all of the paths that exist between a source node and destination node

in a graph.

Syntax

To incorporate the All Paths algorithm in a query, include the following SERVICE call in the WHERE

clause.

SERVICE <csi:all_paths>

{

[] <csi:binding-vertex> ?vertex_variable ;

<csi:binding-edge> ?edge_variable ;

<csi:binding-successor> ?successor_variable ;

<csi:source> <source_node_uri> ;

<csi:destination> <destination_node_uri> ;

Graph Algorithms 608

[<csi:graph> <graph_uri> ;]

[<csi:edge-label> "<edge_uri>" ;]

[<csi:binding-path-index> ?path_index_variable ;]

[<csi:binding-path> ?path_variable ;]

[<csi:min-length> min_length ;]

[<csi:max-length> max_length ;]

[<csi:undirected> undirected ;]

[<csi:binding-orientation> ?orientation_variable] .

}

Argument Range Description

binding-
vertex

variable Required argument that defines the name to use for the result
column that lists the nodes that are reachable by the source node.

binding-edge variable Required argument that defines the name to use for the result
column that lists the edges that exist between the nodes.

binding-
successor

variable Required argument that defines the name to use for the result
column that lists the destination nodes.

source URI Required argument that specifies the URI of the source node.

destination URI Required argument that specifies the URI for the destination node.

graph URI Optional argument that specifies the graph to query.

edge-label string Optional argument that further defines the path to operate on. This
property accepts complex path specifications such as W3C
Property Paths. When specifying edge URIs, prefix notation is not
supported. Include the full URI.

binding-path-
index

variable Optional argument that defines the name to use for the result
column that lists the unique identifiers for the edges found in the
path. The identifier represents the order for edges.

Graph Algorithms 609

https://www.w3.org/TR/sparql11-query/#propertypaths
https://www.w3.org/TR/sparql11-query/#propertypaths

Argument Range Description

binding-path variable Optional argument that defines the name to use for the result
column that lists the unique identifiers for the paths that are found.

min-length int Optional argument that specifies the minimum number of paths to
evaluate.

max-length int Optional argument that specifies the maximum number of paths to
evaluate. The default value is unlimited.

undirected boolean Optional argument that specifies whether to treat edges as
undirected. When true, the algorithm assumes that paths can be
traversed in both directions. The default value is false.

binding-
orientation

variable Optional argument to be used in conjunction with undirected. If
csi:undirected is true, you can include this property to add a
result column that lists the orientation of each path. In the results,
csi:binding-orientation returns t (true) when the direction
of the edge goes from the source node to the successor.
csi:binding-orientation returns f (false) when the
direction of the edge goes from the successor to the source node.

Shortest Path

The Shortest Path algorithm finds the shortest path from a source node to the other reachable

nodes in a graph.

Syntax

To incorporate the Shortest Path algorithm in a query, include the following SERVICE call in the

WHERE clause.

SERVICE <csi:shortest_path>

{

[] <csi:binding-vertex> ?binding_vertex_variable ;

Graph Algorithms 610

<csi:binding-predecessor> ?predecessor_variable ;

<csi:graph> <graph_uri> ;

<csi:source-vertex> <source_node_uri> ;

<csi:edge-label> <edge_uri> ;

[<csi:binding-distance> ?binding_distance_variable ;]

[<csi:weight> <property_uri> ;]

[<csi:destination-vertex> <destination_node_uri>] .

}

Argument Range Description

binding-vertex variable Required argument that defines the name to use for the result
column that lists the nodes that are reachable by the source-
vertex.

binding-
predecessor

variable Required argument that defines the name to use for the result
column that lists the nodes that are on the path between the
source and destination vertices.

graph URI Required argument that specifies the graph to query.

source-vertex URI Required argument that specifies the URI of the source node.

edge-label URI Required argument that lists the edge URI that defines the graph
to operate on. The graph is the set of vertices that are connected
by this URI.

binding-
distance

variable Optional argument that adds a result column that lists the
number of hops in the path between the source node and
destination nodes. If csi:weight is specified, the binding-
distance column displays the weight value.

weight URI Optional argument that specifies an edge property URI whose
value can be used to determine the shortest path. When you do
not specify a weight, the algorithm calculates the shortest path

Graph Algorithms 611

Argument Range Description

according the number of hops required to reach the destination
vertex (or all nodes identified by the edge-label if destination-
vertex is not specified). When weight is specified, the weight
value is used as the shortest path measurement instead of the
number of hops. For more information about properties, see
Create a Labeled Property Graph (RDF-star).

destination-
vertex

URI Optional argument that specifies the URI of the destination node.
Include the destination-vertex URI when you want to find the
shortest path between two specific vertices. When destination-
vertex is excluded, Graph Lakehouse returns the shortest path
between all vertices that are accessible by the edge-label.

Note
The value for this property is only applied when weight is

included in the query. It is ignored when <csi:weight>

is excluded.

Example

The following example finds the shortest path for flights from Boston (BOS) to Honolulu (HNL). In

the query, the starting point or source node (csi:source-vertex) is the URI for BOS. To find the

shortest path between BOS and HNL instead of the shortest path between BOS and all other

airports that are reachable by the edge-label, the query includes the csi:destination-

vertex property, which specifies the URI for HNL. The csi:weight property is also included and

specifies the URI for the distanceMiles edge property. That tells the algorithm to calculate the

shortest path by distance rather than number of hops.

prefix : <http://anzograph.com/data#>

prefix fl: <http://anzograph.com/flights/>

prefix owl: <http://www.w3.org/2002/07/owl#>

prefix skos: <http://www.w3.org/2004/02/skos/core#>

Graph Algorithms 612

SELECT ?destination ?distance

FROM <http://anzograph.com/airline_flight_network>

WHERE

{

SERVICE <csi:shortest_path>

{

[] <csi:binding-vertex> ?airport ;

<csi:binding-predecessor> ?predecessor ;

<csi:binding-distance> ?distance ;

<csi:graph> <http://anzograph.com/airline_flight_network> ;

<csi:source-vertex> <http://anzograph.com/flights/Airport/BOS> ;

<csi:destination-vertex> <http://anzograph.com/flights/Airport/HNL> ;

<csi:edge-label> <http://anzograph.com/flights/hasRouteTo> ;

<csi:weight> <http://anzograph.com/flights/distanceMiles> .

}

?airport fl:terminalCode ?destination .

}

ORDER BY ?distance

The results (shown below) determine that the shortest path from BOS to HNL is through Salt Lake

City (SLC). The binding-vertex column (?distance) shows the distance for each leg of the flight.

destination | distance

------------+----------

BOS | 0

SLC | 2105

HNL | 5099

3 rows

Sample Data for Graph Algorithm Queries

The graph algorithm example queries run against a sample airline flight network data set, which

includes a 10,000 row subset of flight data from the Department of Transportation and airport data

with information about airports and their locations. If you would like to load the sample data so that

you can run the example queries, click the link below to download the airline_flight_

network_lpg.zip file, which contains the load file, airline_flight_network_lpg.ttl.

Download the Airline Flight Network Sample Data

Graph Algorithms 613

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/airline_flight_network_lpg.zip

Extract the .zip file and place airline_flight_network_lpg.ttl in a location on the Graph

Lakehouse file system. Then run the following query to load the sample data into a graph called

<http://anzograph.com/airline_flight_network>.

LOAD <file:/path_to_file/airline_flight_network_lpg.ttl> INTO GRAPH

<http://anzograph.com/airline_flight_network>

Hash Functions

This topic describes the hash functions in Graph Lakehouse.

l HASH32: Returns a 32-bit hash value of a string.

l MD5: Returns the MD5 checksum as a hexadecimal string.

l SHA1: Calculates the SHA-1 digest of a value.

l SHA224: Calculates the SHA-224 digest of a value.

l SHA256: Calculates the SHA-256 digest of a value.

l SHA384: Calculates the SHA-384 digest of a value.

l SHA512: Calculates the SHA-512 digest of a value.

Typographical Conventions

The following list describes the conventions used to document function syntax:

l CAPS: Although SPARQL is case-insensitive, SPARQL keywords in this section are written in

uppercase for readability.

l [argument]: Brackets indicate an optional argument or keyword.

l |: Means OR. Indicates that you can use one or more of the specified options.

HASH32

This function uses a hash algorithm to encrypt strings and return a 32-bit hash value.

Syntax

HASH32(text)

Hash Functions 614

Argument Type Description

text string The string for which to return a 32-bit hash.

Returns

Type Description

int The 32-bit hash.

MD5

This function returns the MD5 checksum of the specified value as a hexadecimal string.

Syntax

MD5(value)

Argument Type Description

value string, boolean, int, long, float, double,
date, time, dateTime

The value for which to return the
MD5 checksum.

Returns

Type Description

string The hexadecimal string.

SHA1

This function calculates the SHA-1 digest of a value.

Syntax

SHA1(value)

Hash Functions 615

Argument Type Description

value string, boolean, int, long, float, double,
date, time, dateTime

The value for which to calculate the
SHA-1 digest.

Returns

Type Description

string The SHA-1 digest.

SHA224

This function calculates the SHA-224 digest of a value.

Syntax

SHA224(value)

Argument Type Description

value string, boolean, int, long, float, double,
date, time, dateTime

The value for which to calculate the
SHA-224 digest.

Returns

Type Description

string The SHA-224 digest.

SHA256

This function calculates the SHA-256 digest of a value.

Syntax

SHA256(value)

Hash Functions 616

Argument Type Description

value string, boolean, int, long, float, double,
date, time, dateTime

The value for which to calculate the
SHA-256 digest.

Returns

Type Description

string The SHA-256 digest.

Example

The example below queries the sample Tickit data set to convert social security and credit card

numbers to SHA 256-bit hash values.

SELECT (SHA256(?card) AS ?sha2_card) (SHA256(?ssn) AS ?sha2_ssn)

FROM <http://anzograph.com/tickit>

WHERE {

?person <http://anzograph.com/tickit/ssn> ?ssn ;

<http://anzograph.com/tickit/card> ?card .

}

ORDER BY ?sha2_card

LIMIT 10

sha2_card | sha2_ssn

---+-----------------------------------

000046293f44419e08ddb59b5ce9593c5b14fb80e2e49924d0 |

9cbee8c1c7f8b526ddf6bbe62d5c9ad6c6abdfcc674475a57c

00010cfc90dbc6ce312002ef5072118a772462075b5199caa7 |

7e1f18583d167c6d82fe737650c5aaa3e83350330ed3099f3c

000365bf7e342feaed1a5b2b9ab9d0643570089278af12a242 |

2a79e83495384866ba5520daff432ba3dca6f4a8d18989b0dd

00037e28f93315b2b9a821c93d7261bee1fed421ca7125f0cf |

3ef7706f78662a401e9fa9448d8cbb470f41d65ffbe1b0f8cd

0004740568f42f9eb8ac71a95d672a89895a5331e62d8bd506 |

ee48859e41cd3ef64539f0cc09fd377ab18662f6fc31012855

0006406ace683e967a338d41ed04fdcefd8637c50243fa450c |

faa394399dea5cc8b56bcb209abe787ec9d2d07d196fa9e270

Hash Functions 617

00091fec35b7b07f881bd56b7a5e96c6da8ceb2f7fc18dc89f |

4fdb3c8afd2281e95cacb16867946ae74fa55f9a8e33143d93

000b33a49dfc953ce1b98de194394dc60498ad94d2d4e168c7 |

b822e2758ab80f1866d31981dc883d1b628f1ef90b5ab4ea9a

000b4fa0c93c04a44f230bfb0545d83f9a70ed7e9897d621b3 |

ad03804fa16e6de63bcaff1bff1b5754381f80c9d4fb436a05

000b78f1bb238dc1af52bbc30c6947c225274c3d3114e9b9b6 |

a28d6b0fe5c2506ce3fd0828cb9d6afd090b68084ea00291f0

10 rows

SHA384

This function calculates the SHA-384 digest of a value.

Syntax

SHA384(value)

Argument Type Description

value string, boolean, int, long, float, double,
date, time, dateTime

The value for which to calculate the
SHA-384 digest.

Returns

Type Description

string The SHA-384 digest.

SHA512

This function calculates the SHA-512 digest of a value.

Syntax

SHA512(value)

Hash Functions 618

Argument Type Description

value string, boolean, int, long, float, double,
date, time, dateTime

The value for which to calculate the
SHA-512 digest.

Returns

Type Description

string The SHA-512 digest.

Informational or Testing Functions

This topic describes the functions in that retrieve information from your values and let you ask

questions about them or test whether the values match expectations.

l CONTAINS: Evaluates whether the specified string contains the given pattern.

l ISBLANK: Evaluates whether the given RDF term is a blank node.

l ISIRI: Evaluates whether the given RDF term is an IRI.

l ISLITERAL: Evaluates whether the given RDF term is a literal value.

l ISNUMERIC: Evaluates whether the given RDF term is a numeric literal value.

l ISURI: Evaluates whether the given RDF term is a URI.

l LANG: Returns any language tags that are included with strings.

l LANGMATCHES: Evaluates whether a string includes a language tag that matches the

specified language range.

l LOCALNAME: Retrieves the local name from the given URI.

l NAMESPACE: Retrieves the namespace for the specified URI.

Typographical Conventions

The following list describes the conventions used to document function syntax:

Informational or Testing Functions 619

l CAPS: Although SPARQL is case-insensitive, SPARQL keywords in this section are written in

uppercase for readability.

l [argument]: Brackets indicate an optional argument or keyword.

l |: Means OR. Indicates that you can use one or more of the specified options.

CONTAINS

This function evaluates whether the specified strings contain the given pattern.

Syntax

CONTAINS(text, pattern)

Argument Type Description

text string The string value that you want to check against the specified pattern.

pattern string The string pattern that you want to look for in the supplied text.

Returns

Type Description

boolean True if the strings contain the pattern and false if they do not.

ISBLANK

This function evaluates whether the given RDF term value is a blank node. It returns true if it is a

blank node or false if it is not.

Syntax

ISBLANK(value)

Informational or Testing Functions 620

Argument Type Description

value RDF
term

The literal, URI, or blank node value to test and determine if it is a
blank node.

Returns

Type Description

boolean True if the term is a blank node and false if it is not.

ISIRI

This function evaluates whether the given RDF term type value is an IRI. It returns true if the value

is an IRI or false if it is not.

Syntax

ISIRI(term)

Argument Type Description

term RDF term The literal, URI, or blank node value to evaluate whether it is an IRI.

Returns

Type Description

boolean True if the term is an IRI and false if it is not.

ISLITERAL

This function evaluates whether the given RDF term type value is a literal value. It returns true if

the value is a literal or false if it is not.

Informational or Testing Functions 621

Syntax

ISLITERAL(term)

Argument Type Description

term RDF term The literal, URI, or blank node value to evaluate whether it is a literal.

Returns

Type Description

boolean True if the term is a literal value and false if it is not.

ISNUMERIC

This function evaluates whether the given RDF term type value is a numeric literal. It returns true if

the value is a numeric literal or false if it is not.

Syntax

ISNUMERIC(term)

Argument Type Description

term RDF
term

The literal, URI, or blank node value to evaluate whether it is a
numeric literal.

Returns

Type Description

boolean True if the term is a numeric literal and false if it is not.

Informational or Testing Functions 622

ISURI

This function evaluates whether the given value is a URI. It returns true if the value is a URI or

false if it is not.

Syntax

ISURI(term)

Argument Type Description

term RDF term The literal, URI, or blank node value to evaluate whether it is a URI.

Returns

Type Description

boolean True if the term is a URI and false if it is not.

LANG

This function returns any language tags that are included in the string. The results are grouped by

each language tag or by "blank" if a value does not have a language tag.

Syntax

LANG(text)

Argument Type Description

text string The string to search for language tags.

Informational or Testing Functions 623

Returns

Type Description

string The found language tags.

LANGMATCHES

This function tests whether a string includes a language tag that matches the specified language

range.

Syntax

LANGMATCHES(text, language_range)

Argument Type Description

text string The string to evaluate.

language_range string The language tag to match in the text.

Returns

Type Description

boolean True if strings include a language tag that matches the range and false if they do
not.

LOCALNAME

This function retrieves the local name from the given URI.

Syntax

LOCALNAME(uri)

Informational or Testing Functions 624

Argument Type Description

uri URI The URI from which to retrieve the local name.

Returns

Type Description

string The local name.

NAMESPACE

This function retrieves the namespace for the given URI.

Syntax

NAMESPACE(uri)

Argument Type Description

uri URI The URI from which to retrieve the namespace.

Returns

Type Description

string The namespace.

Logical Functions

This topic describes the logical functions in Graph Lakehouse.

l AND: Evaluates two logical expressions and returns true if both expressions are true.

l BOUND: Evaluates whether an RDF term type is bound.

l CASE: Evaluates a series of conditions and returns the matching result.

Logical Functions 625

l COALESCE: Evaluates a number of expressions and returns the results for the first

expression that is bound and does not raise an error.

l EXISTS: Evaluates whether the specified pattern exists.

l IF: Evaluates a condition and returns the specified result depending on the outcome of the

test.

l IN: Evaluates whether the specified RDF term is found in any of the given test values.

l NOT: Evaluates whether the specified logical expression is not true.

l OR: Evaluates two logical expressions and returns true if at least one of the expressions is

true.

l PARTITIONINDEX: Returns the zero-based index of the bucket in which the specified value

falls.

l SAMETERM: Evaluates whether two RDF term type values are the same.

l UNBOUNDED: Extends the SPARQL UNDEF functionality to enable users to include an

undefined value as a function argument.

Typographical Conventions

The following list describes the conventions used to document function syntax:

l CAPS: Although SPARQL is case-insensitive, SPARQL keywords in this section are written in

uppercase for readability.

l [argument]: Brackets indicate an optional argument or keyword.

l |: Means OR. Indicates that you can use one or more of the specified options.

AND

This function evaluates two logical expressions. If both expressions are true, the function returns

true. If one or both arguments are false, the function returns false.

Syntax

AND(logical_expression1, logical_expression2)

Logical Functions 626

Argument Type Description

logical_expression1 evaluates to boolean The first logical expression to evaluate.

logical_expression2 evaluates to boolean The second logical expression to evaluate.

Returns

Type Description

boolean True if both conditions are true and false if either condition is false.

BOUND

This function evaluates whether the specified RDF term has a value bound to it.

Syntax

BOUND(term)

Argument Type Description

term RDF term The literal, URI, or blank node value to evaluate.

Returns

Type Description

boolean True if the term is bound and false if it is not.

CASE

This function enables you to add IF/THEN logic to a query. A CASE expression evaluates a series of

conditions and returns the matching result. You can use CASE expressions wherever expressions

are valid in SPARQL queries.

Logical Functions 627

Syntax

There are two variations of CASE statements: simple and generic. Use the simple form to compare

the results of an expression with a series of tests and return a result when a test returns true. Use

the generic form when evaluating a larger range of tests with multiple conditions.

Simple Form

CASE expression_to_compare

WHEN expression1 THEN result1

WHEN expression2 THEN result2

[WHEN expressionN THEN resultN]

[ELSE result_when_false]

END

Argument Type Description

expression_to_
compare

evaluates to
boolean

The expression to evaluate and compare its results with the
subsequent expressions.

expression1–N evaluates to
boolean

The expressions to evaluate against expression_to_
compare.

result1–N any The result to return when the corresponding expression is
true.

result_when_
false

any An optional value to be returned if none of the specified
expressions are true.

Generic Form

CASE WHEN condition1 THEN result1

WHEN condition2 THEN result2

[WHEN conditionN THEN resultN]

[ELSE result_when_false]

END

Logical Functions 628

Argument Type Description

condition1–N evaluates to
boolean

The conditions to test.

result1–N any The result to return when the corresponding condition
passes.

result_when_
false

any An optional value to be returned if none of the specified
conditions pass.

Returns

Type Description

The type of the specified result The specified results according to the evaluation of the
conditions.

Example

The following example uses a CASE statement to determine and report on whether the top 10

events (with the most tickets sold) sold out.

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?event ?venue ?seats

((CASE WHEN (?seats <= (sum(?qty))) then "yes"

WHEN (?seats > (sum(?qty))) then "no"

END) as ?sold_out)

FROM <http://anzograph.com/tickit>

WHERE {

?sales tickit:qtysold ?qty .

?sales tickit:eventid ?eventid .

?eventid tickit:eventname ?event .

?eventid tickit:venueid ?venueid .

?venueid tickit:venuename ?venue .

?venueid tickit:venueseats ?seats.

}

GROUP BY ?event ?venue ?seats ?qty

Logical Functions 629

ORDER BY desc(?qty)

LIMIT 10

event | venue | seats | sold_out

------------------+------------------------------+-------+----------

Simple Plan | Hubert H. Humphrey Metrodome | 64035 | no

Black Crowes | Yankee Stadium | 52325 | no

Hot Tuna | Turner Field | 50091 | no

Marc Anthony | Georgia Dome | 71149 | no

Mark Knopfler | Edward Jones Dome | 66965 | no

Spoon | Dolphin Stadium | 74916 | no

Armando Manzanero | Texas Stadium | 65595 | no

Missy Higgins | Great American Ball Park | 42059 | no

Zombies | Lambeau Field | 72922 | no

Hannah Montana | Monster Park | 69843 | no

10 rows

COALESCE

This function evaluates a number of expressions and returns the results for the first expression that

is bound and does not raise an error.

Syntax

COALESCE(expression1 [, expression2] [, expressionN])

Argument Type Description

expression1–N RDF term The literal, URI, or blank node expressions to evaluate.

Returns

Type Description

RDF term The result of the first expression that is bound and does not error.

EXISTS

This function evaluates whether the specified pattern exists in the data.

Logical Functions 630

Syntax

EXISTS { graph_pattern }

Returns

Type Description

boolean True if the pattern exists and false if it does not.

IF

This function evaluates a condition and returns the specified result depending on the outcome of the

test. If the condition evaluates to true, the first result is returned. If the condition evaluates to false,

the second result is returned. And if the condition results in an error, the third result is returned.

Syntax

IF(logical_expression, true_result, false_result [, error_result])

Argument Type Description

logical_
expression

evaluates to
boolean

The condition that evaluates to true or false.

true_result RDF term The value that defines the result to return if the condition
evaluates to true.

false_result RDF term The value that defines the result to return if the condition
evaluates to false.

error_result RDF term An optional value that defines the result to return if the condition
evaluates to an error. If the condition results in an error and
error_result is not specified, logical_expression
(error) is returned.

Logical Functions 631

Returns

Type Description

RDF term The result based on the evaluation of the condition.

IN

This function evaluates whether the specified RDF term type value is found in any of the given test

values.

Syntax

IN(term, test_value1 [, test_value2] [, test_valueN])

Argument Type Description

term RDF
term

The literal, URI, or blank node value to look for in the test values.

test_value1–
N

RDF
term

The literal, URI, or blank node values to look for the specified term
in.

Returns

Type Description

boolean True if the given term is found in the test values and false if it is not.

Example

The example below queries the sample Tickit data set to return the names of people who were born

in the year 1975.

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?birthday (concat(?fname, ?lname) AS ?name)

Logical Functions 632

FROM <http://anzograph.com/tickit>

WHERE {

?s tickit:firstname ?fname .

?s tickit:lastname ?lname .

?s tickit:birthday ?birthday.

FILTER ((YEAR(?birthday)) IN (1975))

}

ORDER BY ?birthday

birthday | name

-----------+---------------------

1975-01-01 | MaryamWeeks

1975-01-01 | OliverHammond

1975-01-01 | MacKenzieBaldwin

1975-01-01 | XenosBaxter

1975-01-01 | XanderWilson

1975-01-01 | HadleyBush

1975-01-01 | RajaTodd

1975-01-02 | AlecFitzgerald

1975-01-02 | QuinnBuckley

1975-01-03 | RhiannonBooth

1975-01-03 | LanaLeonard

1975-01-03 | DeirdreWheeler

...

763 rows

NOT

This function evaluates whether the specified logical expression is not true.

Syntax

NOT(logical_expression)

Argument Type Description

logical_expression evaluates to boolean The condition to evaluate.

Logical Functions 633

Returns

Type Description

boolean True if the condition is false and false if it is true.

OR

This function evaluates two logical expressions. If at least one expression is true, the function

returns true. If both expressions are false, the function returns false.

Syntax

OR(logical_expression1, logical_expression2)

Argument Type Description

logical_expression1 evaluates to boolean The first logical expression to evaluate.

logical_expression2 evaluates to boolean The second logical expression to evaluate.

Returns

Type Description

boolean True if one or both conditions are true and false if both conditions are false.

PARTITIONINDEX

This function returns the zero-based index of the bucket in which the specified value falls. Buckets

start at the specified start value and are sized according to the specified interval. The first

bucket is [start, start+interval). That means it is closed on the low end and open on the

high end. PARTITIONINDEX returns less than 0 if the value does not fall into any bucket, such as

when the given value is less than start or if the comparison is indeterminate for date and time

data types.

Logical Functions 634

Syntax

PARTITIONINDEX(value, start, interval)

Argument Type Description

value literal The literal value for which to determine the zero-based index.

start literal The literal value that indicates the start of the first bucket.

interval literal The literal value that specifies the size of the bucket.

Returns

Type Description

long The zero-based index of the bucket in which the specified value exists.

SAMETERM

This function evaluates whether two RDF term type values are the same.

Syntax

SAMETERM(term1, term2)

Argument Type Description

term1 RDF term The first literal, URI, or blank node value to compare.

term2 RDF term The literal, URI, or blank node value to compare to term1.

Logical Functions 635

Returns

Type Description

boolean True if the terms are the same and false if they are not.

UNBOUNDED

This function is like the SPARQL UNDEF keyword but extends that functionality to enable users to

include an undefined value as a function argument, as UNDEF is only supported in VALUES

clauses.

Syntax

UNBOUNDED()

Returns

Type Description

RDF term The specified result according to the evaluation of the condition.

Example

The following example statement incorporates UNBOUNDED to return null if the specified condition

(?x > 5) fails:

BIND(IF(?x > 5 , "Win", UNBOUNDED()) as ?testResult)

In this case, ?testResult is bound if ?x is greater than 5. If ?x is not greater than 5, ?testResult is not

bound.

Math Functions

This topic describes the mathematical functions in Graph Lakehouse.

Math Functions 636

l ABS: Calculates the absolute value of the specified number.

l ADD: Adds two numeric values.

l AVG: Calculates the average (arithmetic mean) value for a group of numbers.

l BASE: Converts a number to the specified base and returns a text representation.

l CEIL: Rounds up a numeric value to the nearest integer.

l COS: Calculates the cosine of an angle.

l EXP: Raises e to the specified power.

l FACT: Calculates the factorial of the specified number.

l FLOOR: Rounds down a numeric value to the nearest integer.

l HAMMING_DIST: Calculates the hamming distance between two values.

l HAVERSINE_DIST: Computes the haversine distance between two latitude and longitude

values.

l LN: Calculates the natural logarithm of a double value.

l LOG: Calculates the specified base logarithm of a double value.

l LOG2: Calculates the base two logarithm of a double value.

l MOD: Calculates the modulo of the division between two numbers.

l PI: Returns the value for PI.

l POWER: Raises the specified number to the specified power.

l RADIANS: Converts to radians an angle value that is in degrees.

l RAND: Returns a random double value between 0 and 1.

l RANDBETWEEN: Returns a random integer that falls between two specified integers.

l ROUND: Rounds a numeric value to the nearest integer.

l ROUNDDOWN: Rounds a numeric value down to the specified number of digits.

l ROUNDUP: Rounds a numeric value up to the specified number of digits.

Math Functions 637

l SIN: Calculates the sine of an angle.

l SQRT: Calculates the square root of a number.

l TAN: Calculates the tangent of an angle.

Typographical Conventions

The following list describes the conventions used to document function syntax:

l CAPS: Although SPARQL is case-insensitive, SPARQL keywords in this section are written in

uppercase for readability.

l [argument]: Brackets indicate an optional argument or keyword.

l |: Means OR. Indicates that you can use one or more of the specified options.

ABS

This function calculates the absolute value of the specified number.

Syntax

ABS(number)

Argument Type Description

number numeric The numeric value for which to calculate the absolute value.

Returns

Type Description

number The absolute value.

Example

The following example queries the sample Tickit data to find the absolute value of the price per

ticket minus the total price paid for each of the ticket listings.

Math Functions 638

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?listing (ABS(?priceper - ?total) AS ?absolute_value)

FROM <http://anzograph.com/tickit>

WHERE {

?listing tickit:priceperticket ?priceper .

?listing tickit:totalprice ?total .

}

ORDER BY ?listing

LIMIT 10

listing | absolute_value

--+----------------

http://anzograph.com/tickit/listing1 | 1638

http://anzograph.com/tickit/listing10 | 2955

http://anzograph.com/tickit/listing100 | 3059

http://anzograph.com/tickit/listing1000 | 928

http://anzograph.com/tickit/listing10000 | 1350

http://anzograph.com/tickit/listing100001 | 410

http://anzograph.com/tickit/listing100002 | 5502

http://anzograph.com/tickit/listing100003 | 3146

http://anzograph.com/tickit/listing100004 | 368

http://anzograph.com/tickit/listing100006 | 6960

10 rows

ADD

This function adds two numeric values.

Syntax

ADD(value1, value2)

Argument Type Description

value1 numeric The first numeric value to add.

value2 numeric The second numeric value to add.

Math Functions 639

Returns

Type Description

number The result of the addition operation.

AVG

This function calculates the average (arithmetic mean) value for a group of numbers.

Syntax

AVG(number)

Argument Type Description

number numeric The numeric value for which to calculate the average.

Returns

Type Description

number The arithmetic mean of the input values.

Examples

The following example queries the sample Tickit data set to determine the average number of seats

in the venues in each state. Since the results clause contains a non-aggregated variable (?state), a

GROUP BY clause is required for grouping on ?state.

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?state (ROUND(AVG(?seats)) AS ?avg_seats)

FROM <http://anzograph.com/tickit>

WHERE {

?s tickit:venuestate ?state .

?s tickit:venueseats ?seats .

}

Math Functions 640

GROUP BY ?state

ORDER BY ?state

state | avg_seats

------+-----------

CA | 50309

CO | 63285

DC | 41888

FL | 62603

GA | 60620

IL | 48244

IN | 63000

LA | 72000

MA | 54342

MD | 70229

MI | 53391

MN | 64035

MO | 59217

NC | 73298

NJ | 80242

NY | 48764

OH | 56035

ON | 50516

PA | 53931

TN | 68804

TX | 56915

WA | 57058

WI | 57561

23 rows

The query below calculates the average total price for all of the listings in the sample Tickit data set:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT (AVG(?numtickets*?priceperticket) AS ?avg_total_price)

FROM <http://anzograph.com/tickit>

WHERE {

?listing tickit:priceperticket ?priceperticket .

?listing tickit:numtickets ?numtickets .

}

avg_total_price

Math Functions 641

3034.42

1 rows

BASE

This function converts a number into the specified base and returns a text representation of the

calculated value.

Syntax

BASE(number, base [, min_length])

Argument Type Description

number int The integer to convert. Valid values are 0–2^53.

base int The radix to convert the number to. Valid values are 2–36.

min_length int Optional argument that specifies the minimum length of the returned
string. If the result is shorter than the minimum length, leading zeros
are added to the result so that it reaches the minimum length. Valid
values are 0–255.

Returns

Type Description

string The text representation of the base.

CEIL

This function rounds up a numeric value to the nearest integer if the value has a fractional part.

CEILING returns the value itself if it is a whole number.

Syntax

CEIL(number)

Math Functions 642

Argument Type Description

number numeric The numeric value to round up.

Returns

Type Description

number The rounded up value.

COS

This function calculates the cosine of the specified angle.

Syntax

COS(angle)

Argument Type Description

angle double The angle in radians (double data type) to calculate the cosine for. If
you have angle values in degrees, you can use RADIANS to convert
the degrees to radians.

Returns

Type Description

double The cosine of the angle.

EXP

This function raises the base of the natural logarithms, e, to the specified power.

Syntax

EXP(power)

Math Functions 643

Argument Type Description

power double The number to raise e to.

Returns

Type Description

double E raised to the specified power.

FACT

This function calculates the factorial of the specified number.

Syntax

FACT(number)

Argument Type Description

number int The number for which to calculate the factorial.

Returns

Type Description

int The factorial of the input values.

FLOOR

This function rounds down a numeric value to the nearest integer if the value has a fractional part.

FLOOR returns the value itself if it is a whole number.

Syntax

FLOOR(number)

Math Functions 644

Argument Type Description

number numeric The numeric value to round down.

Returns

Type Description

number The rounded down value.

HAMMING_DIST

This function calculates the hamming distance between two values.

Syntax

HAMMING_DIST(number1, number2)

Argument Type Description

number1 long The first number.

number2 long The second number.

Returns

Type Description

int The hamming distance.

HAVERSINE_DIST

This function computes the haversine distance between two latitude and longitude values and

returns the distance in kilometers.

Math Functions 645

Syntax

HAVERSINE_DIST(latitude1, longitude1, latitude2, longitude2)

Argument Type Description

latitude1 double The first latitude value.

longitude1 double The first longitude value.

latitude2 double The second latitude value.

longitude2 double The second longitude value.

Returns

Type Description

double The distance in kilometers.

LN

This function calculates the natural logarithm of a double value.

Syntax

LN(number)

Argument Type Description

number double The double value for which to calculate the natural logarithm.

Math Functions 646

Returns

Type Description

double The natural logarithm of the input value.

LOG

This function calculates the specified base logarithm of a double value.

Syntax

LOG(number [, base])

Argument Type Description

number double The double value for which to calculate the base logarithm.

base double An optional double value that specifies the base for the logarithm. If
omitted, base e is used.

Returns

Type Description

double The base logarithm of the input value.

LOG2

This function calculates the base two logarithm of a double value.

Syntax

LOG2(number)

Math Functions 647

Argument Type Description

number double, float The double value for which to calculate the base 2 logarithm.

Returns

Type Description

double, float The base two logarithm of the input value.

Example

The example below determines the base two logarithm of the quantity of tickets sold for each ticket

listing.

SELECT ?sale ?qtysold (LOG2(?qtysold) AS ?qtylog)

FROM <http://anzograph.com/tickit>

WHERE {

?sale <http://anzograph.com/tickit/qtysold> ?qtysold .

}

ORDER BY ?sale

LIMIT 10

sale | qtysold | qtylog

--+---------+---------

http://anzograph.com/tickit/sales1 | 4 | 2

http://anzograph.com/tickit/sales10 | 1 | 0

http://anzograph.com/tickit/sales100 | 2 | 1

http://anzograph.com/tickit/sales1000 | 3 | 1.58496

http://anzograph.com/tickit/sales10000 | 1 | 0

http://anzograph.com/tickit/sales100000 | 1 | 0

http://anzograph.com/tickit/sales100001 | 2 | 1

http://anzograph.com/tickit/sales100002 | 1 | 0

http://anzograph.com/tickit/sales100003 | 2 | 1

http://anzograph.com/tickit/sales100004 | 2 | 1

10 rows

MOD

This function calculates the modulo or remainder of the division between two numbers.

Math Functions 648

Note
The calculation of negative operands depends on C++ and your underlying hardware. Graph

Lakehouse uses FMOD for floating point operands and % for all other data types.

Syntax

MOD(number, divisor)

Argument Type Description

number numeric The number that is the dividend in the equation.

divisor numeric The number to divide the dividend by.

Returns

Type Description

number The modulo between the input numbers.

Example

The following example queries the sample Tickit dataset to find the modulo between the number of

seats in each venue and the population of the city the venue is in.

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?venue ?city (MOD(?pop, ?seats) AS ?modulo)

FROM <http://anzograph.com/tickit>

WHERE {

?s tickit:venuename ?venue .

?s tickit:venuecitypop ?pop .

?s tickit:venuecity ?city .

?s tickit:venueseats ?seats .

}

ORDER BY ?venue

LIMIT 10

Math Functions 649

venue | city | modulo

-------------------------+---------------+--------

ARCO Arena | Sacramento | 638

AT&T Park | San Francisco | 16678

Angel Stadium of Anaheim | Anaheim | 26011

Arrowhead Stadium | Kansas City | 62532

Bank of America Stadium | Charlotte | 71742

Busch Stadium | St. Louis | 20109

Citizens Bank Park | Philadelphia | 42008

Cleveland Browns Stadium | Cleveland | 30815

Comerica Park | Detroit | 3483

Coors Field | Denver | 45263

10 rows

PI

This function returns the value for PI.

Syntax

PI()

Returns

Type Description

double The PI value.

POWER

This function raises the specified number to the specified power.

Syntax

POWER(value, power)

Argument Type Description

value numeric The number to raise by the power.

Math Functions 650

Argument Type Description

power numeric The number to raise value by.

Returns

Type Description

number The result of value raised to the specified power.

Example

The following example queries the sample Tickit dataset to raise the total number of tickets sold for

each event by the power of 2:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?event (POWER(?tickets, 2) AS ?power_total)

FROM <http://anzograph.com/tickit>

WHERE {

SELECT ?event (sum(?qty) as ?tickets)

WHERE {

?sales tickit:qtysold ?qty .

?sales tickit:eventid ?eventid .

?eventid tickit:eventname ?event .

}

GROUP BY ?event

ORDER BY desc(?tickets)

LIMIT 10

}

event | power_total

-----------------+-------------

Mamma Mia! | 1.3381e+07

Spring Awakening | 9.15062e+06

The Country Girl | 8.24264e+06

Jersey Boys | 7.73396e+06

Macbeth | 7.46929e+06

Chicago | 6.42622e+06

Legally Blonde | 5.16198e+06

Spamalot | 4.8356e+06

Math Functions 651

Rhinoceros | 3.6481e+06

Thurgood | 3.58724e+06

10 rows

RADIANS

This function converts to radians an angle value that is in degrees.

Syntax

RADIANS(angle)

Argument Type Description

angle double The angle value to convert to radians.

Returns

Type Description

double The angle in radians.

RAND

This function returns a random double value between 0 and 1, including 0 and excluding 1.

Syntax

RAND()

Returns

Type Description

double The random value between 0 and 1.

Math Functions 652

RANDBETWEEN

This function returns a random integer that falls between the two specified integers. The two

integers are included as options to be returned.

Syntax

RANDBETWEEN(low_number, high_number)

Argument Type Description

low_number int The lowest integer in the range of values.

high_number int The highest integer in the range of values.

Returns

Type Description

int The random value between the given low and high numbers.

ROUND

This function rounds a numeric value to the nearest integer.

Syntax

ROUND(number)

Argument Type Description

number numeric The number to round to the nearest integer.

Math Functions 653

Returns

Type Description

number The rounded value.

ROUNDDOWN

This function rounds a numeric value down to the specified number of digits.

Syntax

ROUNDDOWN(number, num_digits)

Argument Type Description

number numeric The number to round down.

num_digits int An integer that specifies the number of digits to round down to.

Returns

Type Description

number The rounded down value.

ROUNDUP

This function rounds a numeric value up to the specified number of digits.

Syntax

ROUNDUP(number, num_digits)

Math Functions 654

Argument Type Description

number numeric The number to round up.

num_digits int An integer that specifies the number of digits to round up to.

Returns

Type Description

number The rounded up value.

SIN

This function calculates the sine of the specified angle.

Syntax

SIN(angle)

Argument Type Description

angle double The angle in radians to calculate the sine for. If you have angle
values in degrees, you can use RADIANS to convert the degrees to
radians.

Returns

Type Description

double The sine of the angle.

SQRT

This function calculates the square root of the specified number.

Math Functions 655

Syntax

SQRT(number)

Argument Type Description

number numeric The number for which to calculate the square root.

Returns

Type Description

double The square root of the input value.

TAN

This function calculates the tangent of the specified angle.

Syntax

TAN(angle)

Argument Type Description

angle double The angle in radians to calculate the tangent for. If you have angle
values in degrees, you can use RADIANS to convert the degrees to
radians.

Returns

Type Description

double The tangent of the angle.

Math Functions 656

Property Paths

SPARQL property paths enable users to examine the patterns between properties in the data.

Property paths reveal the routes between nodes in a graph.

Syntax

Specify property paths in the predicate part of a triple pattern. Combine predicates using the

operators described in the table below. For more information, see the W3C Property Path

specification.

Construct Expression Name Description

<URI> PredicatePath A predicate URI in a triple pattern matches a path
length of one.

^path1 InversePath Matches on backwards paths--subject to object.

path1/path2 SequencePath Matches on forward paths--path1 followed by
path2.

path1|path2 AlternativePath Matches on either path1 or path2. Graph
Lakehouse finds all possibilities.

path1* ZeroOrMorePath Connects the subject and object of the path by
zero or more matches of path1, i.e., path1
repeated zero or more times.

path1+ OneOrMorePath Connects the subject and object of the path by one
or more matches of path1, i.e., path1 repeated one
or more times.

path1? ZeroOrOnePath Connects the subject and object of the path by
zero or one matches of path1, i.e., path1 is
optional.

Property Paths 657

https://www.w3.org/TR/sparql11-query/#propertypaths

Construct Expression Name Description

(path) N/A Specifies groups of paths. Use parentheses
around groups to control precedence.

!URI
or
!(URI1|...|URIn)

NegatedPropertySet A negated property path where matches are
excluded. The order of URIs is not significant.

!^URI
or
!(^URI1|
...|^URIn)

NegatedPropertySet Negated property path where the excluded
matches are based on a reversed path. The order
of URIs is not significant.
You can include a combination of forward and
reverse properties in a negated property set: !
(URI1|...|URIj|^URIj+1|...|^URIn)

String Functions

This topic describes the Graph Lakehouse functions that operate on string data types.

l CONCAT: Concatenates a list of strings.

l CONTAINS: Evaluates whether the specified string contains the given pattern.

l ENCODE_FOR_URI: Encodes the specified string as a URI.

l ESCAPEHTML: Escapes the specified string for use in HTML.

l FIND: Returns the position—from left to right—of a string within another string.

l FINDREVERSE: Returns the position—from right to left—of a string within another string.

l GROUP_CONCAT: Concatenates a group of strings into a single string.

l LANG: Returns any language tags that are included with strings.

l LANGMATCHES: Evaluates whether a string includes a language tag that matches the

specified language range.

String Functions 658

l LCASE: Converts the letters in a string to lower case.

l LEFT: Returns the specified number of characters starting from the beginning (left side) of

the string.

l LEVENSHTEIN_DIST: Calculates the Levenshtein distance or measure of similarity between

two strings.

l LTRIM_WS: Trims white space from the left side of a string.

l REGEX: Evaluates whether a string matches the specified regular expression pattern.

l REGEXP_SUBSTR: Searches a string for the specified regular expression pattern and

returns the substring that matches the pattern.

l REPLACE: Extends the REGEX function to provide the ability to find a pattern in a string and

replace it with another pattern.

l RIGHT: Returns the specified number of characters starting from the end (right side) of the

string.

l RPAD: Pads the right side of a string with the specified number of spaces.

l RTRIM_WS: Trims white space from the right side of a string

l STRAFTER: Returns the portion of a string that comes after the specified substring.

l STRBEFORE:Returns the portion of a string that comes before the specified substring.

l STRENDS: Evaluates whether the specified string ends with the specified substring.

l STRLANG: Constructs a literal value with the specified language tag.

l STRLEN: Returns the number of characters in the specified string.

l STRSTARTS: Evaluates whether the specified string starts with the specified substring.

l STRUUID: Returns a string that is the result of generating a Universally Unique Identifier

(UUID).

l SUBSTR: Returns a substring from a string value.

l TRIM: Removes all spaces from a string except for any single spaces between words.

String Functions 659

l UCASE: Converts the letters in a string to upper case.

l URI: Casts a string to a URI.

Typographical Conventions

The following list describes the conventions used to document function syntax:

l CAPS: Although SPARQL is case-insensitive, SPARQL keywords in this section are written in

uppercase for readability.

l [argument]: Brackets indicate an optional argument or keyword.

l |: Means OR. Indicates that you can use one or more of the specified options.

CONCAT

This function concatenates two or more strings and returns the result as a string.

Syntax

CONCAT(text1, text2 [, textN])

Argument Type Description

text1–N string The strings that you want to concatenate to form a single string.

Returns

Type Description

string The concatenated string.

CONTAINS

This function evaluates whether the specified strings contain the given pattern.

Syntax

CONTAINS(text, pattern)

String Functions 660

Argument Type Description

text string The string value that you want to check against the specified pattern.

pattern string The string pattern that you want to look for in the supplied text.

Returns

Type Description

boolean True if the strings contain the pattern and false if they do not.

ENCODE_FOR_URI

This function encodes the specified string as a URI and returns a string in URI format.

Syntax

ENCODE_FOR_URI(text)

Argument Type Description

text string The string value to encode as a URI.

Returns

Type Description

string The string as a URI.

Example

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT DISTINCT (ENCODE_FOR_URI(?eventname) as ?event)

FROM <http://anzograph.com/tickit>

WHERE {

String Functions 661

?s tickit:eventid ?eventid .

?eventid tickit:eventname ?eventname .

}

ORDER BY ?event

LIMIT 10

event

.38%20Special

3%20Doors%20Down

70s%20Soul%20Jam

A%20Bronx%20Tale

A%20Catered%20Affair

A%20Chorus%20Line

A%20Christmas%20Carol

A%20Doll%27s%20House

A%20Man%20For%20All%20Seasons

A%20Midsummer%20Night%27s%20Dream

10 rows

ESCAPEHTML

This function escapes the specified string for use in HTML.

Syntax

ESCAPEHTML(text)

Argument Type Description

text string The string value to escape for HTML.

Returns

Type Description

string The string escaped for HTML.

FIND

This function returns the position—from left to right—of a string within another string.

String Functions 662

Tip
You can use FINDREVERSE to find the character or substring position from right to left.

Syntax

FIND(find_text, within_text, start_num)

Argument Type Description

find_text string The string to look for in the within_text.

within_text string The string to search within.

start_num int An integer that indicates the position to start from when looking for the
find_text. The starting position is at the beginning of the within_
text value and characters are counted from left to right.

Returns

Type Description

int The character position (from left to right) where the substring starts.

FINDREVERSE

Similar to FIND, this function returns the position—from right to left—of a string within another

string.

Syntax

FINDREVERSE(find_text, within_text, start_num)

Argument Type Description

find_text string The string to look for in the within_text value.

String Functions 663

Argument Type Description

within_text string The string to search within.

start_num int An integer that indicates the position to start from when looking for the
find_text. The starting position is the end of the within_text
value and characters are counted from right to left.

Returns

Type Description

int The character position (from right to left) where the substring starts.

GROUP_CONCAT

This function concatenates a group of strings into a single string.

Syntax

GROUP_CONCAT (group ; [SEPARATOR = "separator_char"] ; [ROW_LIMIT = max_rows] ;

[PRE = "prefix"] ; [VALUE_SERIALIZE = serialize] ; [DELIMIT_BLANKS = separate_

blanks] ;

[MAX_LENGTH = string_length] ; [SUFFIX = "suffix"])

Argument Type Description

group string The group of strings to concatenate.

separator_
char

string Optional argument that defines the separator to use between the
values in returned strings. When SEPARATOR is omitted, Graph
Lakehouse separates values with a space.

max_rows int Optional argument that puts a maximum limit on the number of
rows to retrieve for the group. When ROW_LIMIT is omitted, the
default is unlimited. Note that Graph Lakehouse performs the

String Functions 664

Argument Type Description

GROUP_CONCAT for each slice separately and combines the
results from each slice. The ROW_LIMIT is applied to each slice,
not the total result. Therefore, the total number of values that are
concatenated will be larger than the specified limit, proportional to
the number of slices in the cluster.

prefix string Optional string to add as a prefix to the resulting string.

serialize boolean Optional argument that indicates whether returned values should
be serialized with the value's data type. When VALUE_SERIALIZE
is omitted, the default is false.

separate_
blanks

boolean Optional argument that indicates whether to delimit blanks with the
SEPARATOR value. When DELIMIT_BLANKS is omitted, the
default is false.

string_length int Optional argument that limits the resulting strings to a maximum
character length. Graph Lakehouse has a 2MB (~2,000,000
characters) limit on the length of strings and displays an error if
GROUP_CONCAT returns a string that is longer than 2000000.
When MAX_LENGTH is omitted, the default is unlimited.

suffix string Optional argument that defines a suffix to add to the resulting
strings. When SUFFIX is omitted, Graph Lakehouse adds an
empty string as the suffix.

Returns

Type Description

string The concatenated string.

String Functions 665

Example

The query below concatenates the list of friends for 10 people in the sample Tickit data set. Since

the GROUP_CONCAT expression includes ROW_LIMIT=2, Graph Lakehouse limits the records to

two for each slice (or shard) of data.

SELECT ?person (GROUP_CONCAT(?id;SEPARATOR=",";ROW_LIMIT=2) AS ?friends)

FROM <http://anzograph.com/tickit>

WHERE {

?person <http://anzograph.com/tickit/friend> ?friend .

BIND(STRAFTER(STR(?friend), "http://anzograph.com/tickit/") as ?id)

}

GROUP BY ?person

ORDER BY ?person

LIMIT 10

person | friends

--+--

http://anzograph.com/tickit/person1 |

person2894,person20624,person33618,person47127

http://anzograph.com/tickit/person10 | person3136,person22714,person2509,person24535

http://anzograph.com/tickit/person100 |

person42775,person29725,person27334,person24553

http://anzograph.com/tickit/person1000 | person19040,person39066,person2236,person9089

http://anzograph.com/tickit/person10000 |

person43706,person37085,person18874,person31270

http://anzograph.com/tickit/person10001 | person3389,person44830,person4720,person307

http://anzograph.com/tickit/person10002 |

person46462,person43989,person46491,person31130

http://anzograph.com/tickit/person10003 |

person31544,person19595,person23460,person28465

http://anzograph.com/tickit/person10004 |

person11070,person19845,person11172,person24252

http://anzograph.com/tickit/person10005 |

person33888,person9467,person35761,person47709

10 rows

LANG

This function returns any language tags that are included in the string. The results are grouped by

each language tag or by "blank" if a value does not have a language tag.

String Functions 666

Syntax

LANG(text)

Argument Type Description

text string The string to search for language tags.

Returns

Type Description

string The found language tags.

LANGMATCHES

This function tests whether a string includes a language tag that matches the specified language

range.

Syntax

LANGMATCHES(text, language_range)

Argument Type Description

text string The string to evaluate.

language_range string The language tag to match in the text.

Returns

Type Description

boolean True if strings include a language tag that matches the range and false if they do
not.

String Functions 667

LCASE

This function converts the letters in a string literal to lower case.

Tip
To convert the characters in a string according to a specific locale, you can use the LCASE

utility extension.

Syntax

LCASE(text)

Argument Type Description

text string The string literal to convert to lower case.

Returns

Type Description

string The string with lower case letters.

LEFT

This function returns the specified number of characters starting from the beginning (left side) of the

string.

Syntax

LEFT(text, num_chars)

Argument Type Description

text string The string from which to return the specified number of characters.

num_chars int An integer that specifies the number of characters to return, starting

String Functions 668

Argument Type Description

from the left side of the text.

Returns

Type Description

string The specified number of characters from the string.

LEVENSHTEIN_DIST

This function calculates the Levenshtein distance or measure of similarity between two strings. The

distance is the smallest number of insertions, deletions, and/or substitutions required to transform

the first string into the second string.

Syntax

LEVENSHTEIN_DIST(text1, text2)

Argument Type Description

text1 string The string that would be transformed into text2.

text2 string The string to measure text1 against.

Returns

Type Description

int The Levenshtein distance between the strings.

LTRIM_WS

This function removes all spaces from the left side of a string.

String Functions 669

Syntax

LTRIM_WS(text)

Argument Type Description

text string The string to trim.

Returns

Type Description

string The string with spaces removed.

REGEX

This function tests whether a string matches the specified regular expression pattern.

Syntax

REGEX(text, pattern [, flags])

Argument Type Description

text string The string to test against the pattern.

pattern string The regular expression pattern to look for in the text. For information
about the supported regular expression syntax, see the Regular
Expression Syntax section of the W3C XQuery 1.0 and XPath 2.0
Functions and Operators specification.

flags string You can include one or more optional modifier flags that further define
the pattern. For information about flags, see the Flags section of the
W3C Functions and Operators specification.

String Functions 670

https://www.w3.org/TR/xpath-functions/#regex-syntax
https://www.w3.org/TR/xpath-functions/#regex-syntax
https://www.w3.org/TR/xpath-functions/#flags

Returns

Type Description

boolean True if the string matches the regular expression pattern and false if it does not.

REGEXP_SUBSTR

This function searches a string for the specified regular expression pattern and returns the substring

that matches the pattern.

Syntax

REGEXP_SUBSTR(text, pattern [, start_position] [, nth_appearance])

Argument Type Description

text string The string to test against the pattern.

pattern string The regular expression pattern to look for in the text. For
information about the supported regular expression syntax, see the
Regular Expression Syntax section of the W3C XQuery 1.0 and
XPath 2.0 Functions and Operators specification.

start_position int An optional integer that specifies the number of characters from the
beginning of the string to start searching for matches (the default
value is 1).

nth_
appearance

int An optional integer that specifies which occurrence of the pattern to
match (the default value is 1).

String Functions 671

https://www.w3.org/TR/xpath-functions/#regex-syntax

Returns

Type Description

string The substring that matches the regular expression pattern.

REPLACE

This function extends the REGEX function to provide the ability to find a pattern in a string and

replace it with another pattern. The function returns the replaced string.

Syntax

REPLACE(text, pattern, replacement_pattern [, flags])

Argument Type Description

text string The string to test against the pattern.

pattern string The regular expression pattern to look for in the text. For
information about the supported regular expression syntax, see
the Regular Expression Syntax section of the W3C XQuery 1.0
and XPath 2.0 Functions and Operators specification.

replacement_
pattern

string The pattern to replace the pattern with.

flags string You can include one or more optional modifier flags that further
define the pattern. For information about flags, see the Flags
section of the W3C Functions and Operators specification.

String Functions 672

https://www.w3.org/TR/xpath-functions/#regex-syntax
https://www.w3.org/TR/xpath-functions/#flags

Returns

Type Description

string The string that contains the replacement pattern.

RIGHT

This function returns the specified number of characters starting from the end (right side) of the

string.

Syntax

RIGHT(text, num_chars)

Argument Type Description

text string The string from which to return the specified number of characters.

num_chars int An integer that specifies the number of characters to return, starting
from the right side of the text.

Returns

Type Description

string The specified characters from the string.

RPAD

This function pads the end (right side) of a string with the number of spaces that you specify.

Syntax

RPAD(text, num_spaces)

String Functions 673

Argument Type Description

text string The string to add the spaces to.

num_spaces int An integer that specifies the number of spaces to add to the end of the
text.

Returns

Type Description

string The value with the specified number of spaces.

RTRIM_WS

This function removes all spaces from the right side of a string.

Syntax

RTRIM_WS(text)

Argument Type Description

text string The string to trim.

Returns

Type Description

string The string with spaces removed.

STRAFTER

This function returns the portion of a string that comes after the specified substring.

String Functions 674

Syntax

STRAFTER(text, substring)

Argument Type Description

text string The string from which to return the characters that follow the
substring.

substring string The string to match in the text. The function will return the part of the
text that comes after this substring.

Returns

Type Description

string The part of the string that comes after the substring.

Example

The following example query uses STRAFTER to return only the unique portion of each event ID in

the sample Tickit data set. The query uses BIND to convert the event URIs to strings and bind them

to the ?str_event variable.

SELECT (STRAFTER(?str_event, "event") AS ?event_number) ?name

FROM <http://anzograph.com/tickit>

WHERE {

?event <http://anzograph.com/tickit/eventname> ?name .

BIND (STR(?event) AS ?str_event)

}

ORDER BY ?event_number

event_number | name

-------------+---------------------------------

1 | Gotterdammerung

10 | Rigoletto

100 | Siegfried

String Functions 675

1000 | Gypsy

1001 | Chicago

1002 | The King and I

1003 | Pal Joey

1004 | Grease

...

8798 rows

STRBEFORE

This function returns the portion of a string that comes before the specified substring.

Syntax

STRAFTER(text, substring)

Argument Type Description

text string The string from which to return the characters that precede the
substring.

substring string The string to match in the text. The function will return the part of the
text that comes before this substring.

Returns

Type Description

string The part of the string that comes before the substring.

STRENDS

This function evaluates whether the specified string ends with the specified substring.

Syntax

STRENDS(text, substring)

String Functions 676

Argument Type Description

text string The string to search for the substring.

substring string The string to match at the end of text. The function returns true if the
text ends in the specified substring and false if it does not.

Returns

Type Description

boolean True if strings end with the specified substring and false if they do not.

STRLANG

This function constructs a literal value with the specified language tag.

Syntax

STRLANG(text, language_tag)

Argument Type Description

text string The string to add the language tag to.

language_tag string The language tag to add to the text.

Returns

Type Description

string The literal value with the language tag.

STRLEN

This function calculates the length (in characters) of a string value.

String Functions 677

Syntax

STRLEN(text)

Argument Type Description

text string The string for which to return the length.

Returns

Type Description

long The number of characters in the string.

STRSTARTS

This function evaluates whether the specified string starts with the specified substring.

Syntax

STRENDS(text, substring)

Argument Type Description

text string The string to search for the substring.

substring string The string to match at the beginning of text. The function returns true
if the text starts with the specified substring and false if it does not.

Returns

Type Description

boolean True if strings begin with the specified substring and false if they do not.

String Functions 678

STRUUID

This function returns a string that is the result of generating a Universally Unique Identifier (UUID).

Syntax

STRUUID()

Returns

Type Description

string The UUID.

SUBSTR

This function returns a substring from a string value.

Syntax

SUBSTR(text, start [, length])

Argument Type Description

text string The string to find the substring in.

start int An integer that specifies the number of the character in the text that
should be the start of the substring.

length int An optional integer that specifies the total number of characters to
include in the substring. If not specified, the substring will end at the
end of the text value.

String Functions 679

Returns

Type Description

string The substring.

TRIM

This function removes all spaces from a string except for any single spaces between words.

Syntax

TRIM(text)

Argument Type Description

text string The string to trim.

Returns

Type Description

string The string with spaces removed.

UCASE

This function converts all letters in a string to upper case.

Tip
To convert the characters in a string according to a specific locale, you can use the UCASE

utility extension.

Syntax

UPPER(text)

String Functions 680

Argument Type Description

text string The string value to convert to upper case.

Returns

Type Description

string The string with upper case characters.

URI

This function casts the specified string to a URI.

Syntax

URI(value)

Argument Type Description

value string The value to convert to a URI.

Returns

Type Description

URI The value as a URI.

Update Functions

This topic describes the SPARQL functions that are used to load, insert, or update data.

l CLEAR: Deletes all of the triples in a graph without deleting the graph.

l COPY: Copies graph data from the database to disk.

l CREATE: Creates a new empty graph.

Update Functions 681

l DELETE and DELETE DATA: Deletes the specified graph or triple patterns or specific triples

from the database.

l DROP: Deletes a graph and all of its triples.

l INSERT and INSERT DATA: Inserts the specified graph or triple patterns or specific triples to

the database.

l LOAD: Loads data to the database from RDF files that are on the Graph Lakehouse file

system. For information, see Load RDF Data from Files.

Typographical Conventions

The following list describes the conventions used to document function syntax:

l CAPS: Although SPARQL is case-insensitive, SPARQL keywords in this section are written in

uppercase for readability.

l [argument]: Brackets indicate an optional argument or keyword.

l |: Means OR. Indicates that you can use one or more of the specified options.

CLEAR

The CLEAR function deletes all of the triples in a graph without deleting the graph.

Syntax

CLEAR [SILENT] GRAPH <graph_URI> | DEFAULT | NAMED | ALL

The optional SILENT keyword tells Graph Lakehouse not to return an error if an error occurs.

Statement Description

CLEAR GRAPH <graph_
URI>

Deletes all of the triples from the named graph.

CLEAR DEFAULT Deletes all of the triples from the default graph.

CLEAR NAMED Deletes all of the triples from all of the named graphs in the

Update Functions 682

Statement Description

database.

CLEAR ALL Deletes all of the triples from all graphs.

COPY

In Graph Lakehouse, the COPY operation is used to copy graph data from the database to files on

disk. For information on using the Graph Lakehouse COPY command, see Copy Graphs to Files.

CREATE

The CREATE function creates a new empty graph.

Syntax

CREATE [SILENT] GRAPH <graph_uri>

The optional SILENT keyword tells Graph Lakehouse not to return an error if an error occurs.

DELETE and DELETE DATA

The DELETE function deletes the specified graph or triple patterns from the database. The DELETE

DATA function deletes specific triples from the database. DELETE DATA statements cannot include

variables.

DELETE Syntax

Use the following syntax to delete graph and triple patterns with the DELETE function.

DELETE { graph_and_triple_patterns }

WHERE { graph_and_triple_patterns }

DELETE DATA Syntax

Use the following syntax to delete specific triples with the DELETE DATA function.

DELETE DATA { [GRAPH <graph_uri> {] triples } [}]

Update Functions 683

The optional GRAPH statement specifies the graph to delete the triples from. The triples that you list

must include URIs, literal, values, or blank nodes. You cannot specify triple patterns with variables.

For example, the query below uses DELETE DATA to remove the person0 triples from the tickit

graph:

DELETE { GRAPH <http://anzograph.com/tickit> {

<person0> <http://anzograph.com/tickit/firstname> "Jay" .

<person0> <http://anzograph.com/tickit/lastname> "Stevens" .

<person0> <http://anzograph.com/tickit/state> "CA" .

}

}

DROP

The DROP function deletes a graph and all of its triples.

Syntax

Use the following syntax to delete graphs and their triples using the DROP function.

DROP [SILENT] GRAPH <graph_uri> | DEFAULT | NAMED | ALL

The optional SILENT keyword tells Graph Lakehouse not to return an error if an error occurs.

Option Description

DROP GRAPH
<graph_URI>

Deletes the named graph.

DROP DEFAULT Since a graph database must always have a default graph, the DROP
DEFAULT operation deletes the triples from the default graph; it does not
remove the graph. DROP DEFAULT is synonymous with CLEAR
DEFAULT.

DROP NAMED Deletes all of the named graphs in the database.

DROP ALL Deletes all of the graphs and their triples from the database. Since the
default graph cannot be removed, the triples from the default graph are

Update Functions 684

Option Description

deleted but the default graph remains.

INSERT and INSERT DATA

The INSERT function inserts the specified graph or triple patterns into the database. The INSERT

DATA function inserts specific triples into the database. INSERT DATA statements cannot include

variables.

INSERT Syntax

Use the following syntax to insert data using graph and triple patterns. The syntax below inserts

triples into the default graph:

INSERT { triple_patterns }

WHERE { triple_patterns }

The following syntax inserts triples into a named graph. The WHERE clause specifies the named

graph to find triple patterns.

INSERT { GRAPH <graph_uri> { triple_patterns } }

WHERE { GRAPH <graph_uri> { triple_patterns } }

As an alternative, you can include one or more USING clauses to specify named graphs for the

WHERE clause. USING acts like a FROM clause in a SELECT query.

INSERT { GRAPH <graph_uri> { triple_patterns } }

USING <graph_uri>

WHERE { triple_patterns }

INSERT DATA Syntax

Use the following syntax to insert specific triples with the INSERT DATA function.

INSERT DATA { triples }

Use the following syntax to insert specific triples into a graph with the INSERT DATA function.

INSERT DATA { GRAPH <graph_uri> { triples } }

Update Functions 685

The GRAPH statement specifies the graph to insert the triples in. The triples that you list must

include URIs, literal, values, or blank nodes. You cannot specify triple patterns with variables. For

example, the query below uses INSERT DATA to add a new user to the sample tickit data set:

INSERT DATA { GRAPH <http://anzograph.com/tickit> {

<person0> <http://anzograph.com/tickit/firstname> "Jay" .

<person0> <http://anzograph.com/tickit/lastname> "Stevens" .

<person0> <http://anzograph.com/tickit/state> "CA" .

}

}

The query below inserts a graph named "friends" using data from the tickit graph.

INSERT { GRAPH <friends> {

?person <http://anzograph.com/tickit/friendOf> ?friend .

}

USING <http://anzograph.com/tickit>

WHERE { ?person <http://anzograph.com/tickit/friend> ?friend .

}

Window Aggregate and Ranking Functions

Window aggregate functions enable you to compute aggregate values on a particular partition or

window of the result set. Unlike grouped aggregate functions that group the results and return a

single value, window aggregates return a value for each row in the specified window. For example,

using the grouped aggregate SUM function to add up the total number of tickets sold in a year

returns one value: the total number of tickets sold for the year. By using the SUM window aggregate

instead, the results could be partitioned by month so that the query returns 12 values: the sum of the

number of tickets sold in each month of the year.

This topic describes the window aggregate and ranking functions in Graph Lakehouse:

l AVG: Calculates the average value of each group of values.

l COUNT: Counts the number of values in each group of values.

l MAX: Calculates the maximum value of each group of values.

l MIN: Calculates the minimum value of each group of values.

Window Aggregate and Ranking Functions 686

l NTILE: Divides the rows in the partition into the specified number of ranked groups and

returns the group that each value belongs to.

l PERCENTILE: Divides the rows in the partition into 100 ranked groups and returns the group

that each value belongs to.

l PRODUCT: Calculates the product of each group of values.

l QUARTILE: Divides the rows in the partition into four ranked groups and returns the group

that each value belongs to.

l ROW_NUMBER: Assigns unique numbers to each row in the partition.

l SUM: Calculates the sum of each group of values.

Typographical Conventions

The following list describes the conventions used to document function syntax:

l CAPS: Although SPARQL is case-insensitive, SPARQL keywords in this section are written in

uppercase for readability.

l [argument]: Brackets indicate an optional argument or keyword.

l |: Means OR. Indicates that you can use one or more of the specified options.

AVG

This function calculates the average value of each group of values.

Syntax

(AVG(value) OVER (

[PARTITION BY partition_value]

[ORDER BY order_value]

frame clause

[[ROWS] frame_start |

[ROWS] BETWEEN frame_start AND frame_end

]

)

AS ?variable)

Window Aggregate and Ranking Functions 687

Argument Description

value Required argument that defines the group of values to operate on.

partition_
value

The optional PARTITION BY clause forms the groups of rows, dividing the result
set into the partitions defined by the given partition_value. If you do not
include PARTITION BY, the partition becomes the entire result set. When
PARTITION BY is included, the function is applied to the group of rows in each
partition.

order_value The optional ORDER BY clause defines the order or sequence of rows within each
partition.

frame clause The reference point for all window frames is the current row. The optional frame
clause further defines the frame by specifying the rows in a partition to combine
with the current row. There are two types of window frames:

l A fixed frame with two moving endpoints: Each row becomes the current

row as the window frame slides forward in the partition. This type of

frame is ideal for computing aggregations over moving time frames.

l A resizing frame with one anchored endpoint: One row is a fixed

endpoint and the frame resizes up (PRECEDING) or down

(FOLLOWING). This type of frame is ideal for computing running totals.

The frame clause can be one of the following options:

[ROWS] frame_start

[ROWS] BETWEEN frame_start AND frame_end

When a frame clause is not included, the window frame is unbounded: ROWS

BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

frame_start The starting point of the frame. This argument can be one of the following values:

UNBOUNDED PRECEDING

positive_int PRECEDING

Window Aggregate and Ranking Functions 688

Argument Description

CURRENT ROW

positive_int FOLLOWING

frame_end The end of the frame. This argument can be one of the following values:

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

UNBOUNDED FOLLOWING

COUNT

This function counts the number of values in each group of values.

Syntax

(COUNT(value) OVER (

[PARTITION BY partition_value]

[ORDER BY order_value]

frame clause

[[ROWS] frame_start |

[ROWS] BETWEEN frame_start AND frame_end

]

)

AS ?variable)

Argument Description

value Required argument that defines the group of values to operate on.

partition_
value

The optional PARTITION BY clause forms the groups of rows, dividing the result
set into the partitions defined by the given partition_value. If you do not
include PARTITION BY, the partition becomes the entire result set. When
PARTITION BY is included, the function is applied to the group of rows in each
partition.

Window Aggregate and Ranking Functions 689

Argument Description

order_value The optional ORDER BY clause defines the order or sequence of rows within each
partition.

frame clause The reference point for all window frames is the current row. The optional frame
clause further defines the frame by specifying the rows in a partition to combine
with the current row. There are two types of window frames:

l A fixed frame with two moving endpoints: Each row becomes the current

row as the window frame slides forward in the partition. This type of

frame is ideal for computing aggregations over moving time frames.

l A resizing frame with one anchored endpoint: One row is a fixed

endpoint and the frame resizes up (PRECEDING) or down

(FOLLOWING). This type of frame is ideal for computing running totals.

The frame clause can be one of the following options:

[ROWS] frame_start

[ROWS] BETWEEN frame_start AND frame_end

When a frame clause is not included, the window frame is unbounded: ROWS

BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

frame_start The starting point of the frame. This argument can be one of the following values:

UNBOUNDED PRECEDING

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

frame_end The end of the frame. This argument can be one of the following values:

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

UNBOUNDED FOLLOWING

Window Aggregate and Ranking Functions 690

MAX

This function calculates the maximum value of each group of values.

Syntax

(MAX(value) OVER (

[PARTITION BY partition_value]

[ORDER BY order_value]

frame clause

[[ROWS] frame_start |

[ROWS] BETWEEN frame_start AND frame_end

]

)

AS ?variable)

Argument Description

value Required argument that defines the group of values to operate on.

partition_
value

The optional PARTITION BY clause forms the groups of rows, dividing the result
set into the partitions defined by the given partition_value. If you do not
include PARTITION BY, the partition becomes the entire result set. When
PARTITION BY is included, the function is applied to the group of rows in each
partition.

order_value The optional ORDER BY clause defines the order or sequence of rows within each
partition.

frame clause The reference point for all window frames is the current row. The optional frame
clause further defines the frame by specifying the rows in a partition to combine
with the current row. There are two types of window frames:

l A fixed frame with two moving endpoints: Each row becomes the current

row as the window frame slides forward in the partition. This type of

frame is ideal for computing aggregations over moving time frames.

l A resizing frame with one anchored endpoint: One row is a fixed

Window Aggregate and Ranking Functions 691

Argument Description

endpoint and the frame resizes up (PRECEDING) or down

(FOLLOWING). This type of frame is ideal for computing running totals.

The frame clause can be one of the following options:

[ROWS] frame_start

[ROWS] BETWEEN frame_start AND frame_end

When a frame clause is not included, the window frame is unbounded: ROWS

BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

frame_start The starting point of the frame. This argument can be one of the following values:

UNBOUNDED PRECEDING

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

frame_end The end of the frame. This argument can be one of the following values:

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

UNBOUNDED FOLLOWING

MIN

This function calculates the minimum value of each group of values.

Syntax

(MIN(value) OVER (

[PARTITION BY partition_value]

[ORDER BY order_value]

frame clause

[[ROWS] frame_start |

[ROWS] BETWEEN frame_start AND frame_end

]

Window Aggregate and Ranking Functions 692

)

AS ?variable)

Argument Description

value Required argument that defines the group of values to operate on.

partition_
value

The optional PARTITION BY clause forms the groups of rows, dividing the result
set into the partitions defined by the given partition_value. If you do not
include PARTITION BY, the partition becomes the entire result set. When
PARTITION BY is included, the function is applied to the group of rows in each
partition.

order_value The optional ORDER BY clause defines the order or sequence of rows within each
partition.

frame clause The reference point for all window frames is the current row. The optional frame
clause further defines the frame by specifying the rows in a partition to combine
with the current row. There are two types of window frames:

l A fixed frame with two moving endpoints: Each row becomes the current

row as the window frame slides forward in the partition. This type of

frame is ideal for computing aggregations over moving time frames.

l A resizing frame with one anchored endpoint: One row is a fixed

endpoint and the frame resizes up (PRECEDING) or down

(FOLLOWING). This type of frame is ideal for computing running totals.

The frame clause can be one of the following options:

[ROWS] frame_start

[ROWS] BETWEEN frame_start AND frame_end

When a frame clause is not included, the window frame is unbounded: ROWS

BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

Window Aggregate and Ranking Functions 693

Argument Description

frame_start The starting point of the frame. This argument can be one of the following values:

UNBOUNDED PRECEDING

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

frame_end The end of the frame. This argument can be one of the following values:

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

UNBOUNDED FOLLOWING

NTILE

This function divides the rows in the partition into the specified number of ranked groups and returns

the group that each value belongs to.

Syntax

(NTILE(number_of_groups) OVER (

[PARTITION BY partition_value]

[ORDER BY order_value]

)

AS ?variable)

Argument Description

number_of_
groups

Required argument that defines the number of ranking groups.

partition_
value

The optional PARTITION BY clause forms the groups of rows, dividing the result
set into the partitions defined by the given partition_value. If you do not
include PARTITION BY, the partition becomes the entire result set. When
PARTITION BY is included, the function is applied to the group of rows in each

Window Aggregate and Ranking Functions 694

Argument Description

partition.

order_value The optional ORDER BY clause defines the order or sequence of rows within each
partition.

PERCENTILE

This function divides the rows in the partition into 100 ranked groups and returns the group that

each value belongs to.

Syntax

(PERCENTILE(value) OVER (

[PARTITION BY partition_value]

[ORDER BY order_value]

)

AS ?variable)

Argument Description

value Required argument that defines the group of values to operate on.

partition_
value

The optional PARTITION BY clause forms the groups of rows, dividing the result
set into the partitions defined by the given partition_value. If you do not
include PARTITION BY, the partition becomes the entire result set. When
PARTITION BY is included, the function is applied to the group of rows in each
partition.

order_value The optional ORDER BY clause defines the order or sequence of rows within each
partition.

PRODUCT

This function calculates the product of each group of values.

Window Aggregate and Ranking Functions 695

Syntax

(PRODUCT(value) OVER (

[PARTITION BY partition_value]

[ORDER BY order_value]

frame clause

[[ROWS] frame_start |

[ROWS] BETWEEN frame_start AND frame_end

]

)

AS ?variable)

Argument Description

value Required argument that defines the group of values to operate on.

partition_
value

The optional PARTITION BY clause forms the groups of rows, dividing the result
set into the partitions defined by the given partition_value. If you do not
include PARTITION BY, the partition becomes the entire result set. When
PARTITION BY is included, the function is applied to the group of rows in each
partition.

order_value The optional ORDER BY clause defines the order or sequence of rows within each
partition.

frame clause The reference point for all window frames is the current row. The optional frame
clause further defines the frame by specifying the rows in a partition to combine
with the current row. There are two types of window frames:

l A fixed frame with two moving endpoints: Each row becomes the current

row as the window frame slides forward in the partition. This type of

frame is ideal for computing aggregations over moving time frames.

l A resizing frame with one anchored endpoint: One row is a fixed

endpoint and the frame resizes up (PRECEDING) or down

(FOLLOWING). This type of frame is ideal for computing running totals.

Window Aggregate and Ranking Functions 696

Argument Description

The frame clause can be one of the following options:

[ROWS] frame_start

[ROWS] BETWEEN frame_start AND frame_end

When a frame clause is not included, the window frame is unbounded: ROWS

BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

frame_start The starting point of the frame. This argument can be one of the following values:

UNBOUNDED PRECEDING

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

frame_end The end of the frame. This argument can be one of the following values:

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

UNBOUNDED FOLLOWING

QUARTILE

This function divides the rows in the partition into four ranked groups and returns the group that

each value belongs to.

Syntax

(QUARTILE(value) OVER (

[PARTITION BY partition_value]

[ORDER BY order_value]

)

AS ?variable)

Window Aggregate and Ranking Functions 697

Argument Description

value Required argument that defines the group of values to operate on.

partition_
value

The optional PARTITION BY clause forms the groups of rows, dividing the result
set into the partitions defined by the given partition_value. If you do not
include PARTITION BY, the partition becomes the entire result set. When
PARTITION BY is included, the function is applied to the group of rows in each
partition.

order_value The optional ORDER BY clause defines the order or sequence of rows within each
partition.

ROW_NUMBER

This function assigns unique numbers to each row in the partition.

Syntax

(ROW_NUMBER() OVER (

[PARTITION BY partition_value]

[ORDER BY order_value]

)

AS ?variable)

Argument Description

partition_
value

The optional PARTITION BY clause forms the groups of rows, dividing the result
set into the partitions defined by the given partition_value. If you do not
include PARTITION BY, the partition becomes the entire result set. When
PARTITION BY is included, the function is applied to the group of rows in each
partition.

order_value The optional ORDER BY clause defines the order or sequence of rows within each
partition.

Window Aggregate and Ranking Functions 698

SUM

This function calculates the sum of each group of values.

Syntax

(SUM(value) OVER (

[PARTITION BY partition_value]

[ORDER BY order_value]

frame clause

[[ROWS] frame_start |

[ROWS] BETWEEN frame_start AND frame_end

]

)

AS ?variable)

Argument Description

value Required argument that defines the group of values to operate on.

partition_
value

The optional PARTITION BY clause forms the groups of rows, dividing the result
set into the partitions defined by the given partition_value. If you do not
include PARTITION BY, the partition becomes the entire result set. When
PARTITION BY is included, the function is applied to the group of rows in each
partition.

order_value The optional ORDER BY clause defines the order or sequence of rows within each
partition.

frame clause The reference point for all window frames is the current row. The optional frame
clause further defines the frame by specifying the rows in a partition to combine
with the current row. There are two types of window frames:

l A fixed frame with two moving endpoints: Each row becomes the current

row as the window frame slides forward in the partition. This type of

frame is ideal for computing aggregations over moving time frames.

l A resizing frame with one anchored endpoint: One row is a fixed

Window Aggregate and Ranking Functions 699

Argument Description

endpoint and the frame resizes up (PRECEDING) or down

(FOLLOWING). This type of frame is ideal for computing running totals.

The frame clause can be one of the following options:

[ROWS] frame_start

[ROWS] BETWEEN frame_start AND frame_end

When a frame clause is not included, the window frame is unbounded: ROWS

BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

frame_start The starting point of the frame. This argument can be one of the following values:

UNBOUNDED PRECEDING

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

frame_end The end of the frame. This argument can be one of the following values:

positive_int PRECEDING

CURRENT ROW

positive_int FOLLOWING

UNBOUNDED FOLLOWING

Examples

This example queries the sample Tickit data set to return the percentage of a salesperson's total

sales that came from the "Gypsy" event:

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?event_name ?fname ?lname

((?dollars * 100.0/(SUM(?dollars) OVER(PARTITION BY ?event))) as ?percent_of_sales)

FROM <http://anzograph.com/tickit>

WHERE {

?sale tickit:eventid ?event .

?event tickit:eventname ?event_name .

?sale tickit:sellerid ?salesperson .

Window Aggregate and Ranking Functions 700

?sale tickit:pricepaid ?dollars .

?salesperson tickit:firstname ?fname .

?salesperson tickit:lastname ?lname .

FILTER(?event_name = "Gypsy").

}

ORDER BY ?event_name desc(?percent_of_sales)

event_name | fname | lname | percent_of_sales

-----------+-------------+-------------+------------------

Gypsy | Zoe | Sosa | 100

Gypsy | Xaviera | Jacobson | 50.9415

Gypsy | Brianna | Mcfarland | 50.5076

Gypsy | Alexa | Baird | 45.7926

Gypsy | Roanna | Wood | 42.0408

Gypsy | Colette | Clay | 36.9388

Gypsy | Amela | Holman | 35.7277

Gypsy | Aubrey | Terrell | 32.2457

Gypsy | Bruno | Griffin | 31.8139

Gypsy | Damian | Berger | 31.2459

Gypsy | Zelenia | Woods | 31.1616

Gypsy | Imogene | Mclean | 31.0005

...

857 rows

This example queries the sample Tickit data set to return a running total of the number of tickets

sold for the event "Mamma Mia!":

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT ?event ?month (SUM(?qty) OVER (PARTITION BY ?month ORDER BY ?event

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS ?tickets)

FROM <http://anzograph.com/tickit>

WHERE {

?s tickit:qtysold ?qty .

?s tickit:eventid ?eventid .

?eventid tickit:eventname ?event .

?s tickit:dateid ?date .

?date tickit:month ?month .

filter(?event="Mamma Mia!")

}

ORDER BY ?tickets

LIMIT 100

Window Aggregate and Ranking Functions 701

event | month | tickets

-----------+-------+---------

Mamma Mia! | FEB | 1

Mamma Mia! | AUG | 1

Mamma Mia! | MAR | 1

Mamma Mia! | MAY | 1

Mamma Mia! | JUN | 2

Mamma Mia! | SEP | 2

Mamma Mia! | AUG | 2

Mamma Mia! | DEC | 2

Mamma Mia! | NOV | 2

Mamma Mia! | OCT | 2

Mamma Mia! | JAN | 2

Mamma Mia! | MAR | 2

Mamma Mia! | NOV | 3

Mamma Mia! | JAN | 3

Mamma Mia! | JUN | 4

Mamma Mia! | JUL | 4

Mamma Mia! | SEP | 4

...

100 rows

Advanced Grouping Sets

Graph Lakehouse supports creating advanced reports using grouping set extensions in the GROUP

BY clause. Advanced grouping expressions enable users to conduct multidimensional analysis

using a single statement in a single query to calculate different combinations of aggregations. This

topic describes the Graph Lakehouse grouping set extensions:

l CUBE: Use CUBE expressions to generate subtotals for all combinations of different

dimensions. For example, use CUBE to report on revenue by various dimensions such as

region, time, and department.

l ROLLUP: Use ROLLUP expressions to generate subtotals for hierarchical levels of the same

dimension, such as time or geography. For example, use ROLLUP to report on revenue by

year, month, and day or by country, state, and city.

l GROUPING SETS: Use GROUPING SETS expressions to group the GROUP BY list into

subsets.

Advanced Grouping Sets 702

l GROUPING: If a GROUP BY clause includes a CUBE, ROLLUP, or GROUPING SETS

expression, the results of the expression might include unbound (NULL) values. Unbound

values can result from either the WHERE clause operations (which are input to the GROUP

BY clause) or the UNION of the individual grouping results in the GROUP BY clause. Using a

GROUPING expression in conjunction with CUBE, ROLLUP, and GROUPING SETS enables

users to determine the reason for an unbound result. GROUPING denotes the cause of an

unbound result by returning 1 if the unbound value is the result of the grouping operation in
the GROUP BY clause or 0 if the unbound value originated as input to the GROUP BY

clause.

Advanced Grouping Sets 703

Extension Libraries

The topics in this section provide descriptions, usage information, and examples for the Graph

Lakehouse extension libraries.

In this section:

Apache Arrow Library

Apache Arrow is a software development platform for building high performance applications that

process and transport large data sets. It is designed to improve both the performance of analytical

algorithms and the efficiency of moving data from one system to another. One important feature of

Apache Arrow is its in-memory columnar format, a standardized, language-agnostic specification

for representing structured, table-like data sets in memory.

Graph Lakehouse can act as an Apache Arrow client for graph query driven exports and imports of

in-memory data sets. Graph Lakehouse provides a collection of services that support the Arrow

Flight protocol for integration with leading ML and other Big Data Ecosystems, including Python

Pandas, Spark MLLIB and Google Tensorflow, Cassandra, Kudu, and Hadoop. This topic provides

details about the Arrow services:

l arrow_flight_get: Returns data about a specific flight from the flight server.

l arrow_flight_get_info: Returns metadata about a specific flight.

l arrow_flight_list: Lists all of the available flights known to the flight server.

l arrow_flight_push: Pushes query results directly to the flight server.

l arrow_flight_push_csv: Pushes a CSV file to the flight server.

arrow_flight_get

This service returns data for a specific flight from the flight server.

Syntax

SERVICE <http://cambridgesemantics.com/anzograph/inmemory#arrow_flight_get>

("IP", port, flight_type, "flight_name", "root_cert_file")

Extension Libraries 704

Argument Type Description

IP string Flight server IP address.

port int Server port number.

flight_type int Flight descriptor's type: 1-PATH, 2-CMD .

flight_name string Name of the flight.

root_cert_
file

string Path to a trusted TLS root certificate. For non-TLS operation, specify
an empty path.

The function returns the column data for the specified flight.

Example 1

Returns CMD flight data using a custom name.

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

SELECT *

WHERE {

SERVICE exfun:arrow_flight_get("10.117.2.36", 5005, 2, "tickit_total_price",

"/tmp/arrow/keys/root-ca.pem") { }

}

ORDER BY ?ticketPrice ?numtickets

LIMIT 3

ticketPrice | numtickets | totalPrice

------------+------------+------------

20.000000 | 1 | 20.000000

20.000000 | 1 | 20.000000

20.000000 | 1 | 20.000000

Example 2

Returns PATH flight.

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

SELECT *

Apache Arrow Library 705

WHERE {

SERVICE exfun:arrow_flight_get("10.117.2.36", 5005, 1, "/tmp/arrow/data/iris.csv",

"/tmp/arrow/keys/root-ca.pem") { }

}

ORDER BY ?sepal_length ?sepal_width ?petal_length ?petal_width

LIMIT 3

sepal_length | sepal_width | petal_length | petal_width | variety

-------------+-------------+---------------+-------------+--------

4.300000 | 3.000000 | 1.100000 | 0.100000 | Setosa

4.400000 | 2.900000 | 1.400000 | 0.200000 | Setosa

4.400000 | 3.000000 | 1.300000 | 0.200000 | Setosa

Example 3

Returns CMD flight using the query name.

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

SELECT *

WHERE {

SERVICE exfun:arrow_flight_get("10.117.2.36", 5005, 2, "SELECT ?ticketPrice

?numtickets ?totalPrice WHERE { ?sell <priceperticket> ?ticketPrice; <numtickets>

?numtickets; <totalprice> ?totalPrice . }", "/tmp/arrow/keys/root-ca.pem") { }

}

ORDER BY ?ticketPrice ?numtickets

LIMIT 3

ticketPrice | numtickets | totalPrice

-------------+------------+------------

20.000000 | 1 | 20.000000

20.000000 | 1 | 20.000000

20.000000 | 1 | 20.000000

Example 4

Create a graph from a CMD flight with a custom name.

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

INSERT

{

graph <flight_graph1> {

?insUri <ticketPrice> ?ticketPrice;

<numtickets> ?numtickets;

<totalPrice> ?totalPrice.

Apache Arrow Library 706

}

}

WHERE {

SERVICE exfun:arrow_flight_get("10.117.2.36", 5005, 2, "tickit_total_price",

"/tmp/arrow/keys/root-ca.pem") {

}

BIND(IRI(CONCAT("http:/CSI.COM/", STRUUID())) as ?insUri)

}

To display the graph data, you can run the following query:

SELECT ?ticketPrice ?numtickets ?totalPrice

FROM <flight_graph1>

WHERE {

?insUri <ticketPrice> ?ticketPrice;

<numtickets> ?numtickets;

<totalPrice> ?totalPrice.

}

ORDER BY ?ticketPrice ?numtickets

LIMIT 3

ticketPrice | numtickets | totalPrice

------------+------------+------------

20.000000 | 1 | 20.000000

20.000000 | 1 | 20.000000

20.000000 | 1 | 20.000000

Example 5

Creates a graph from a PATH flight.

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

INSERT

{

graph <flight_graph2> {

?insUri <sepal_length> ?sepal_length;

<sepal_width> ?sepal_width;

<petal_length> ?petal_length;

<petal_width> ?petal_width;

<variety> ?variety.

}

}

WHERE {

SERVICE exfun:arrow_flight_get("10.117.2.36", 5005, 1, "/tmp/arrow/data/iris.csv",

Apache Arrow Library 707

"/tmp/arrow/keys/root-ca.pem") { }

BIND(IRI(CONCAT("http:/CSI.COM/", STRUUID())) as ?insUri)

}

Example 6

Creates a graph from a CMD flight with a query name.

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

INSERT

{

graph <flight_graph3> {

?insUri <ticketPrice> ?ticketPrice;

<numtickets> ?numtickets;

<totalPrice> ?totalPrice.

}

}

WHERE {

SERVICE exfun:arrow_flight_get("10.117.2.36", 5005, 2, "SELECT ?ticketPrice

?numtickets ?totalPrice WHERE { ?sell <priceperticket> ?ticketPrice; <numtickets>

?numtickets; <totalprice> ?totalPrice . }", "/tmp/arrow/keys/root-ca.pem") { }

BIND(IRI(CONCAT("http:/CSI.COM/", STRUUID())) as ?insUri)

}

arrow_flight_get_info

This service returns metadata about a specific flight.

Syntax

SERVICE <http://cambridgesemantics.com/anzograph/inmemory#arrow_flight_get_info>

("IP", port, "type", "path", "root_cert_file")

Argument Type Description

IP string Flight server IP address.

port int Server port number.

type string Flight descriptor's type: 1-PATH, 2-CMD .

Apache Arrow Library 708

Argument Type Description

path string Flight command or path.

root_cert_
file

string Path to a trusted TLS root certificate. For non-TLS operation, specify
an empty path.

Returns

Type Description

string Flight's schema.

long Total number of records (rows) in the dataset.

long Total number of bytes in the dataset.

Example 1

This example returns metadata.

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

SELECT (row_opt_string(?flight_info,0) as ?schema) (row_get_long(?flight_info,1) as

?records) (row_get_long(?flight_info,2) as ?bytes)

WHERE {

SELECT (exfun:arrow_flight_get_info("10.117.2.36", 5005, 2, "SELECT ?ticketPrice

?numtickets ?totalPrice WHERE { ?sell <priceperticket> ?ticketPrice;

<numtickets> ?numtickets; <totalprice> ?totalPrice . }",

"/tmp/arrow/keys/root-ca.pem") as ?flight_info)

}

schema | records | bytes

---+---------+---------

?ticketPrice:double ?numtickets:int ?totalPrice:double | 192497 | 3942600

Example 2

Returns PATH name flight’s metadata.

Apache Arrow Library 709

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

SELECT (row_opt_string(?flight_info,0) as ?schema)

(row_get_long(?flight_info,1) as ?records)

(row_get_long(?flight_info,2) as ?bytes)

WHERE {

SELECT (exfun:arrow_flight_get_info("10.117.2.36", 5005, 1,

"/tmp/arrow/data/iris.csv", "/tmp/arrow/keys/root-ca.pem") as ?flight_info)

}

schema

| records | bytes

------------+---------+-------

?sepal_length:double ?sepal_width:double ?petal_length:double ?petal_width:double

?variety:String | 150 | 7368

Example 3

Returns custom name flight’s metadata.

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

SELECT (row_opt_string(?flight_info,0) as ?schema)

(row_get_long(?flight_info,1) as ?records)

(row_get_long(?flight_info,2) as ?bytes)

WHERE {

SELECT (exfun:arrow_flight_get_info("10.117.2.36", 5005, 2, "tickit_total_price",

"/tmp/arrow/keys/root-ca.pem") as ?flight_info)

}

schema | records | bytes

--+-----------+---------

?ticketPrice:double ?numtickets:int ?totalPrice:double | 192497 | 3942600

arrow_flight_list

This service lists all of the available flights known to the flight server.

Syntax

SERVICE <http://cambridgesemantics.com/anzograph/inmemory#arrow_flight_list>

("IP", port, "root_cert_file")

Apache Arrow Library 710

Argument Type Description

IP string Flight server IP address.

port int Server port number.

root_cert_
file

string Path to a trusted TLS root certificate. For non-TLS operation, specify
an empty path.

Returns

Type Description

long Flight number.

long Total number of endpoints associated with the flight (dataset).

int Endpoint number in the flight.

string Type of flight. CMD-Command, PATH-Path.

string Name of the flight.

string List of locations where ticket can be redeemed.

Example

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

SELECT *

WHERE {

SERVICE exfun:arrow_flight_list("10.117.2.36", 5005, "/tmp/arrow/keys/root-ca.pem")

{}

}

flight | total_endpoints | endpoint_num | flight_type | flight_name

Apache Arrow Library 711

| location

--------+-----------------+--------------+-------------+-------------------------------

------------------------------+----------------------------

1 | 1 | 1 | PATH | /tmp/arrow/data/iris.csv

| grpc+tls://10.117.2.36:5005

2 | 1 | 1 | CMD | tickit_total_price

| grpc+tls://10.117.2.36:5005

3 | 1 | 1 | CMD | SELECT ?ticketPrice

?numtickets ?totalPrice WHERE { ?sell <priceperticket> ?ticketPrice; <numtickets>

?numtickets; <totalprice> ?totalPrice . } | grpc+tls://10.117.2.36:5005

arrow_flight_push

This service pushes out the result of a query directly to the flight server.

Syntax

SERVICE <http://cambridgesemantics.com/anzograph/inmemory#arrow_flight_push>

("IP", port, "cmd_name", "root_cert_file")

Argument Type Description

IP string Server IP address.

port int Server port number.

cmd_name string Flight name that can be a SPARQL command or custom name.
Specify "CMD" to use SPARQL command as name, otherwise provide
a custom name.

root_cert_
file

string Path to a trusted TLS root certificate. For non-TLS operation, specify
an empty path.

Apache Arrow Library 712

Returns

Type Description

long The number of rows pushed to the server.

string Name of the flight.

Example 1

Returns the flight name as user-defined name, "tickit_total_price".

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

SELECT ?num_rows ?flight_name

FROM <tickit>

WHERE {

{

SELECT ?ticketPrice ?numtickets ?totalPrice

WHERE

{

?sell <priceperticket> ?ticketPrice;

<numtickets> ?numtickets;

<totalprice> ?totalPrice .

}

}

SERVICE exfun:arrow_flight_push("10.117.2.36", 5005,

"tickit_total_price", "/tmp/arrow/keys/root-ca.pem") { }

}

num_rows | flight_name

----------+--------------------

192497 | tickit_total_price

Example 2

This example returns the flight name as a SPARQL query.

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

SELECT ?num_rows ?flight_name

FROM <tickit>

WHERE {

{

Apache Arrow Library 713

SELECT ?ticketPrice ?numtickets ?totalPrice

WHERE

{

?sell <priceperticket> ?ticketPrice;

<numtickets> ?numtickets;

<totalprice> ?totalPrice .

}

}

SERVICE exfun:arrow_flight_push("10.117.2.36", 5005, "CMD",

"/tmp/arrow/keys/root-ca.pem") { }

}

num_rows | flight_name

---------+--------------------

192497 | SELECT ?ticketPrice ?numtickets ?totalPrice WHERE { ?sell <priceperticket>

?ticketPrice;

<numtickets> ?numtickets; <totalprice> ?totalPrice . }

arrow_flight_push_csv

This service pushes a CSV file to the flight server.

Syntax

SERVICE <http://cambridgesemantics.com/anzograph/inmemory#arrow_flight_push_csv>

("IP", port, "file", "root_cert_file")

Argument Type Description

IP string Server IP address.

port int Server port number.

file string CSV file path.

root_cert_
file

string Path to a trusted TLS root certificate. For non-TLS operation, specify
an empty path.

Apache Arrow Library 714

Returns

Type Description

long The number of rows pushed to the server.

string Flight path.

Example

PREFIX exfun: <http://cambridgesemantics.com/anzograph/inmemory#>

SELECT *

WHERE {

SERVICE exfun:arrow_flight_push_csv("10.117.2.36", 5005,

"/tmp/arrow/data/iris.csv", "/tmp/arrow/keys/root-ca.pem") {}

}

num_rows | path

----------+--------------------------

150 | /tmp/arrow/data/iris.csv

Data Science Library

The topics in this section provide details about the Graph Lakehouse Data Science library.

Tip
Altair offers an Apache Zeppelin Docker image that includes a collection of notebooks with

details and example usage of each of the Data Science functions. See Zeppelin Notebook

Integration for more information.

In this section:

Correlation Aggregates

The correlation aggregates determine the relationship between elements.

l Matthews Correlation Coefficient (MCC): Provides a measure of the quality of binary

classifications of a condition with observed versus predicted scoring.

Data Science Library 715

l Pearson Correlation Coefficient (PCC): Determines the extent to which two variables are

linearly related: positive, negative, or no relationship.

l Spearman's Correlation Coefficient (SCC): Determines how well the relationship between

two variables can be described using a monotonic function.

Note
The URI for the data science functions is

<http://cambridgesemantics.com/anzograph/statistics#>. For readability, the

syntax for each function below includes the prefix stats:, defined as PREFIX stats:

<http://cambridgesemantics.com/anzograph/statistics#>.

Matthews Correlation Coefficient (MCC)

The Matthews correlation coefficient aggregate returns a coefficient value between observed and

predicted binary classifications.

Syntax

stats:mcc(x, y)

Parameter Type Description

x boolean First variable column data.

y boolean Second variable column data.

Returns

Type Description

double Coefficient value that shows the extent to which observed and predicted binary
classifications are related.

Data Science Library 716

https://en.wikipedia.org/wiki/Matthews_correlation_coefficient

Pearson Correlation Coefficient (PCC)

The Pearson correlation coefficient aggregate determines the extent to which two variables are

linearly related: positive, negative, or no relationship.

Syntax

stats:pcc(x, y)

Parameter Type Description

x boolean First variable column data.

y boolean Second variable column data.

Returns

Type Description

double Coefficient that shows the extent to which two variables are linearly related.

Spearman's Correlation Coefficient (SCC)

The Spearman's rank correlation coefficient aggregate determines how well the relationship

between two variables can be described using a monotonic function.

Syntax

stats:scc(rank_X, rank_Y)

Parameter Type Description

rank_X double First set of ranked data.

rank_Y double Second set of ranked data.

Data Science Library 717

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient

Returns

Type Description

double Coefficient between ranked datasets.

Distribution Functions

The distribution functions calculate the probability of a given value over a random distribution.

l Cumulative Distribution Functions (CDF): Calculate the probability of a random variable X

taking on a value less than or equal to Y.

l Bernoulli Distribution (BERNDIST): Determines the probability of a specific event occurring,

or not occurring, in tests that have only two possible outcomes: success (1) or failure (0).

l Beta-Binomial Distribution (BETABINDIST): Computes probability using a combination of

both binomial and beta probability distributions.

l Hypergeometric Distribution (HYPGEODIST): Calculates probability from a distribution that

is often used to predict the outcome of a process in which different elements are randomly

drawn from a collection and not replaced.

l Logarithmic (Series) Distribution (LOGSERDIST): Calculates probability using a discrete

probability distribution derived from the Maclaurin series expansion.

l Skellam Distribution (SKELLAMDIST): Calculates probability using the Skellam distribution

which models the difference between two independent Poisson distributed variables.

Note
The URI for the data science functions is

<http://cambridgesemantics.com/anzograph/statistics#>. For readability, the

syntax for each function below includes the prefix stats:, defined as PREFIX stats:

<http://cambridgesemantics.com/anzograph/statistics#>.

Data Science Library 718

Cumulative Distribution Functions (CDF)

A Cumulative distribution function function calculates the probability of a random variable X taking

on a value less than or equal to Y. The following functions produce cumulative distribution

calculations:

l Binomial Distribution (BINOMDIST): Calculates the probability for X successes in N trials

given a probability of success P for each trial.

l Chi-Squared Distribution (CHISQDIST): Calculates probability often used in hypothesis

testing to compare an observed distribution with a theoretical one. Also provides a way to

show a relationship between two categorical variables.

l Continuous Uniform Distribution (CONUNIDIST): Calculates probability using continuous

probability distribution concerned with events that are equally likely to occur.

l Discrete Uniform Distribution (DISCUNIDIST): Calculates probability using symmetric

probability distribution where a finite number of values are equally likely to be observed and

every one of n values has equal probability.

l Exponential Distribution (EXPDIST): Calculates probability using a distribution that describes

time between events in a Poisson point process (where events occur continuously and

independently at a constant average rate).

l Laplace Distribution (LAPLACEDIST): Calculates probability using a distribution that

represents differences between two independent variables that have identical exponential

distributions (also called double exponential distribution).

l Log Normal Distribution (LOGNORDIST): Calculates probability using a distribution of a

random variable whose logarithm follows a normal distribution. Log normal distributions are

widely used in risk analysis.

l Negative Binomial Distribution (NEGBINDIST): Calculates probability using a discrete

probability distribution that concerns the number of trials which must occur in order to have a

predetermined number of successes.

Data Science Library 719

https://en.wikipedia.org/wiki/Cumulative_distribution_function

l Normal Distribution (NORMDIST): Calculates probability using a continuous probability

distribution of data in which the majority of data points are relatively similar, within a small

range of values having few outliers.

l Poisson Distribution (POISDIST): Calculates probability using a discrete probability

distribution that expresses the probability of a given number of events occurring in a fixed

interval of time or space and those events occur with a known constant rate and occur

independently of the time since the last event.

l Student's T-Distribution (TDIST): Calculates probability using the Student's t-distribution and

associated t scores. Often used in hypothesis testing when the sample size is small and/or

when the population variance is unknown.

l TDigest Metric (TDIGEST): Creates an estimate of the median (and more generally, any

percentile) from either distributed data or streaming data, using a t-Digest probabilistic data

structure.

l Weibull Distribution (WEIBULDIST): Calculates probability from a continuous probability

distribution that is commonly used to assess product reliability, analyze product life data and

failure times.

Binomial Distribution (BINOMDIST)

The Binomial distribution aggregate calculates the probability for X successes in N trials given a

probability of success P for each trial.

Syntax

stats:binomdist(data, n, k, "success_string")

Parameter Type Description

data string Column data.

n long Number of trials.

Data Science Library 720

https://en.wikipedia.org/wiki/Binomial_distribution

Parameter Type Description

k long Number of successes in n trials.

success_string string Defines the success string.

Returns

Type Description

double Probability mass function value.

double Lower cumulative distribution: probability (<=k) under the area of distribution.

double Upper cumulative distribution: probability (>k) under the area of distribution.

Chi-Squared Distribution (CHISQDIST)

The Chi-squared distribution aggregate calculates probability that is often used in hypothesis

testing to compare an observed distribution with a theoretical one. It also provides a way to show a

relationship between two categorical variables.

Syntax

stats:chisqdist(data, s)

Parameter Type Description

data double Sample data.

s double Population standard deviation.

Data Science Library 721

https://en.wikipedia.org/wiki/Chi-squared_distribution

Returns

Type Description

double Mean of the distribution.

double Standard deviation of the distribution.

double Variance of the distribution.

double Chi-squared statistic: [(n - 1) * s^2] / d^2 where d is the standard deviation
of the population, s is the standard deviation of the sample, and n is the sample size.

long Number of samples: the degrees of freedom(k) is (count-1).

double Probability mass function value.

double Cumulative distribution: the probability for <= the chi-squared statistic.

Continuous Uniform Distribution (CONUNIDIST)

The Continuous uniform distribution aggregate calculates probability using a continuous probability

distribution concerned with events that are equally likely to occur.

Syntax

stats:conunidist(data, a, b)

Parameter Type Description

data double Column data.

a double Minimum value of the probability interval.

Data Science Library 722

https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

Parameter Type Description

b double Maximum value of the probability interval.

Returns

Type Description

double Cumulative distribution: probability under the area of distribution.

double Probability density function value.

double Differential entropy in nats.

Discrete Uniform Distribution (DISCUNIDIST)

The Discrete uniform distribution aggregate calculates probability using symmetric probability

distribution where a finite number of values are equally likely to be observed and every one of n

values has equal probability.

Syntax

stats:discunidist(data, k)

Parameter Type Description

data long Column data.

k long The number of outcomes.

Returns

Type Description

double Cumulative distribution: probability under the area of distribution.

Data Science Library 723

https://en.wikipedia.org/wiki/Discrete_uniform_distribution

Type Description

double Probability density function value.

double Differential entropy in nats.

Exponential Distribution (EXPDIST)

The Exponential distribution aggregate calculates probability using a distribution that describes time

between events in a Poisson point process (where events occur continuously and independently at

a constant average rate).

Syntax

stats:expdist(data, x)

Parameter Type Description

data long Column data.

x double The probability for the interval.

Returns

Type Description

double Lower cumulative distribution: probability (<=k) under the area of distribution.

double Upper cumulative distribution: probability (>k) under the area of distribution.

double Probability density function value.

double Differential entropy in nats.

Data Science Library 724

https://en.wikipedia.org/wiki/Exponential_distribution

Laplace Distribution (LAPLACEDIST)

The Laplace distribution aggregate calculates probability using a distribution that represents

differences between two independent variables that have identical exponential distributions (also

called double exponential distribution).

Syntax

stats:laplacedist(data, "c", x1, x2)

Parameter Type Description

data double Column data.

c string "below", "above", "bet" (between), or "out" (outside).

x1 double Lower number (>0) to find the probability.

x2 double Upper number (>0) to find the probability.

Returns

Type Description

double Mean of the distribution.

double Scale parameter of the distribution.

double Standard deviation of the distribution.

double Variance of the distribution.

double Differential entropy in nats.

Data Science Library 725

https://en.wikipedia.org/wiki/Laplace_distribution

Type Description

double Cumulative distribution: probability under the area of distribution.

double Probability density function value for x1.

double Probability density function value for x2.

Log Normal Distribution (LOGNORDIST)

The Log-normal distribution aggregate calculates probability using distribution of a random variable

whose logarithm follows a normal distribution. The log normal distribution widely used in risk

analysis.

Syntax

stats:lognordist(data, "c", x1, x2)

Parameter Type Description

data double Column data.

c string "below", "above", "bet" (between), or "out" (outside).

x1 double Lower number (>0) to find the probability.

x2 double Upper number (>0) to find the probability.

Returns

Type Description

double Mean of the distribution of natural logarithms distribution.

Data Science Library 726

https://en.wikipedia.org/wiki/Log-normal_distribution

Type Description

double Standard deviation of the distribution of natural logarithms distribution.

double Variance of the distribution.

double Differential entropy in nats.

double Cumulative distribution: probability under the area of distribution.

double Probability density function value for x1.

double Probability density function value for x2.

Negative Binomial Distribution (NEGBINDIST)

The Negative binomial distribution aggregate calculates probability using a discrete probability

distribution that concerns the number of trials which must occur in order to have a predetermined

number of successes.

Syntax

stats:negbindist("data", k, r, "success_string")

Parameter Type Description

data string Column data.

k long Number of successes.

r long Number of failures.

success_string string Defines the success string.

Data Science Library 727

https://en.wikipedia.org/wiki/Negative_binomial_distribution

Returns

Type Description

double Probability mass function value.

double Lower cumulative distribution: probability (<=k) under the area of distribution.

double Upper cumulative distribution: probability (>k) under the area of distribution.

Normal Distribution (NORMDIST)

The Normal distribution aggregate calculates probability using a continuous probability distribution

of data in which the majority of data points are relatively similar, within a small range of values with

few outliers.

Syntax

stats:normdist(data, "c", x1, x2)

Parameter Type Description

data double Column data.

c string "below", "above", "bet" (between), or "out" (outside).

x1 double Lower number (>0) to find the probability.

x2 double Upper number (>0) to find the probability.

Data Science Library 728

https://en.wikipedia.org/wiki/Normal_distribution

Returns

Type Description

double Mean of the distribution.

double Standard deviation of the distribution.

double Variance of the distribution.

double Differential entropy in nats.

double Cumulative distribution: probability under the area of distribution.

double Probability density function value for x1.

double Probability density function value for x2.

Poisson Distribution (POISDIST)

The Poisson distribution function calculates probability using discrete probability distribution that

expresses the probability of a given number of events occurring in a fixed interval of time or space,

given these events occur with a known constant rate and occur independently of the time since the

last event.

Syntax

stats:poisdist(data, k)

Parameter Type Description

data long Column data.

k long Probability of observing k events in an interval.

Data Science Library 729

https://en.wikipedia.org/wiki/Poisson_distribution

Returns

Type Description

double Probability mass function value.

double Lower cumulative distribution: probability (<=k) under the area of distribution.

double Upper cumulative distribution: probability (>k) under the area of distribution.

Student's T-Distribution (TDIST)

The Student's t-distribution function calculates probability using the Student's t-distribution (and

associated t scores) which are often used in hypothesis testing when the sample size is small and/or

when the population variance is unknown.

Syntax

stats:tdist(data, m)

Parameter Type Description

data double Sample data.

m double Population mean.

Returns

Type Description

double Mean of the distribution.

double Standard deviation of the distribution.

Data Science Library 730

https://en.wikipedia.org/wiki/Student's_t-distribution

Type Description

double Variance of the distribution.

double T-statistics: t = [u - M] / [s / sqrt(N)] where u is the sample
mean, M is the population mean, s is the standard deviation of the sample, and N is the
sample size.

long Number of samples: the degrees of freedom is (count-1).

double Probability mass function value.

double Cumulative distribution: the probability for <= t-statistics.

TDigest Metric (TDIGEST)

This function creates an estimate of the median (and more generally, any percentile) from either

distributed data or streaming data, using a t-Digest probabilistic data structure. For background

information about this function, see Computing quantiles using t-Digests.

Syntax

stats:tdigest(data, p, q, cdf)

Parameter Type Description

data double Column data.

p double The percentile (0 - 100) to compute.

q double The quantile (0.0 - 1.0) to compute.

cdf double The CDF to use.

Data Science Library 731

https://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf

Returns

Type Description

double Percentile: the value below which a given percentage of observations falls.

double Quantile: Cut point to dividing the observations in a sample.

double The computation of F(x) where F is the CDF of the distribution.

Weibull Distribution (WEIBULDIST)

The Weibull distribution function calculates probability from a continuous probability distribution

commonly used to assess product reliability and analyze product life data and failure times.

Syntax

stats:weibuldist(data, k, x)

Parameter Type Description

data double Sample data.

k double The initial starting value for the shape parameter. A good guess is
crucial to quick convergence.

x double The probability for a random variable.

Returns

Type Description

double The mean of the distribution.

Data Science Library 732

https://en.wikipedia.org/wiki/Weibull_distribution

Type Description

double The standard deviation of the distribution.

double The variance of the distribution.

long The count of the number of samples.

double The estimated shape parameter(k) of the distribution from the mean and variance
using the root finding method.

double The estimated scale parameter(a) of the distribution from the mean and variance using
the root finding method.

double Differential entropy in nats.

double Probability density function value.

double Lower cumulative distribution: probability (<=x) under the area of distribution.

double Upper cumulative distribution: probability (>x) under the area of distribution.

long The actual number of iterations performed to get an estimate of the k value.

double The mean calculated using estimated values of k and a.

double The variance calculated using estimated values of k and a.

Bernoulli Distribution (BERNDIST)

The Bernoulli distribution function determines the probability of success or failure (or Yes or No) in

tests that have only two possible outcomes.

Data Science Library 733

https://en.wikipedia.org/wiki/Bernoulli_distribution

Syntax

stats:berndist("data", prob, "success_string")

Parameter Type Description

data string Column data.

prob boolean Probability of success (true) or failure (false).

success_string string The success message.

Returns

Type Description

double The Bernoulli distribution probability.

Beta-Binomial Distribution (BETABINDIST)

The Beta-binomial distribution function computes probability using a combination of both binomial

and beta probability distributions.

Syntax

stats:betabindist(k, n, alpha, beta)

Parameter Type Description

k double The probability for the number.

n double The number of trials.

alpha, beta double Shape parameters.

Data Science Library 734

https://en.wikipedia.org/wiki/Beta-binomial_distribution

Returns

Type Description

double The probability of occurrence k for a beta binomial n, alpha, beta.

Hypergeometric Distribution (HYPGEODIST)

The Hypergeometric distribution function calculates probability from a distribution often used to

predict the outcome of a process in which different elements are randomly drawn from a collection

and not replaced.

Syntax

stats:hypgeodist("data", n, k, "success_string")

Parameter Type Description

data string Column data.

n int The number of trials.

k int The number of success in n trials.

success_string string The success message.

Returns

Type Description

double The hypergeometric distribution probability.

Data Science Library 735

https://en.wikipedia.org/wiki/Hypergeometric_distribution

Logarithmic (Series) Distribution (LOGSERDIST)

The Logarithmic (series) distribution function calculates probability using a discrete probability

distribution derived from the Maclaurin series expansion.

Syntax

stats:logserdist("data", k, "success_string")

Parameter Type Description

data string Column data.

k long The probability for the number.

success_string string The success message.

Returns

Type Description

double The logarithmic distribution probability.

Skellam Distribution (SKELLAMDIST)

The Skellam distribution function calculates probability using the Skellam distribution which models

the difference between two independent Poisson distributed variables.

Syntax

stats:skellamdist(n1_data, n2_data, k)

Parameter Type Description

n1_data long N1 column data.

Data Science Library 736

https://en.wikipedia.org/wiki/Logarithmic_distribution
https://en.wikipedia.org/wiki/Skellam_distribution

Parameter Type Description

n2_data long N2 column data.

k long Probability for the number.

Returns

Type Description

double The Skellam probability.

Entropy Functions

The entropy functions determine variance and probability density across a given distribution.

l Cross Entropy (CROSSENTROPY): Computes cross-entropy, which is commonly used to

quantify the difference between two probability distributions.

l Discrete Entropy Metric (DISCENTROPY): Calculates discrete entropy for maps on finite

sets.

l Differential Entropy or Continuous Entropy Metrics: These functions compute differential

entropy (also referred to as continuous entropy), which is entropy defined for distributions

with a continuous random variable.

Note
The URI for the data science functions is

<http://cambridgesemantics.com/anzograph/statistics#>. For readability, the

syntax for each function below includes the prefix stats:, defined as PREFIX stats:

<http://cambridgesemantics.com/anzograph/statistics#>.

Cross Entropy (CROSSENTROPY)

The Cross-entropy function computes cross-entropy, which is commonly used to quantify the

difference between two probability distributions.

Data Science Library 737

https://en.wikipedia.org/wiki/Cross_entropy

Syntax

stats:crossentropy(p, q)

Parameter Type Description

p double True probabilities for x.

q double Predicted probabilities for x.

Returns

Type Description

double The cross entropy value.

Discrete Entropy Metric (DISCENTROPY)

The Discrete entropy function calculates entropy for maps on finite sets, referred to as discrete

entropy.

Syntax

stats:discentropy("data")

Parameter Type Description

data string Column data.

Returns

Type Description

double The discrete entropy value.

Data Science Library 738

https://www.sciencedirect.com/science/article/abs/pii/S0167278907000607

Differential Entropy or Continuous Entropy Metrics

Differential entropy (also referred to as continuous entropy) is entropy that can be computed for

distributions with a continuous random variable.

The following functions produce entropy calculations. For details about the functions, see

Distribution Functions.

l Continuous Uniform Distribution (CONUNIDIST)

l Discrete Uniform Distribution (DISCUNIDIST)

l Exponential Distribution (EXPDIST)

l Laplace Distribution (LAPLACEDIST)

l Log Normal Distribution (LOGNORDIST)

l Normal Distribution (NORMDIST)

l Weibull Distribution (WEIBULDIST)

Profiling Metrics

The profiling metrics produce statistical metrics such as percentile, geometric mean, or skew on a

given dataset.

l Geometric Mean Metric (GMEAN): Calculates geometric mean, defined as the nth root of the

product of n positive numbers.

l Percentile Metric (PERCENTILE): Calculates 1 to 100 percentile of numeric values.

l Skew Metric (SKEWCOEFF): Calculates Pearson’s coefficient of skewness on numeric

values.

Note
The URI for the data science functions is

<http://cambridgesemantics.com/anzograph/statistics#>. For readability, the

syntax for each function below includes the prefix stats:, defined as PREFIX stats:

<http://cambridgesemantics.com/anzograph/statistics#>.

Data Science Library 739

https://en.wikipedia.org/wiki/Differential_entropy

Geometric Mean Metric (GMEAN)

The Geometric mean function calculates geometric mean, defined as the nth root of the product of n

positive numbers.

Syntax

stats:gmean(data)

Parameter Type Description

data double Column data.

Returns

Type Description

double The geometric mean value.

Percentile Metric (PERCENTILE)

The Percentile metric function calculates the percentile (1 to 100) of numeric values.

Syntax

stats:percentile(data, p)

Parameter Type Description

data double The dataset.

p double The percentile (0 - 100) to compute.

Data Science Library 740

https://en.wikipedia.org/wiki/Geometric_mean
https://en.wikipedia.org/wiki/Percentile

Returns

Type Description

double The percentile value.

Skew Metric (SKEWCOEFF)

The Skewness metric function calculates the Pearson’s coefficient of skewness on numeric values.

Syntax

stats:skewcoeff(data, dp)

Parameter Type Description

data double The dataset.

dp int Number of decimal points to consider for the input data.

Returns

Type Description

double The mode (value that appears most frequently).

double The median number in an ordered set of data.

double The average value.

double The standard deviation.

double Pearson mode skewness or first skewness coefficient.

double Pearson median skewness or second skewness coefficient.

Data Science Library 741

https://en.wikipedia.org/wiki/Skewness#Pearson's_second_skewness_coefficient_(median_skewness)

Geospatial Library

Graph Lakehouse offers two packages of pre-built geospatial functions: Geospatial and
GeoSPARQL. The geospatial functions follow geospatial operations implemented using ESRI’s

widely-used public domain geometry library of API functions (https://github.com/Esri/geometry-api-

java/wiki). And the geoSPARQL functions follow the world-wide geospatial standard

(https://www.ogc.org/standards/geosparql/) developed and promoted by the Open Geospatial

Consortium (OGC) community to represent geospatial data in RDF format and query that data using

the SPARQL query language.

The spatial features offer advanced capabilities for developing large scale location intelligence and

geospatial applications to use along with rich data SPARQL analytics. Both sets of functions have

been developed in compliance with OGC standards (https://www.ogc.org/standards).

In this section:

Geospatial Functions

The geospatial functions follow operations implemented using ESRI’s widely-used public domain

geometry library of API functions (https://github.com/Esri/geometry-api-java/wiki). This topic

describes each function.

Data Types and Arguments

Arguments and return values are transient objects that are internal to Graph Lakehouse. The values

may contain arbitrarily long sequences of raw data bytes. These objects cannot be directly persisted

to the graph store, however, a Custom object (return value of a function) can be bound to a variable

(using a BIND expression) and can be passed to functions as arguments.

The life span of a Custom object handle cannot exceed one query. A Custom object has to be

serialized into some form of text string or a URI of a user-defined data type to return as query results

or save in the graph store.

Geospatial Library 742

https://github.com/Esri/geometry-api-java/wiki
https://github.com/Esri/geometry-api-java/wiki
https://www.ogc.org/standards/geosparql/
https://www.ogc.org/standards
https://github.com/Esri/geometry-api-java/wiki

Note
Some functions include arguments labeled as x, y, and z. These arguments correspond to

longitude (x), latitude (y), and height or altitude (z) values in standard geospatial coordinate

systems. Coordinates that specify an x, y location in a Cartesian coordinate system or an x, y,

z coordinate in a three dimensional system represent locations on the Earth’s surface relative

to other locations. In addition to the Cartesian coordinate system, the Graph Lakehouse

geospatial functions support other coordinate systems including Spherical, Cylindrical, and

Elliptical.

Representations of function syntax included in this topic use braces ([arg]) to represent optional

arguments. In addition, the convention, arg1 [, ..., argN] is used to indicate when you can

include any number of arguments, 1 to N. Similarly, for functions that require an index argument,

such as ST_PointN, the index values also range from 1 to N.

Geospatial functions use geometry inputs provided in the following forms:

l WKT String geometry

l WKTLiteral geometry

l GMLLiteral geometry

l Graph Lakehouse Custom geometry data type (wrapper encapsulation of the OGCGeometry

standard data type from the ESRI library)

Important
The Graph Lakehouse geospatial functions follow the standards below for reading and

parsing particular geometry values:

l For GML readers and GML literal values, the functions support GML version 2.0 and

use the CRS 84 coordinate system by default.

l The Shape (.shp) file reader supports version 1000.

l For WKT geometry parsing, the functions follow the WKT version 1 standard and use

Geospatial Library 743

the 4326 coordinate system by default.

l The KML reader follows the version 2.2.0 standard.

Functions

The geospatial functions are grouped by the following categories:

l Point and Multipoint Functions: These functions operate on Point (a single location in space

that has, at a minimum, an x-coordinate and y-coordinate) and MulitPoint (an ordered

collection of points) shapes.

l LineString and MultiLineString Functions: These functions operate on LineString (a

sequence of points with boundary endpoints) and MultiLineString (a collection of LineStrings)

shapes.

l Polygon Functions: These functions operate on Polygons, MultiPolygons, Circle and Circle

Arc Polygons, Ellipse and Elliptical Arc Polygons, Rectangle Polygons, and Squircle

Polygons.

l Utility Functions: These functions are common to all shapes and provide operations such as

conversion, translation, or conditional testing.

l Aggregator (UDA) Functions: Aggregators construct new geometric shapes from multiple

aggregated geometries.

l Services (UDS) Functions: The services extract geometric information from source files such

as .shp, .gml, .kml, and .json.

Note
The URI for the geospatial functions is

<http://www.opengis.net/def/function/geosparql/>. For readability, the syntax

for each function below includes the prefix geof:, defined as PREFIX geof:

<http://www.opengis.net/def/function/geosparql/>.

Geospatial Library 744

Point and Multipoint Functions

l ST_Point: Constructs a Point from a given set of x, y, z, and m coordinates.

l ST_X: Returns the X coordinate of a Point.

l ST_SetX: Sets the X coordinate of a Point.

l ST_Y: Returns the Y coordinate of a Point.

l ST_SetY: Sets the Y coordinate of a Point.

l ST_Z: Returns the Z coordinate of a Point.

l ST_SetZ: Sets the Z coordinate of a Point.

l ST_M: Returns the M coordinate of a Point.

l ST_SetM: Sets the M coordinate of a Point.

l ST_Bin: Returns the bin ID of a Point.

l ST_BinEnvelope: Returns the bin envelope for a Point or bin ID.

l ST_MultiPoint: Constructs a MultiPoint geometry from a set of x and y coordinate pairs.

l ST_PointN: Returns a Point that is at the Nth index position in a MultiPoint.

l ST_GeomFromText: Constructs a Point from a given set of well known text (WKT)

coordinates.

l ST_GeomFromWKB: Constructs a Point from a given set of well known binary (WKB)

coordinates.

ST_Point

This function returns a Point as a custom object constructed from a given set of x, y, z, and m

coordinates. You can specify two coordinates (x and y), three coordinates (x, y, and z), or four

coordinates (x, y, z, and m).

Syntax

geof:ST_Point(x, y [, z] [, m])

Geospatial Library 745

Argument Type Description

x double The X coordinate of the point.

y double The Y coordinate of the point.

z double The optional Z coordinate of the point.

m double The optional M coordinate of the point.

Returns

Type Description

Custom object The point.

Example

SELECT (geof:ST_AsText(geof:ST_SetM(geof:ST_Point(1,2,3),4)) as ?point)

ST_X

This function returns the X coordinate of a Point geometry.

Syntax

geof:ST_X(geom)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

Geospatial Library 746

Returns

Type Description

double The X coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (MIN(?point_x) as ?3d_min)

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/shape> ?shape;

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

BIND(geof:ST_X(?point_2d) as ?point_x)

BIND(geof:ST_Y(?point_2d) as ?point_y)

}

ST_SetX

This function sets the X coordinate of a Point geometry.

Syntax

geof:ST_SetX(geom, x)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

x double The X coordinate point value to set.

Geospatial Library 747

Returns

Type Description

Custom object The X coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geo:ST_SetX(geo:ST_Point(1,2),4)) as ?point)

ST_Y

This function returns the Y coordinate of a Point geometry.

Syntax

geof:ST_Y(geom)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

Returns

Type Description

double The Y coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (MIN(?point_x) as ?3d_min)

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

Geospatial Library 748

<http://csi.com/geologic_units_24k/shape> ?shape;

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

BIND(geof:ST_X(?point_2d) as ?point_x)

BIND(geof:ST_Y(?point_2d) as ?point_y)

}

ST_SetY

This function sets the Y coordinate of a Point geometry.

Syntax

geof:ST_SetY(geom, y)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

y double The Y coordinate point value to set.

Returns

Type Description

Custom object The Y coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (MIN(?point_y) as ?3d_min)

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/shape> ?shape;

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

BIND(geof:ST_X(?point_2d) as ?point_x)

Geospatial Library 749

BIND(geof:ST_Y(?point_2d) as ?point_y)

}

ST_Z

This function returns the Z coordinate of a Point geometry.

Syntax

geof:ST_Z(geom)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

Returns

Type Description

double The Z coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (MAX(geof:ST_Z(geof:ST_Point(?point_x, ?point_y, ?point_z))) as ?3d_max)

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/shape> ?shape;

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

BIND(geof:ST_X(?point_2d) as ?point_x)

BIND(geof:ST_Y(?point_2d) as ?point_y)

BIND(32 as ?point_z)

}

ST_SetZ

This function sets the Z coordinate of a Point geometry.

Geospatial Library 750

Syntax

geof:ST_SetZ(geom, z)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

z double The Z coordinate point value to set.

Returns

Type Description

Custom object The Z coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_SetZ(geof:ST_Point(1,2),4)) as ?point_with_z_coordinate)

ST_M

This function returns the M coordinate of a Point geometry.

Syntax

geof:ST_M(geom)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

Geospatial Library 751

Returns

Type Description

double The M coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (MIN(geof:ST_M(geof:ST_Point(?point_x, ?point_y, ?point_z, ?point_m))) as

?result)

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/shape> ?shape;

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

BIND(geof:ST_X(?point_2d) as ?point_x)

BIND(geof:ST_Y(?point_2d) as ?point_y)

BIND(25 as ?point_z)

BIND(30 as ?point_m)

}

ST_SetM

This function sets the M coordinate of a Point geometry.

Syntax

geof:ST_SetM(geom, m)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

m double The M coordinate point value to set.

Geospatial Library 752

Returns

Type Description

Custom object The M coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_SetM(geof:ST_Point(1,2,3),4)) as ?point)

ST_Bin

This function returns the bin ID of a Point geometry.

Syntax

geof:ST_Bin(binSize, geom)

Argument Type Description

binSize double The bin size.

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

Returns

Type Description

long The bin ID.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

Geospatial Library 753

SELECT (geof:ST_Bin(10, ?point_2d) as ?union)

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/shape> ?shape;

<http://csi.com/geologic_units_24k/id> "0"^^xsd:long.

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

}

ST_BinEnvelope

This function returns the bin envelope for a Point geometry or bin ID. You can also return the bin

envelope for multiple Points.

Syntax

geof:ST_BinEnvelope(binSize, geom)

Argument Type Description

binSize double The bin size.

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

Returns

Type Description

Custom object The bin envelope.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT (geof:ST_AsText(geof:ST_BinEnvelope(10.0, ?point_2d)) as ?union)

FROM <point>

WHERE {

Geospatial Library 754

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/shape> ?shape;

<http://csi.com/geologic_units_24k/id> "0"^^xsd:long.

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

}

ST_MultiPoint

This function returns a MultiPoint as a custom object constructed from a set of X and Y coordinate

pairs. You can specify any number of X and Y coordinates.

Syntax

geof:ST_MultiPoint(x, y [, xx] [, yy])

Argument Type Description

x double The X coordinate value.

y double The Y coordinate value.

xx double Optional X coordinate values.

yy double Optional Y coordinate values.

Returns

Type Description

Custom object The multipoint.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_MultiPoint(?x,?y,?x1,?y1,?x2,?y2)) as ?multipoint_pairs)

WHERE {

Geospatial Library 755

values (?x ?y ?x1 ?y1 ?x2 ?y2) {(1.1 7.0 2 3 5 -6.7) (-2 3.4 -7.8 9.3 5.4 -1.0)}

}

ST_PointN

This function returns the Point that is at the Nth index in a MultiPoint.

Syntax

geof:ST_PointN(geom, index)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

index int The index of the point to retrieve from the specified geometry.

Returns

Type Description

Custom object The point at the Nth index.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_PointN(geof:ST_GeomFromText(?x) , 2)) as ?envelope)

WHERE {

VALUES (?x) {

('MULTILINESTRING M((10 10 10, 20 20 20, 10 40 30),(40 40 20, 30 30 30, 40 20 10,

30 10 20))')

('MULTILINESTRING M((10 10 20, 20 20 30, -10 -40 -30),(10 40 20, 30 30 30, 10 20

10, 30 10 20))')

Geospatial Library 756

}

}

ST_GeomFromText

This function returns a Point as a custom object constructed from a set of well known free text

(WKT) coordinates.

Syntax

geof:ST_GeomFromText(wkt [, SRID])

Parameter Type Description

wkt string Input geometry in WKT string format. The geometry shape value can
be a Point, Multipoint, LineString, MultiLineString, Polygon, or
Multipolygon.

SRID int Optional well known reference ID. If not specified, the default SRID is
0.

Returns

Type Description

Custom object The point.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_MultiLineString(geof:ST_GeomFromText(?l1),geof:ST_

GeomFromText(?l2))) as ?MultiLineString)

WHERE {

VALUES (?l1 ?l2) {

('LINESTRING (8 7, 7 8)' 'LINESTRING (1 7, 7 8)')

('LINESTRING (18 17, -17 8)' 'LINESTRING (-1 7, 7 -8)')

Geospatial Library 757

}

}

ST_GeomFromWKB

This function returns a Point as a custom object constructed from a set of well known binary (WKB)

coordinates.

Syntax

geof:ST_GeomFromWKB(wkb_hexstr [, wkid])

Parameter Type Description

wkb_hexstr string Input geometry in WKB Hex String format. The geometry shape value
can be a Point, Multipoint, LineString, MultiLineString, Polygon, or
Multipolygon.

wkid int Optional well known reference ID. If not specified, the default is 0.

Returns

Type Description

Custom object The point.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_GeomFromWKB(?val)) as ?geom)

WHERE {

VALUES (?val) {('000000000140000000000000004010000000000000')}

}

Geospatial Library 758

LineString and MultiLineString Functions

l ST_LineString: Constructs a LineString from a number of Points in an array.

l ST_StartPoint: Returns the start point of a line.

l ST_EndPoint: Returns the end point of a line.

l ST_IsClosed: Determines whether a line geometry is a ring.

l ST_IsRing: Determines whether a geometry is closed.

l ST_MultiLineString: Returns a MultiLine geometry constructed from a list of Line geometries.

ST_LineString

This function returns a LineString as a custom object constructed from a number of Points. Any

number of Point geometries can be specified to form a new line.

Syntax

geof:ST_LineString(point1 [, ..., pointN])

Argument Type Description

point1–N Object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type.

Returns

Type Description

Custom object The LineString.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_LineString(geof:ST_GeomFromText(?pt1),geof:ST_

GeomFromText(?pt2))) as ?line_from_points)

Geospatial Library 759

WHERE {

VALUES (?pt1 ?pt2) {

('Point(1 1)' 'Point(-1 -2)') ('Point Z(-11 1 4)' 'Point ZM(0 9.2 -1 -2)')

}

}

ST_StartPoint

This function returns the start point of a given line.

Syntax

geof:ST_StartPoint(line)

Argument Type Description

line Object LineString geometry in WKT string format, WKTLiteral, GMLLiteral,
or the Graph Lakehouse Custom OGCGeometry data type.

Returns

Type Description

Custom object The start point of the line.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsGeoJSON(geof:ST_StartPoint(geof:ST_GeomFromText(?line_str_wkt))) as

?start_point) (geof:ST_AsGeoJSON(geof:ST_EndPoint(geof:ST_GeomFromText(?line_str_wkt)))

as ?end_point)

FROM <linestring>

WHERE {

?ln_str_ins a <http://csi.com/road_centerline/linestring>;

<http://csi.com/road_centerline/shape> ?line_str_wkt;

<http://csi.com/road_centerline/no_of_points> ?no_pt_ln.

}

ORDER BY desc(?no_pt_ln) desc(?line_str_wkt)

LIMIT 1

Geospatial Library 760

ST_EndPoint

This function returns the end point of a given line.

Syntax

geof:ST_EndPoint(line)

Argument Type Description

line Object LineString geometry in WKT string format, WKTLiteral, GMLLiteral,
or the Graph Lakehouse Custom OGCGeometry data type.

Returns

Type Description

Custom object The end point of the line.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsGeoJSON(geof:ST_StartPoint(geof:ST_GeomFromText(?line_str_wkt))) as

?start_point)

(geof:ST_AsGeoJSON(geof:ST_EndPoint(geof:ST_GeomFromText(?line_str_wkt))) as

?end_point)

FROM <linestring>

WHERE {

?ln_str_ins a <http://csi.com/road_centerline/linestring>;

<http://csi.com/road_centerline/shape> ?line_str_wkt;

<http://csi.com/road_centerline/no_of_points> ?no_pt_ln.

}

ORDER BY desc(?no_pt_ln) desc(?line_str_wkt)

LIMIT 1

ST_IsClosed

This function evaluates whether a geometry is closed.

Geospatial Library 761

Syntax

geof:ST_IsClosed(line)

Argument Type Description

line Object LineString or MultiLineString geometry in WKT string format,
WKTLiteral, GMLLiteral, or the Graph Lakehouse Custom
OGCGeometry data type.

Returns

Type Description

boolean True if the geometry is closed. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_IsClosed(geof:ST_GeomFromText(?x)) as ?ring)

WHERE {

VALUES (?x) {

('LINESTRING (30 10, 10 10, 40 40, 30 10)')('LINESTRING Z(-30.56 12 45, 10 1 -5, -

67 -0.56 68, -30.56 12 45)')

}

}

ST_IsRing

This function evaluates whether a Line geometry is a ring.

Syntax

geof:ST_IsRing(line)

Geospatial Library 762

Argument Type Description

line Object LineString geometry in WKT string format, WKTLiteral, GMLLiteral,
or the Graph Lakehouse Custom OGCGeometry data type.

Returns

Type Description

boolean True if the line is a ring. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_IsRing(geof:ST_GeomFromText(?x,0)) as ?ring_simple)

WHERE {

VALUES (?x) {

('LINESTRING (0 0, 1 1, 1 2, 2 1, 1 1, 0 0)')

('LINESTRING (0 0, 3 4)')

}

}

ST_MultiLineString

This function returns the MultiLine geometry constructed from a list of Line geometries. Any number

of line geometries can be specified to form a new MultiLine.

Syntax

geof:ST_MultiLineString(line1 [, ..., lineN])

Argument Type Description

line1–N Object LineString geometry in WKT string format, WKTLiteral, GMLLiteral,
or the Graph Lakehouse Custom OGCGeometry data type.

Geospatial Library 763

Returns

Type Description

Custom object The multiline geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_MultiLineString(geof:ST_GeomFromText(?l1),geof:ST_

GeomFromText(?l2))) as ?MultiLineString)

WHERE {

VALUES (?l1 ?l2) {

('LINESTRING (8 7, 7 8)' 'LINESTRING (1 7, 7 8)')

('LINESTRING (18 17, -17 8)' 'LINESTRING (-1 7, 7 -8)')

}

}

Polygon Functions

l ST_Polygon: Returns a Polygon constructed from multiple Point geometries.

l ST_ExteriorRing: Returns the exterior ring of a Polygon.

l ST_NumInteriorRing: Returns the number of interior rings that exist in a Polygon.

l ST_InteriorRingN: Returns the interior ring at the Nth index position in a Polygon.

l ST_MultiPolygon: Returns a MultiPolygon constructed from a list of Polygons.

l ST_Circle: Returns a Circle Polygon from a radius and x, y, and z coordinates.

l ST_CircleArc: Returns a Circle Arc Polygon from a radius and Point geometry.

l ST_Arc: Returns an Arc line from a start angle and size angle.

l ST_Ellipse: Returns an Ellipse Polygon from a radius and Point.

l ST_EllipticalArc: Returns an Elliptical Arc Polygon from a radius and Point.

l ST_Rectangle: Returns a Rectangle Polygon from a height, width, and Point.

Geospatial Library 764

l ST_Squircle: Returns a Squircle Polygon from a radius and Point.

l ST_GeomFromGML: Returns geometry based on a GML specification.

ST_Polygon

This function returns Polygon geometry constructed from multiple Point geometries.

Syntax

geof:ST_Polygon(point1 [, ..., pointN])

Argument Type Description

point1–N Object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or the
Graph Lakehouse Custom OGCGeometry data type. Any number of
point geometries can be passed as input to form a new polygon but
all points should have the same dimensions. That is, the specified
input geometries should all be either 2D point geometries or 3D point
geometries.

Returns

Type Description

Custom object The polygon.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Polygon(geof:ST_Point(?x,?y),geof:ST_Point(?x1,?y1),

geof:ST_Point(?x2,?y2))) as ?line_from_points)

WHERE {

VALUES (?x ?y ?x1 ?y1 ?x2 ?y2) {

(1.1 7.0 2 3 5 -6.7)

(-2 3.4 -7.8 9.3 5.4 -1.0)

}

}

Geospatial Library 765

ST_ExteriorRing

This function returns the exterior ring of a given Polygon geometry.

Syntax

geof:ST_ExteriorRing(polygon)

Argument Type Description

polygon Object Polygon geometry in WKT string format, WKTLiteral, GMLLiteral, or
the Graph Lakehouse Custom OGCGeometry data type.

Returns

Type Description

Custom object The exterior ring.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_ExteriorRing('POLYGON((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2

2,2 1,1 1))')) as ?exterior_ring)

ST_NumInteriorRing

This function returns the number of interior rings that exist in a given Polygon.

Syntax

geof:ST_NumInteriorRing(polygon)

Argument Type Description

polygon Object Polygon geometry in WKT string format, WKTLiteral, GMLLiteral, or
the Graph Lakehouse Custom OGCGeometry data type.

Geospatial Library 766

Returns

Type Description

int The number of interior rings.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT (geof:ST_NumInteriorRing(geof:ST_GeomFromText(?multi_pt_wkt)) as ?polygon)

FROM <polygon>

WHERE {

?multi_pt a <http://csi.com/national_weather_service_wind_gust_forecast/polygon>;

<http://csi.com/national_weather_service_wind_gust_forecast/shape> ?multi_pt_wkt;

<http://csi.com/national_weather_service_wind_gust_forecast/id> "0"^^xsd:int.

}

ST_InteriorRingN

This function returns the interior ring at the Nth index position in a Polygon.

Syntax

geof:ST_InteriorRingN(polygon, n)

Argument Type Description

polygon Object Polygon geometry in WKT string format, WKTLiteral, GMLLiteral, or
the Graph Lakehouse Custom OGCGeometry data type.

n int The index of the interior ring to retrieve from the specified polygon.

Geospatial Library 767

Returns

Type Description

Custom object The interior ring.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_InteriorRingN(geof:ST_GeomFromText(?x),1)) as

?interiorRing)

WHERE {

VALUES (?x) {

('POLYGON((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))')

('POLYGON((2 2, 6 4, 6 10, -2 10, -2 4, 2 2),(1 5, 3 5, 3 7, 1 7))')

}

}

ST_MultiPolygon

This function returns MultiPolygon constructed from a list of Polygons. Any number of Polygon

geometries can be specified as input.

Syntax

geof:ST_MultiPolygon(polygon1 [, ..., polygonN])

Argument Type Description

polygon1–N Object Polygon geometry in WKT string format, WKTLiteral, GMLLiteral, or
the Graph Lakehouse Custom OGCGeometry data type.

Returns

Type Description

Custom object The multipolygon.

Geospatial Library 768

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_MultiPolygon(geof:ST_GeomFromText(?p1),geof:ST_

GeomFromText(?p2))) as ?agg_multipolygon)

WHERE {

VALUES (?p1 ?p2) {

('POLYGON ((2 0, 2 3, 3 0))' 'POLYGON ((11 12,-11 -12,11 -12))')

('POLYGON ((1 2,-2 -3,9.2 -4.5))' 'POLYGON ((-1 -2, -4.5 -17, -5.6 -78))')

}

}

ST_Circle

This function returns a Circle Polygon from a given radius and Point.

Syntax

geof:ST_Circle(geom, radius, numOfPoints)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or
the Graph Lakehouse Custom OGCGeometry data type.

radius double The radius of the circle polygon.

numOfPoints int The number of points to use to represent the new circle polygon.

Returns

Type Description

Custom object The circle polygon.

Geospatial Library 769

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Circle((geof:ST_Point(1,2)),3,10)) as ?circle_polygon)

ST_CircleArc

This function returns a Circular Arc Polygon from the given radius parameters and Point arguments.

Syntax

geof:ST_CircleArc(geom, startRad, sizeRad, radius, numOfPoints)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or
the Graph Lakehouse Custom OGCGeometry data type.

startRad double The start angle in radians.

sizeRad double The size of the angle in radians.

radius double The radius of the circular arc polygon.

numOfPoints int The number of points to use to represent the new polygon.

Returns

Type Description

Custom object The circular arc polygon.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_CircleArc((geof:ST_Point(1,2)),5,10,3,10)) as ?circle_

Geospatial Library 770

arc_polygon)

ST_Arc

This function returns an Arc given a center point, radius, start and size angle, and number of Points

arguments.

Syntax

geof:ST_Arc(x, y, radius, startRad, sizeRad, numOfPoints)

Argument Type Description

x double The X coordinate of the center used to draw the arc.

y double The Y coordinate of the center used to draw the arc.

radius double The radius of the arc.

startRad double The start angle in radians.

sizeRad double The size of the angle in radians.

numOfPoints int The number of points to use to represent the new arc.

Returns

Type Description

Custom object The arc.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Arc(1,2,5,10,20,4)) as ?Arc)

Geospatial Library 771

ST_Ellipse

This function returns an Ellipse Polygon based on a given radius and Point geometry.

Syntax

geof:ST_Ellipse(geom, xRadius, yRadius, numOfPoints)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or
the Graph Lakehouse Custom OGCGeometry data type.

xRaduis double The X radius for the ellipse polygon.

yRadius double The Y radius for the ellipse polygon.

numOfPoints int The number of points to use to represent the new ellipse polygon.

Returns

Type Description

Custom object The ellipse polygon.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Ellipse((geof:ST_Point(1,2)),2,3,10)) as ?ellipse_

polygon)

ST_EllipticalArc

This function returns an Elliptical Arc Polygon from the given radius and Point geometry.

Geospatial Library 772

Syntax

geof:ST_EllipseArc(geom, startRad, sizeRad, width, height, numOfPoints)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or
the Graph Lakehouse Custom OGCGeometry data type.

startRad double The start angle in radians.

sizeRad double The size of the angle in radians.

width double The width of the elliptical arc.

height double The height of the elliptical arc.

numOfPoints int The number of points to use to represent the new elliptical arc
polygon.

Returns

Type Description

Custom object The elliptical arc polygon.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_EllipticalArc((geof:ST_Point(1,2)),5,10,3,10,10)) as

?elliptical_arc_polygon)

ST_Rectangle

This function returns a Rectangle Polygon from a given height, width, and Point geometry.

Geospatial Library 773

Syntax

geof:ST_Rectangle(geom, width, height, numOfPoints)

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or
the Graph Lakehouse Custom OGCGeometry data type.

width double The width of the rectangle.

height double The height of the rectangle.

numOfPoints int The number of points to use to represent the new rectangle
polygon.

Returns

Type Description

Custom object The rectangle polygon.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Rectangle((geof:ST_Point(1,2)),3,2,10)) as ?rectangle_

polygon)

ST_Squircle

This function returns a Squircle Polygon from a given radius and Point geometry.

Syntax

geof:ST_Squircle(geom, radius, numOfPoints)

Geospatial Library 774

Argument Type Description

geom object Point geometry in WKT string format, WKTLiteral, GMLLiteral, or
the Graph Lakehouse Custom OGCGeometry data type.

raduis double The radius of the squircle polygon.

numOfPoints int The number of points to use to represent the new squircle
polygon.

Returns

Type Description

Custom object The squircle polygon.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Squircle((geof:ST_Point(1,2)),3,10)) as ?squircle_

polygon)

ST_GeomFromGML

This function returns geometry based on a GML specification.

Syntax

geof:ST_GeomFromGML(gml)

Parameter Type Description

gml string Input geometry in GMLLiteral format. The geometry shape can be a
Point, Multipoint, LineString, MultiLineString, Polygon, or
Multipolygon.

Geospatial Library 775

Returns

Type Description

Custom object The geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_GeomFromGML(geof:ST_AsGML(geof:ST_GeomFromText('POINT(1

2)')))) as ?geometryGml)

Utility Functions

l ST_MinX: Returns the minimum value of the X coordinate for a geometry.

l ST_MaxX: Returns the maximum value of the X coordinate for a geometry.

l ST_MinY: Returns the minimum value of the Y coordinate for a geometry.

l ST_MaxY: Returns the maximum value of the Y coordinate for a geometry.

l ST_MinZ: Returns the minimum value of Z coordinate for a geometry.

l ST_MaxZ: Returns the maximum value of Z coordinate for a geometry.

l ST_MinM: Returns the minimum measure value for a geometry.

l ST_MaxM: Returns the maximum measure value for a geometry.

Serialization

l ST_AsGeoJSON: Returns a GeoJSON representation of a shape.

l ST_AsJSON: Returns a JSON representation of a shape.

l ST_AsBinary: Returns a binary object from a geometry.

l ST_AsText: Returns a well known text (WKT) representation of a shape.

l ST_AsGML: Returns geometry from a GML representation of a shape.

Geospatial Library 776

l ST_AsWktLiteral: Returns a URL from WKT representation of a geometry.

l ST_AsGmlLiteral: Returns a URL from GML representation of a geometry.

l ST_AsWKB_HEX: Returns a hex string from WKB representation of a geometry.

Logical, Comparison, and Relational Operations

l ST_Is3D: Determines if a geometry object is three-dimensional.

l ST_IsEmpty: Determines if a geometry object is empty.

l ST_IsMeasured: Determines if a geometry object is measured.

l ST_IsSimple: Determines if a geometry object is simple.

l ST_Crosses: Determines if geometry1 crosses geometry2.

l ST_Contains: Determines if geometry1 contains geometry2.

l ST_Disjoint: Determines if geometry1 has any Points in common with geometry2.

l ST_Equals: Determines if geometry1 equals geometry2.

l ST_Intersects: Determines if geometry1 intersects geometry2.

l ST_Overlaps: Determines if geometry1 overlaps geometry2.

l ST_Touches: Determines if geometry1 touches geometry2.

l ST_Within: Determines if geometry1 is within geometry2.

l ST_EnvIntersects: Determines if the envelopes of geometry1 and geometry2 intersect.

l ST_Relate: Determines if geometry1 has the specified DE-9IM relationship with geometry2.

Conversion, Calculation, and Translation

l ST_Distance: Returns the distance between two geometry objects.

l ST_Boundary: Returns the boundary of a given geometry.

l ST_Intersection: Returns the intersection of two geometry objects.

l ST_Difference: Returns the difference between two geometry objects.

Geospatial Library 777

l ST_SymDifference: Returns the symmetric difference between two geometry objects.

l ST_SRID: Returns the spatial reference ID of a geometry.

l ST_SetSRID: Sets the spatial reference ID of a geometry and returns its coordinates.

l ST_Dimension: Returns the spatial dimension of a geometry.

l ST_Length: Returns the length of a Line.

l ST_Area: Returns the area of a Polygon or MultiPolygon.

l ST_CoordDim: Returns the count of coordinate components.

l ST_Envelope: Returns the envelope of a geometry.

l ST_GeometryType: Returns the geometry type of a geometry.

l ST_Union: Returns the union of one or more geometries.

l ST_NumPoints: Returns the number of Points in a geometry.

l ST_NumGeometries: Returns the number of geometries in a multi-geometry shape.

l ST_GeometryN: Returns the Nth geometry in a multi-geometry shape.

l ST_Centroid: Returns the centroid of a geometry.

l ST_Buffer: Returns the geometry buffered by distance.

l ST_ConvexHull: Returns the convex hull of one or more geometries.

l ST_GeodesicLengthWGS84: Returns the distance (in meters) along a Line of a WGS84

spheroid for geographic coordinates.

l ST_GeomFromJSON: Returns the geometry from a JSON representation of a shape.

l ST_GeomFromGeoJSON: Returns the geometry from a GeoJSON representation of a

shape.

l ST_LatLonFromDMSToDD: Returns latitude and longitude in decimal degrees.

l ST_GeomFromWktLiteral: Returns geometry object from a WKT representation of a shape.

l ST_GeomFromGmlLiteral: Returns geometry object from a GML representation of a shape.

Geospatial Library 778

l ST_ConvertCoordinates: Return coordinates converted from one coordinate system to

another.

l ST_IsValidWKT: Validates whether a given WKT representation is correct.

l ST_IsValidGeoJSON: Validates whether a given geoJSON representation is correct.

l ST_Translate: Transforms a geometry with given shift values.

l ST_Scale: Scales a geometry to a new size using scale factor arguments.

l ST_Shear: Shears a geometry around an axis using shearing arguments.

l ST_Rotate: Rotates geometry around the origin using rotation arguments.

ST_MinX

This function returns the minimum value of the X coordinate for a geometry.

Syntax

geof:ST_MinX(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

double The minimum value of the X coordinate.

Geospatial Library 779

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_MinX(?z1) as ?minX)

WHERE {

SELECT (geof:ST_Point(?x, ?y, ?z, ?m) as ?z1)

WHERE {

VALUES (?x ?y ?z ?m) {

(1.1 2.2 3.2 1) (1.2 3.1 1.1 2) (8.2 3.2 9.2 3)

}

}

}

ST_MaxX

This function returns the maximum value of the X coordinate for a geometry.

Syntax

geof:ST_MaxX(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

double The maximum value of the X coordinate.

Geospatial Library 780

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?no_pt_ln ?xmin ?xmax ?ymin ?ymax

FROM <multipoint>

WHERE {

?ln_str_ins a <http://csi.com/wind_speed_at_block_group_level/multipoint>;

<http://csi.com/wind_speed_at_block_group_level/shape> ?multi_pt_wkt;

<http://csi.com/wind_speed_at_block_group_level/no_of_points> ?no_pt_ln;

BIND(geof:ST_GeomFromText(?multi_pt_wkt) as ?geo_shp)

BIND(geof:ST_MinX(?geo_shp) as ?xmin)

BIND(geof:ST_MaxX(?geo_shp) as ?xmax)

BIND(geof:ST_MinY(?geo_shp) as ?ymin)

BIND(geof:ST_MaxY(?geo_shp) as ?ymax)

}

ORDER BY desc(?no_pt_ln)

LIMIT 1

ST_MinY

This function returns the minimum value of the Y coordinate for a geometry.

Syntax

geof:ST_MinY(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Geospatial Library 781

Returns

Type Description

double The minimum value of the Y coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?no_pt_ln ?xmin ?xmax ?ymin ?ymax

FROM <multipoint>

WHERE {

?ln_str_ins a <http://csi.com/wind_speed_at_block_group_level/multipoint>;

<http://csi.com/wind_speed_at_block_group_level/shape> ?multi_pt_wkt;

<http://csi.com/wind_speed_at_block_group_level/no_of_points> ?no_pt_ln;

BIND(geof:ST_GeomFromText(?multi_pt_wkt) as ?geo_shp)

BIND(geof:ST_MinX(?geo_shp) as ?xmin)

BIND(geof:ST_MaxX(?geo_shp) as ?xmax)

BIND(geof:ST_MinY(?geo_shp) as ?ymin)

BIND(geof:ST_MaxY(?geo_shp) as ?ymax)

}

ORDER BY desc(?no_pt_ln)

LIMIT 1

ST_MaxY

This function returns the maximum value of the Y coordinate for a geometry.

Syntax

geof:ST_MaxY(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or

Geospatial Library 782

Parameter Type Description

GeometryCollection.

Returns

Type Description

double The maximum value of the Y coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?no_pt_ln ?xmin ?xmax ?ymin ?ymax

FROM <multipoint>

WHERE {

?ln_str_ins a <http://csi.com/wind_speed_at_block_group_level/multipoint>;

<http://csi.com/wind_speed_at_block_group_level/shape> ?multi_pt_wkt;

<http://csi.com/wind_speed_at_block_group_level/no_of_points> ?no_pt_ln;

BIND(geof:ST_GeomFromText(?multi_pt_wkt) as ?geo_shp)

BIND(geof:ST_MinX(?geo_shp) as ?xmin)

BIND(geof:ST_MaxX(?geo_shp) as ?xmax)

BIND(geof:ST_MinY(?geo_shp) as ?ymin)

BIND(geof:ST_MaxY(?geo_shp) as ?ymax)

}

ORDER BY desc(?no_pt_ln)

LIMIT 1

ST_MinZ

This function returns the minimum value of the Z coordinate for a geometry.

Syntax

geof:ST_MinZ(geom)

Geospatial Library 783

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

double The minimum value of the Z coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_MinZ(geof:ST_GeomFromText("LINESTRING Z(10 12 1, 22 20 2, 1 40 3)")) as

?minZ)

ST_MaxZ

This function returns the maximum value of the Z coordinate for a geometry.

Syntax

geof:ST_MaxZ(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Geospatial Library 784

Returns

Type Description

double The maximum value of the Z coordinate.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_MaxZ(geof:ST_GeomFromText("LINESTRING Z(10 12 1, 22 20 2, 1 40 3)")) as

?maxZ)

ST_MinM

This function returns the minimum value of measure for a geometry.

Syntax

geof:ST_MinM(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

double The minimum value of measure.

Geospatial Library 785

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_MinM(geof:ST_GeomFromText("LINESTRING ZM(10 12 1 2.1, 22 20 2 1.2, 1 40

3 4.3)")) as ?maxZ)

ST_MaxM

This function returns the maximum value of measure for a geometry.

Syntax

geof:ST_MaxM(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

double The maximum value of measure.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_MaxM(geof:ST_GeomFromText("LINESTRING ZM(10 12 1 2.1, 22 20 2 1.2, 1 40

3 4.3)")) as ?maxZ)

ST_AsGeoJSON

This function returns a GeoJSON representation of a geometric shape.

Geospatial Library 786

Syntax

geof:ST_AsGeoJSON(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

string The GeoJSON representation of the shape.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_IsValidGeoJSON(geof:ST_AsGeoJSON(geof:ST_GeomFromText('LINESTRING(4 6,7

10)'))) as ?is_valid_geojson)

ST_AsJSON

This function returns a JSON representation of a geometric shape.

Syntax

geof:ST_AsJSON(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data

Geospatial Library 787

Parameter Type Description

type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

string The JSON representation of the shape.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_GeomFromJSON(geof:ST_AsJSON(geof:ST_GeomFromText(?x))))

as ?line_from_json)

WHERE {

VALUES (?x) {

('LINESTRING (0 0, 2 2)') ('LINESTRING Z(8 -7 -1, -7 -1 8)')

}

}

ST_AsBinary

This function returns a binary object from a given geometry.

Syntax

geof:ST_AsBinary(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or

Geospatial Library 788

Parameter Type Description

GeometryCollection.

Returns

Type Description

Custom object The binary object.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsBinary(geof:ST_GeomFromText(?x)) as ?binary)

WHERE {

VALUES (?x) {

('GeometryCollection(Point(1 1),LineString(2 2, 3 3),Point(4 0))')

}

}

ST_AsText

This function returns the well known text (WKT) representation of a geometric shape.

Syntax

geof:ST_AsText(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Geospatial Library 789

Returns

Type Description

string TheWKT representation of the shape.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Circle((geo:ST_Point(1,2)),3,10)) as ?circle_polygon)

ST_AsGML

This function returns geometry from the GML representation of a shape.

Syntax

geof:ST_AsGML(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

string The geometry.

Geospatial Library 790

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsGML(geof:ST_Point(1.1,-6.7)) as ?point)

ST_AsWktLiteral

This function returns a URI from a well known text (WKT) representation of a shape.

Syntax

geof:ST_AsWktLiteral(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object TheWKT URI representation of the shape.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:sfContains(?x,geof:ST_AsWktLiteral(geof:ST_GeomFromText(?y))) as ?url)

WHERE {

VALUES (?x ?y) {

('<http://www.opengis.net/def/crs/OGC/1.3/CRS84>POLYGON ((1 1, 1 4, 4 4, 4 1))'

'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('<http://www.opengis.net/def/crs/OGC/1.3/CRS84>POLYGON ((1 1, 1 4, 4 4, 4 1))'

'Point (1 2)')

Geospatial Library 791

}

}

ST_AsGmlLiteral

This function returns a URI from the GML representation of a shape.

Syntax

geof:ST_AsGmlLiteral(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object The GmlLiteral URI representation of the shape.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

SELECT (geof:sfContains(?x,geof:ST_AsGmlLiteral(?y)) as ?url)

WHERE {

VALUES (?x ?y) {

('<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((1 1, 1 4, 4 4, 4 1))'

'<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((1 1, 1 4, 4 4, 4

1))'^^geo:wktLiteral)

('<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((1 1, 1 4, 4 4, 4 1))'

'<http://www.opengis.net/def/crs/EPSG/0/4326>Point (1 2)'^^geo:wktLiteral)

Geospatial Library 792

}

}

ST_AsWKB_HEX

This function returns a hex string from the WKB representation of a geometry.

Syntax

geof:ST_AsWKB_HEX(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

string The hex string.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsWKB_HEX(geof:ST_GeomFromText(?x)) as ?hex)

WHERE {

VALUES (?x) {

('POLYGON ((2 0, 2 1, 3 1))')

}

}

ST_Is3D

This function evaluates whether the specified geometry object is three-dimensional.

Geospatial Library 793

Syntax

geof:ST_Is3D(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

boolean True if the geometry is 3D. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Is3D(geof:ST_Point(?x,?y,?z)) as ?is3DGeometry)

WHERE {

VALUES (?x ?y ?z) {

(1.1 2.2 3.2) (1.2 3.1 -1.1) (-0.6 8.2 3.2)

}

}

ST_IsEmpty

This function evaluates whether the specified geometry object is empty.

Syntax

geof:ST_IsEmpty(geom)

Geospatial Library 794

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

boolean True if the geometry is empty. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_IsEmpty(geof:ST_GeomFromText(?x)) as ?empty)

WHERE {

VALUES (?x) {('point empty')}

}

ST_IsMeasured

This function evaluates whether a given geometry object is measured.

Syntax

geof:ST_IsMeasured(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Geospatial Library 795

Returns

Type Description

boolean True if the geometry is measured. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_IsMeasured(geof:ST_Point(?x,?y,?z,?m)) as ?measured)

WHERE {

VALUES (?x ?y ?z ?m) {

(1.1 2.2 3.2 3)

(1.2 3.1 -1.1 1)

(2 -0.6 8.2 3.2)

}

}

ST_IsSimple

This function evaluates whether a given geometry object is simple.

Syntax

geof:ST_IsSimple(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Geospatial Library 796

Returns

Type Description

boolean True if the geometry is simple. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_IsSimple(geof:ST_Point(?x, ?y)) as ?simple)

WHERE {

VALUES (?x ?y) {

(2 3)

(-1000 -234234)

}

}

ST_Crosses

This function evaluates whether geometry1 crosses geometry2.

Syntax

geof:ST_Crosses(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Geospatial Library 797

Returns

Type Description

boolean True if the first geometry crosses the second geometry. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Crosses(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as ?crosses)

WHERE {

VALUES (?x ?y) {('LINESTRING (0 0, 1 1)' 'LINESTRING (1 0, 0 1)')

('LINESTRING (0 2, 0 1)' 'LINESTRING (2 0, 1 0)')}

}

ST_Contains

This function evaluates whether geometry1 contains geometry2.

Syntax

geof:ST_Contains(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

boolean True if the first geometry contains the second geometry. False if not.

Geospatial Library 798

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Contains(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as

?contains)

WHERE {

VALUES (?x ?y) {('POLYGON ((30 10 , 40 40, 20 40, 10 20, 30 10))' 'Point (-

106.4453583 39.11775)')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'Point (2 3)')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'Point (7 8)')}

}

ST_Disjoint

This function evaluates whether geometry1 is disjoint with geometry2, i.e., whether geometry1 has

any points in common with geometry2.

Syntax

geof:ST_Disjoint(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

boolean True if the first geometry is disjoint with the second geometry. False if not.

Geospatial Library 799

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Disjoint(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as

?disjoint)

WHERE {

VALUES (?x ?y) {

('LINESTRING (0 0, 0 1)' 'LINESTRING (1 1, 1 0)')

('LINESTRING (0 0, 0 1)' 'LINESTRING (1 0, 0 1)')

}

}

ST_Equals

This function evaluates whether geometry1 equals geometry2.

Syntax

geof:ST_Equals(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

boolean True if the first geometry equals the second geometry. False if not.

Geospatial Library 800

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Equals(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as ?equals)

WHERE {

VALUES (?x ?y) {

('LINESTRING (0 0, 1 1)' 'LINESTRING (1 1, 0 0)')

('LINESTRING (0 0, 0 1)' 'LINESTRING (1 0, 0 1)')

}

}

ST_Intersects

This function determines if geometry1 intersects geometry2.

Syntax

geof:ST_Intersects(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

boolean True if the first geometry intersects the second geometry. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Intersects(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as

Geospatial Library 801

?intersects)

WHERE {

VALUES (?x ?y) {

('LINESTRING (8 7, 7 8)' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('LINESTRING (2 0, 2 3)' 'POLYGON ((1 1, 4 1, 4 4, 1 4))')

}

}

ST_Overlaps

This function evaluates whether geometry1 overlaps geometry2.

Syntax

geof:ST_Overlaps(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

boolean True if the first geometry overlaps the second geometry. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Overlaps(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as

?overlaps)

WHERE {

VALUES (?x ?y) {

('POLYGON ((2 0, 2 1, 1 3))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

Geospatial Library 802

('POLYGON ((2 0, 2 1, 3 1))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((2 0, 2 3, 3 0))')

}

}

ST_Touches

This function evaluates whether geometry1 touches geometry2, i.e., whether they have any points

in common.

Syntax

geof:ST_Touches(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

boolean True if the first geometry touches the second geometry. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Touches(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as ?touches)

WHERE {

VALUES (?x ?y) {

('POLYGON ((30 10 , 40 40, 20 40, 10 20, 30 10))' 'Point (-106.4453583 39.11775)')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'Point (1 2)')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'Point (7 8)')

Geospatial Library 803

}

}

ST_Within

This function evaluates whether geometry1 is within geometry2.

Syntax

geof:ST_Within(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

boolean True if the first geometry is within the second geometry. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Within(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as ?is_point_

within_polygon)

WHERE {

VALUES (?x ?y) {

('Point (-106.4453583 39.11775)' 'POLYGON ((30 10 , 40 40, 20 40, 10 20, 30 10))')

('Point (2 3)' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('Point (7 8)' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

}

}

Geospatial Library 804

ST_EnvIntersects

This function evaluates whether the envelopes of geometry1 and geometry2 intersect.

Syntax

geof:ST_EnvIntersects(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

boolean True if the envelopes of geometry1 and geometry2 intersect. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_EnvIntersects(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as

?env_intersects)

WHERE {

VALUES (?x ?y) {

('LINESTRING (0 0, 1 1)' 'LINESTRING (1 3, 2 2)')

('LINESTRING (0 0, 2 2)' 'LINESTRING (1 0, 3 2)')

}

}

ST_Relate

This function evaluates whether geometry1 has the specified DE-9IM relationship with geometry2.

Geospatial Library 805

Syntax

geof:ST_Relate(geom1, geom2, "pattern_matrix")

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

pattern_
matrix

string Represents a DE-9IM intersection pattern consisting of T (true) and
F (false) values. For example, "T*F***FF*".

Returns

Type Description

boolean True if the first geometry has the specified DE-9IM relationship with the second
geometry. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Relate(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y),?z) as

?relate)

WHERE {

VALUES (?x ?y ?z) {

('LINESTRING (0 0, 3 3)' 'LINESTRING (1 1, 4 4)' 'T********')

('LINESTRING (0 0, 3 3)' 'LINESTRING (1 1, 4 4)' '****T****')

}

}

ST_Distance

This function returns the distance between two geometry objects.

Geospatial Library 806

Syntax

geof:ST_Distance(geom1, geom2 [, units] [, isSpherical])

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

units URI Optional Unit URI having one of the following values:
uom:minute, uom:second, uom:centimeter,
uom:centimetre, uom:degree, uom:foot, uom:grad,
uom:inch, uom:kilometer, uom:kilometre, uom:meter,
uom:metre, uom:microRadian, uom:mile,
uom:millimeter, uom:millimetre, uom:nauticalMile,
uom:radian, uom:statuteMile, uom:surveyFootUS, or
uom:yard.

isSpherical boolean This flag allows the ST_Distance function to explicitly control
computation of the shortest spherical distance between two
geometries. If isSpherical is true, the function computes the
shortest spherical distance between the two geometries using
only the geom1 SRID to detect axis order. The function then
performs spherical calculation based on the Earth mean radius
(6,371,008.7714).

Returns

Type Description

double The distance between the geometries.

Geospatial Library 807

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

SELECT (geof:ST_Distance(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as

?distance)

WHERE {

VALUES (?x ?y) {

('Point (0 0)' 'Point (3 4)')

('Point (0 0)' 'Point (2 3)')

}

}

ST_Boundary

This function returns the boundary of a given geometry.

Syntax

geof:ST_Boundary(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object The boundary of the shape.

Geospatial Library 808

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Boundary(geof:ST_GeomFromText(?x))) as ?boundary)

WHERE {

VALUES (?x) {

('POLYGON ((30 10 , 40 40, 20 40, 10 20, 30 10))')

('POLYGON ((1 1, 1 4, 4 1))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))')

}

}

ST_Intersection

This function returns the intersection of two geometry objects.

Syntax

geof:ST_Intersection(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object The intersection between the geometries.

Geospatial Library 809

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Intersection(geof:ST_GeomFromText(?x),geof:ST_

GeomFromText(?y))) as ?intersection)

WHERE {

VALUES (?x ?y) {

('LINESTRING (8 7, 7 8)' 'LINESTRING (2 0, 2 3)')

('LINESTRING (0 2, 0 0, 2 0)' 'LINESTRING (0 3, 0 1, 1 0, 3 0)')

}

}

ST_Difference

This function returns the difference between two geometry objects.

Syntax

geof:ST_Difference(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object The difference between the geometries.

Geospatial Library 810

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Difference(geof:ST_GeomFromText(?x),geof:ST_GeomFromText

(?y))) as ?difference)

WHERE {

VALUES (?x ?y) {

('POLYGON ((30 10 , 40 40, 20 40, 10 20, 30 10))' 'POLYGON ((30 10 , 40 40, 20 40,

10 20, 30 10))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((30 10 , 40 40, 20 40, 10 20, 30 10))')

('POLYGON ((0 0, 0 10, 10 10, 10 0))' 'POLYGON ((0 0, 0 5, 5 5, 5 0))')

('POLYGON ((1 1,4 1, 4 4,1 4))' 'POLYGON ((2 0, 2 1, 3 1))')

}

}

ST_SymDifference

This function returns the symmetric difference between two geometry objects.

Syntax

geof:ST_SymDifference(geom1, geom2)

Parameter Type Description

geom1,
geom2

Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object The symmetric difference.

Geospatial Library 811

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_SymDifference(geof:ST_GeomFromText(?x),geof:ST_

GeomFromText(?y))) as ?difference)

WHERE {

VALUES (?x ?y) {

('POLYGON ((0 0, 2 0, 2 2, 0 2, 0 0))' 'POLYGON ((1 1, 3 1, 3 3, 1 3, 1 1))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((30 10 , 40 40, 20 40, 10 20, 30 10))')

('POLYGON ((0 0, 0 10, 10 10, 10 0))' 'POLYGON ((0 0, 0 5, 5 5, 5 0))')

('POLYGON ((1 1,4 1, 4 4,1 4))' 'POLYGON ((2 0, 2 1, 3 1))')

}

}

ST_SRID

This function returns the spatial reference ID of a geometry.

Syntax

geof:ST_SRID(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

int The SRID.

Geospatial Library 812

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_SRID(geof:ST_SetSRID(geof:ST_GeomFromText(?x) , 4326)) as ?SRID)

WHERE {

VALUES (?x) {

('Point (1.5 2.5)') ('Point (23.45 -78.90)')

}

}

ST_SetSRID

This function sets the spatial reference ID of a geometry and returns its coordinates.

Syntax

geof:ST_SetSRID(geom, wkid)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

wkid int The well known reference ID.

Returns

Type Description

Custom object The coordinates.

Geospatial Library 813

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_SRID(geof:ST_SetSRID(geof:ST_GeomFromText(?x) , 4326)) as ?SRID)

WHERE {

VALUES (?x) {

('Point (1.5 2.5)') ('Point (23.45 -78.90)')

}

}

ST_Dimension

This function returns the spatial dimension of a given geometry.

Syntax

geof:ST_Dimension(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

int The spatial dimension.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Dimension(geof:ST_GeomFromText(?x)) as ?Dimension)

WHERE {

Geospatial Library 814

VALUES (?x) {

('Point (1.5 2.5)') ('Point (23.45 -78.90)')

}

}

ST_Length

This function returns the length of a Line.

Syntax

geof:ST_Length(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

double The length of the shape.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Length(geof:ST_GeomFromText(?x)) as ?geometry_length)

WHERE {

VALUES (?x) {

('MULTILINESTRING ((1 1, 1 2),(10 10, 20 10))')

('MULTILINESTRING ((10 30, 20 20, 30 40),(40 20, 30 30, 40 20, 30 10))')

}

}

Geospatial Library 815

ST_Area

This function returns the area of a Polygon or MultiPolygon.

Syntax

geof:ST_Area(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

double The area of geometry as follows:

l The planar area is returned if a geometry is passed without an SRID.

l The geodesic area is returned if a geometry is passed with SRID 4326

/CRS84.

l The spherial area is returned if a geometry is passed with SRID 4047.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_Area(geof:ST_GeomFromText(?x)) as ?Area)

WHERE {

VALUES (?x) {

('POLYGON ((0 0, 0 8, 8 0, 0 0), (1 1, 1 5, 5 1, 1 1))')

('multipolygon (((10 40, 20 10, 50 10, 60 40, 50 70, 20 70),(25 20, 45 20, 45 60,

25 60)), ((30 30, 40 30, 35 50)))')

Geospatial Library 816

}

}

ST_CoordDim

This function returns the count of coordinate components.

Syntax

geof:ST_CoordDim(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

double The count of coordinate components.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_CoordDim(geof:ST_GeomFromText(?x)) as ?coordinate_dimension)

WHERE {

VALUES (?x) {

('Point (1.5 2.5)') ('Point Z(23.45 -78.90 3)')

}

}

ST_Envelope

This function returns the envelope of a given geometry.

Geospatial Library 817

Syntax

geof:ST_Envelope(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object The envelope.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Envelope(geof:ST_GeomFromText(?x))) as ?envelope)

WHERE {

VALUES (?x) {

('POLYGON ((2 0, 2 3, 3 0))') ('POLYGON ((2 0, 2 1, 3 1))')

}

}

ST_GeometryType

This function returns the geometry type of a geometry.

Syntax

geof:ST_GeometryType(geom)

Geospatial Library 818

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

string The geometry type.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_GeometryType(geof:ST_GeomFromText(?x)) as ?geometry_type)

WHERE {

VALUES (?x) {

('POLYGON ((2 0, 2 3, 3 0))') ('POLYGON ((2 0, 2 1, 3 1))')

}

}

ST_Union

This function returns the union of one or more geometries. Any number of geometries can be

specified as input.

Syntax

geof:ST_Union(geom1 [, ..., geomN])

Parameter Type Description

geom1–N Object Geometry shape values in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data

Geospatial Library 819

Parameter Type Description

type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object The union of geometries.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_NumPoints(geof:ST_Union(?point_2d, ?point_2d1)) as ?union)

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/id> "0"^^<http://www.w3.org/2001/XMLSchema#long>;

<http://csi.com/geologic_units_24k/shape> ?shape.

?point1 a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/id> "1"^^<http://www.w3.org/2001/XMLSchema#long>;

<http://csi.com/geologic_units_24k/shape> ?shape1;

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

BIND(geof:ST_GeomFromText(?shape1) as ?point_2d1)

}

ST_NumPoints

This function returns the number of Points in a geometry.

Syntax

geof:ST_NumPoints(geom)

Geospatial Library 820

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

int The number of points.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_NumPoints(geof:ST_Union(?point_2d, ?point_2d1)) as ?union)

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/id> "0"^^<http://www.w3.org/2001/XMLSchema#long>;

<http://csi.com/geologic_units_24k/shape> ?shape.

?point1 a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/id> "1"^^<http://www.w3.org/2001/XMLSchema#long>;

<http://csi.com/geologic_units_24k/shape> ?shape1;

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

BIND(geof:ST_GeomFromText(?shape1) as ?point_2d1)

}

ST_NumGeometries

This function returns the number of geometries in a multi-geometry shape.

Syntax

geof:ST_NumGeometries(geom)

Geospatial Library 821

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

int The number of geometries.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT (geof:ST_NumGeometries(geof:ST_GeomFromText(?multi_pt_wkt)) as ?multi_polygon)

FROM <multipolygon>

WHERE {

?multi_pt a <http://csi.com/maryland_Shellfish__historic_oyster_

plantings/multipolygon>;

<http://csi.com/maryland_Shellfish__historic_oyster_plantings/shape> ?multi_pt_wkt;

<http://csi.com/maryland_Shellfish__historic_oyster_plantings/id> "0"^^xsd:int.

}

ST_GeometryN

This function returns the Nth geometry in a multi-geometry shape.

Syntax

geof:ST_GeometryN(geom, index)

Geospatial Library 822

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

index int The index of the geometry to be retrieved.

Returns

Type Description

Custom object The Nth geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>#

SELECT (geof:ST_AsText(geof:ST_GeometryN(geof:ST_GeomFromText(?multi_pt_wkt), 1)) as

?multi_polygon)

FROM <multipolygon>

WHERE {

?multi_pt a <http://csi.com/maryland_Shellfish__historic_oyster_

plantings/multipolygon>;

<http://csi.com/maryland_Shellfish__historic_oyster_plantings/shape> ?multi_pt_wkt;

<http://csi.com/maryland_Shellfish__historic_oyster_plantings/id> "0"^^xsd:int.

}

ST_Centroid

This function returns the centroid of a given geometry.

Syntax

geof:ST_Centroid(geom)

Geospatial Library 823

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object The centroid.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Centroid(geof:ST_GeomFromText(?multi_pt_wkt))) as

?multi_polygon)

FROM <multipolygon>

WHERE {

?multi_pt a <http://csi.com/maryland_Shellfish__historic_oyster_

plantings/multipolygon>;

<http://csi.com/maryland_Shellfish__historic_oyster_plantings/shape> ?multi_pt_wkt;

<http://csi.com/maryland_Shellfish__historic_oyster_plantings/id> "0"^^xsd:int.

}

ST_Buffer

This function returns the geometry buffered by distance.

Syntax

geof:ST_Buffer(geom, distance)

Geospatial Library 824

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

distance double The distance value to use to get the buffer of geometry.

Returns

Type Description

Custom object Geometry buffered by distance.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT (geof:ST_AsText(geof:ST_Buffer(geof:ST_GeomFromText(?multi_pt_wkt), 1)) as

?multi_polygon)

FROM <multipolygon>

WHERE {

?multi_pt a <http://csi.com/maryland_Shellfish__historic_oyster_

plantings/multipolygon>;

<http://csi.com/maryland_Shellfish__historic_oyster_plantings/shape> ?multi_pt_wkt;

<http://csi.com/maryland_Shellfish__historic_oyster_plantings/id> "0"^^xsd:int.

}

ST_ConvexHull

This function returns the convex hull of one or more geometries. Any number of geometries can be

specified as input.

Syntax

geof:ST_ConvexHull(geom1 [, ..., geomN])

Geospatial Library 825

Parameter Type Description

geom1–N Object Geometry shape values in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object Convex hull.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_ConvexHull(geof:ST_GeomFromText('point(0 0)'),

geof:ST_GeomFromText('point(0 1)'), geof:ST_GeomFromText('point(1 1)')))

as ?convex_hull)

ST_GeodesicLengthWGS84

This function returns the distance (in meters) along a line of a WGS84 spheroid for geographic

coordinates.

Syntax

geof:ST_GeodesicLengthWGS84(geom)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or

Geospatial Library 826

Parameter Type Description

GeometryCollection.

Returns

Type Description

double Distance in meters.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_GeodesicLengthWGS84(geof:ST_GeomFromText(?x)) as ?geodesic_length)

WHERE {

VALUES (?x) {

('<http://www.opengis.net/def/crs/EPSG/0/4326>LineString(0 0, 0.03 0.04)')

('<http://www.opengis.net/def/crs/EPSG/0/4326>MultiLineString((0 80, 0.03 80.04))')

}

}

ST_GeomFromJSON

This function returns geometry from a JSON representation of a shape.

Syntax

geof:ST_GeomFromJSON(json)

Parameter Type Description

json string Input geometry in JSON string format. The Geometry shape can be a
Point, Multipoint, LineString, MultiLineString, Polygon, or
Multipolygon.

Geospatial Library 827

Returns

Type Description

Custom object Geometry object.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_GeomFromJSON(geof:ST_AsJSON(geof:ST_GeomFromText(?x))))

as ?line_from_json)

WHERE {

VALUES (?x) {

('LINESTRING (0 0, 2 2)') ('LINESTRING Z(8 -7 -1, -7 -1 8)')

}

}

ST_GeomFromGeoJSON

This function returns geometry from a GeoJSON representation of a shape.

Syntax

geof:ST_GeomFromGeoJSON(geojson)

Parameter Type Description

geojson string Input geometry in GeoJSON string format. The Geometry shape can
be a Point, Multipoint, LineString, MultiLineString, Polygon, or
Multipolygon.

Returns

Type Description

Custom object Geometry object.

Geospatial Library 828

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_GeomFromGeoJSON(geof:ST_AsGeoJSON(geof:ST_GeomFromText

(?x)))) as ?point_from_geojson)

WHERE {

VALUES (?x) {

('POINT(10 40)')('POINT Z(-2 30 -11)')

}

}

ST_LatLonFromDMSToDD

This function returns the latitude and longitude in decimal degrees.

Syntax

geof:ST_LatLonFromDMSToDD(degrees, minutes, seconds, direction)

Parameter Type Description

degrees double Latitude and longitude degrees value.

minutes double Latitude and longitude minutes value.

seconds double Latitude and longitude seconds value.

direction URI Direction values (E/W/S/N) in URI format: geof:E, geof:W,
geof:S, or geof:N.

Returns

Type Description

double Latitude and longitude in degrees.

Geospatial Library 829

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_LatLonFromDMSToDD(137,24,13,geof:S) as ?longitude_decimal_degree)

ST_GeomFromWktLiteral

This function returns a Custom object from a WKT literal string.

Syntax

geof:ST_GeomFromWktLiteral(geom)

Parameter Type Description

geom WKT
Literal

Input geometry in WKT Literal format. The input geometry shape can
be a Point, Multipoint, LineString, MultiLineString, Polygon,
Multipolygon, or GeometryCollection.

Returns

Type Description

Custom object Geometry object.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_GeomFromWktLiteral(?x)) as ?is_contains)

WHERE {

VALUES (?x) {

('<http://www.opengis.net/def/crs/EPSG/0/4326>Point(33.95 -83.38)'^^geo:wktLiteral)

}

}

Geospatial Library 830

ST_GeomFromGmlLiteral

This function returns geometry from a GML representation of a shape.

Syntax

geof:ST_GeomFromGmlLiteral(geom)

Parameter Type Description

geom GMLLiteral Input geometry shape value in GMLLiteral format. The input
geometry shape can be a Point, Multipoint, LineString,
MultiLineString, Polygon, or Multipolygon.

Returns

Type Description

Custom object Geometry object.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_GeomFromGmlLiteral(?x)) as ?is_contains)

WHERE {

VALUES (?x) {

('<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>2,0

2,3</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

}

}

ST_ConvertCoordinates

This function converts coordinates from one coordinate system to another.

Geospatial Library 831

Syntax

geof:ST_ConvertCoordinates(x, y, z, sourceSys, destSys)

Parameter Type Description

x, y, z double The x, y, z inputs depend on the type of conversion performed:

l Cartesian to Spherical Coordinates: x, y, z

l Spherical to Cartesian Coordinates: rad, latitude,

longitude

l Cartesian to Elliptical Coordinates: x, y, z

l Elliptical to Cartesian Coordinates: latitude,

longitude,height

l Cartesian to Cylindrical Coordinates: x,y,z

l Cylindrical to Cartesian Coordinates: radius, longitude, z

l Cylindrical to Spherical Coordinates: radius, longitude,

height

l Spherical to Cylindrical Coordinates: radius, latitude,

longitude

sourceSys,
destSys

URI String constants indicating source and destination coordinate

systems. The sourceSys and destSys arguments can be passed

as constants such as geof:CARTESIAN, geof:SPHERICAL,

geof:CYLINDRICAL, and geof:ELLIPTICAL.

Returns

Type Description

string Converted coordinates.

Geospatial Library 832

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_ConvertCoordinates(2,3,8,geof:CARTESIAN,geof:SPHERICAL) as

?transformed_point)

ST_IsValidWKT

This function validates whether a given WKT representation is correct.

Syntax

geof:ST_IsValidWKT(wkt)

Parameter Type Description

wkt string Geometry shape value in WKT string format. The input geometry
shape can be a Point, Multipoint, LineString, MultiLineString,
Polygon, Multipolygon, or GeometryCollection.

Returns

Type Description

boolean True if the WKT representation is correct. False if it is not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_IsValidWKT('LINESTRING(4 6,7 10)') as ?is_valid_wkt)

ST_IsValidGeoJSON

This function validates whether a given geoJSON representation is correct.

Syntax

geof:ST_IsValidGeoJSON(geojson)

Geospatial Library 833

Parameter Type Description

geojson string Geometry shape value in GeoJson string format. The input geometry
shape can be a Point, Multipoint, LineString, MultiLineString,
Polygon, Multipolygon, or GeometryCollection.

Returns

Type Description

boolean True if the geoJSON representation is correct. False if it is not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_IsValidGeoJSON(geof:ST_AsGeoJSON(geof:ST_GeomFromText('LINESTRING(4 6,7

10)'))) as ?is_valid_geojson)

ST_Translate

This function transforms a geometry with given shift values.

Syntax

geof:ST_Translate(geom, x_delta, y_delta [, z_delta])

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

x_delta double Shift value for the X coordinate.

Geospatial Library 834

Parameter Type Description

y_delta double Shift value for the Y coordinate.

z_delta double Optional shift value for the Z coordinate. For 2D translations, only
the x_delta and y_delta arguments are required.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Translate(geof:ST_GeomFromText('POINT Z(14 12

10)'),1.5,2.3, -13.7)) as ?transformed_point)

ST_Scale

This function returns Point geometry translated with given scaling factor values.

Syntax

geof:ST_Scale(geom, x_sf, y_sf [, z_sf])

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

x_sf double Scaling factor for the X coordinate.

y_sf double Scaling factor for the Y coordinate.

z_sf double Optional scaling factor for the Z coordinate. For 2D scaling, only the
x_sf and y_sf arguments are required.

Geospatial Library 835

Returns

Type Description

Custom object Point geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Scale(geof:ST_GeomFromText('POINT (14 12)'),2,3)) as

?scaled_point)

ST_Shear

This function returns Point geometry translated with given shear values.

Syntax

geof:ST_Shear(geom, x_shear, y_shear [, z_shear])

Values can be passed as string constants like geo:X, geo:Y, or geo:Z . The shearing factor for x,

y, and z coordinates should be passed in X, Y, and Z order.

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

x_shear double Shearing factor for the X coordinate. This value is the axis along
which shearing is to be done.

y_shear double Shearing factor for the Y coordinate.

Geospatial Library 836

Parameter Type Description

z_shear double Optional shearing factor for the Z coordinate. For 2D shearing, only
the x_shear and y_shear arguments are required.

Returns

Type Description

Custom object Point geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Shear(geof:ST_GeomFromText('POINT (1 1)'),geof:X,2,2))

as ?scaled_point)

ST_Rotate

This function returns Point geometry translated with given rotate values.

Syntax

geof:ST_Rotate(geom, angle_rads, axis)

Parameter Type Description

geom Object Geometry shape value in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

angle_rads double The angle (in radians) that represents the rotational angle.

axis URI The axis on which the 2d or 3d rotation is performed. This is the X, Y,

Geospatial Library 837

Parameter Type Description

or Z axis depending on the direction to rotate. The value can be
passed as a string constant like geo:X, geo:Y, or geo:Z.

Returns

Type Description

Custom object Point geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Rotate(geof:ST_GeomFromText('POINT Z(1 2

3)'),1.5708,geof:Z)) as ?rotate_point)

Aggregator (UDA) Functions

l ST_Aggr_Union: Returns the union of geometries.

l ST_Aggr_LineString: Returns Line geometry constructed from a number of Point geometries.

l ST_Aggr_MultiLineString: Returns MultiLine geometry constructed from a number of Line

geometries.

l ST_Aggr_MultiPoint: Returns MultiPoint geometry constructed from a number of Point

geometries.

l ST_Aggr_Polygon: Returns Polygon geometry constructed from a number of Point

geometries.

l ST_Aggr_MultiPolygon: Returns MultiPolygon geometry constructed from multiple Polygon

geometries.

l ST_Aggr_ConvexHull: Returns the convex hull for the specified geometries.

l ST_Aggr_Intersection: Returns the intersection of the specified geometries.

Geospatial Library 838

ST_Aggr_Union

This aggregate returns the union of geometries. Any number of geometries can be passed as input.

Syntax

geof:ST_Aggr_Union(geom1 [, ..., geomN])

Parameter Type Description

geom1–N Object Geometry shape values in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object The union of geometries.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_NumPoints(geof:ST_Aggr_Union(?point_2d)) as ?union)

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/shape> ?shape;

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

}

ST_Aggr_LineString

This aggregate returns Line geometry constructed from a number of Point geometries. Any number

of geometries can be passed as input.

Geospatial Library 839

Syntax

geof:ST_Aggr_LineString(geom1 [, ..., geomN])

Parameter Type Description

geom1–N Object Geometry shape values in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Returns

Type Description

Custom object Line geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Aggr_LineString(?point)) as ?ST_Aggr_LineString)

WHERE {

SELECT (geof:ST_Point(?x, ?y) as ?point)

WHERE {

VALUES (?x ?y) {(1 2)(2 3)(-1 2)(-2 -3)(-2 -1)}

}

}

ST_Aggr_MultiLineString

This aggregate returns MultiLine geometry constructed from a number of line geometries. Any

number of geometries can be passed as input.

Syntax

geof:ST_Aggr_MultiLineString(geom1 [, ..., geomN])

Geospatial Library 840

Parameter Type Description

geom1–N Object LineString or MultiLineString geometry shape values in WKT string
format, WKTLiteral, GMLLiteral, or the Graph Lakehouse Custom
OGCGeometry data type.

Returns

Type Description

Custom object MultiLine geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Aggr_MultiLineString(?point)) as ?agg_multiline)

WHERE {

SELECT (geof:ST_GeomFromText(?x) as ?point)

WHERE {

VALUES (?x) {('LINESTRING (8 7, 7 8)')('LINESTRING (1 7, 7 8)')}

}

}

ST_Aggr_MultiPoint

This aggregate returns MultiPoint geometry constructed from a number of Point geometries. Any

number of geometries can be passed as input.

Syntax

geof:ST_Aggr_MultiPoint(geom1 [, ..., geomN])

Parameter Type Description

geom1–N Object Point geometry shape values in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type.

Geospatial Library 841

Returns

Type Description

Custom object MultiPoint geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Aggr_Multipoint(?point)) as ?agg_multipoint)

WHERE {

SELECT (geof:ST_Point(?x, ?y) as ?point)

WHERE {

VALUES (?x ?y) {(1 2)(2 3)

}

}

}

ST_Aggr_Polygon

Using aggregate Point geometries, this aggregate returns Polygon geometry constructed from a

number of Point geometries. Any number of geometries can be passed as input.

Syntax

geof:ST_Aggr_Polygon(geom1 [, ..., geomN])

Parameter Type Description

geom1–N Object Point or Polygon geometry shape values in WKT string format,
WKTLiteral, GMLLiteral, or the Graph Lakehouse Custom
OGCGeometry data type.

Geospatial Library 842

Returns

Type Description

Custom object Polygon geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Aggr_Polygon(?point)) as ?agg_polygon)

WHERE {

SELECT (geof:ST_Point(?x, ?y) as ?point)

WHERE {

VALUES (?x ?y) {(1 2)(2 3)(-1 2)(-2 -1)(-2 -3)

}

}

}

ST_Aggr_MultiPolygon

This aggregate returns MultiPolygon geometry constructed from multiple polygon geometries. Any

number of geometries can be passed as input.

Syntax

geof:ST_Aggr_MultiPolygon(geom1 [, ..., geomN])

Parameter Type Description

geom1–N Object Polygon geometry shape values in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type.

Geospatial Library 843

Returns

Type Description

Custom object MultiPolygon geometry.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_AsText(geof:ST_Aggr_MultiPolygon(?point)) as ?agg_multipolygon)

WHERE {

SELECT (geof:ST_GeomFromText(?x) as ?point)

WHERE {

VALUES (?x) {('POLYGON ((2 0, 2 3, 3 0))')('POLYGON ((11 12,-11 -12,11 -12))')

}

}

}

ST_Aggr_ConvexHull

This aggregate returns the convex hull from the specified geometries. Any number of geometries

can be passed as input.

Syntax

geof:ST_Aggr_ConvexHull(geom1 [, ..., geomN])

Parameter Type Description

geom1–N Object Geometry shape values in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Geospatial Library 844

Returns

Type Description

Custom object The convex hull from the geometries.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_NumPoints(geof:ST_Aggr_ConvexHull(?point_2d)) as ?convex_hull)

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/shape> ?shape;

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

}

ST_Aggr_Intersection

This aggregate returns the intersection of given geometries that have the same SRID. Any number

of geometries can be passed as input.

Syntax

geof:ST_Aggr_Intersection(geom1 [, ..., geomN])

Parameter Type Description

geom1–N Object Geometry shape values in WKT string format, WKTLiteral,
GMLLiteral, or the Graph Lakehouse Custom OGCGeometry data
type. The input geometry shape can be a Point, Multipoint,
LineString, MultiLineString, Polygon, Multipolygon, or
GeometryCollection.

Geospatial Library 845

Returns

Type Description

Custom object The intersection between geometries.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ST_NumPoints(geof:ST_Aggr_Intersection(?point_2d)) as ?union

FROM <point>

WHERE {

?point a <http://csi.com/geologic_units_24k/point>;

<http://csi.com/geologic_units_24k/shape> ?shape;

BIND(geof:ST_GeomFromText(?shape) as ?point_2d)

}

Services (UDS) Functions

l ST_ReadSHP: Returns geometry objects extracted from a Shapefile (SHP).

l ST_ReadKML: Returns geometry objects extracted from a Keyhole Markup Language (KML)

file.

l ST_ReadGeoJSON: Returns geometry objects extracted from a JSON file.

l ST_ReadText: Returns geometry objects extracted from a Well-Known Text (WKT) file.

l ST_ReadGML: Returns geometry objects extracted from a Geography Markup Language

(GML) file.

l ST_ReadWKB: Returns geometry objects extracted from an OpenGIS Well-known Binary

(WKB) file.

ST_ReadSHP

This function returns geometry objects extracted from a .shp file.

Geospatial Library 846

Syntax

geof:ST_ReadSHP("/path/file")

Parameter Type Description

/path/file string The location and file name of the .shp file to read.

Returns

Type Description

Custom object Objects extracted from the file.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT *

WHERE {

SERVICE <http://www.opengis.net/def/function/geosparql/ST_ReadSHP>("{CURRENT_

DIR}/../data/Road_Centerline.shp"){}

}

ST_ReadKML

This function returns geometry objects and properties extracted from a .kml file.

Syntax

geof:ST_ReadKML("/path/file")

Parameter Type Description

/path/file string The location and file name of the .kml file to read.

Geospatial Library 847

Returns

Type Description

Custom object Objects extracted from the file.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT * WHERE {

SERVICE <http://www.opengis.net/def/function/geosparql/ST_ReadKML>("{CURRENT_

DIR}/../data/Snow_Emergency_Routes.kml") {}

}

ST_ReadGeoJSON

This function returns geometry objects and properties extracted from a .json file.

Syntax

geof:ST_ReadGeoJSON("/path/file")

Parameter Type Description

/path/file string The location and file name of the .json file to read.

Returns

Type Description

Custom object Objects extracted from the file.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT * WHERE {

SERVICE <http://www.opengis.net/def/function/geosparql/ST_ReadGeoJSON>("{CURRENT_

Geospatial Library 848

DIR}/../data/geometry_collection.json") {}

}

ST_ReadText

This function returns geometry objects and properties extracted from a .wkt file.

Syntax

geof:ST_ReadText("/path/file")

Parameter Type Description

/path/file string The location and file name of the .wkt file to read.

Returns

Type Description

Custom object Objects extracted from the file.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT * WHERE {

SERVICE <http://www.opengis.net/def/function/geosparql/ST_ReadText>("{CURRENT_

DIR}/../data/single_geometryWkt.wkt") {}

}

ST_ReadGML

This function returns geometry objects and properties extracted from a .gml file.

Syntax

geof:ST_ReadGML("/path/file")

Geospatial Library 849

Parameter Type Description

/path/file string The location and file name of the .gml file to read.

Returns

Type Description

Custom object Objects extracted from the file.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT * WHERE {

SERVICE <http://www.opengis.net/def/function/geosparql/ST_ReadGML>("{CURRENT_

DIR}/../data/single_geometryGml.gml") {}

}

ST_ReadWKB

This function returns geometry objects and properties extracted from .wkb file.

Syntax

geof:ST_ReadWKB("/path/file")

Parameter Type Description

/path/file string The location and file name of the .wkb file to read.

Returns

Type Description

Custom object Objects extracted from the file.

Geospatial Library 850

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT * WHERE {

SERVICE <http://www.opengis.net/def/function/geosparql/ST_ReadWKB>("{CURRENT_

DIR}/../data/single_geometryWkb.wkb") {}

}

GeoSPARQL Functions

The geoSPARQL functions follow the world-wide geospatial standard

(https://www.ogc.org/standards/geosparql/) developed and promoted by the Open Geospatial

Consortium (OGC) community to represent geospatial data in RDF format and query that data using

the SPARQL query language.

Classes, Data Types, and Properties

This section provides a summary of the geometry shape classes, subclasses, data types,

properties, and relationships that geoSPARQL functions operate on.

OWL classes and subclasses

The GeoSPARQL OWL specification describes various classes that are supported (for example,

geo:SpatialObject and geo:Feature), their subclasses (geo:Geometry), and associated

properties and relationships (geo:hasGeometry, geo:hasDefaultGeometry,

geo:dimension, geo:coordinateDimension, geo:spatialDimension, geo:isEmpty,

geo:isSimple, geo:hasSerialization).

GeoSPARQL RDF data must also conform to the OWL representation and implement the

features and properties as described in the OGC GeoSPARQL specification.

Data Types

GeoSPARQL uses some custom data types, namely, geo:wktLiteral and geo:gmlLiteral

to represent serialized geometry shapes in text form. Function arguments that specify

geometries may pass those objects as wktLiteral, gmlLiteral, or string literals defined in

Geospatial Library 851

https://www.ogc.org/standards/geosparql/

the <http://www.opengis.net/ont/geosparql#> namespace. Units of measurement

(UOM) such as kilometer, meter, mile, degree, and radian are defined in the

<http://www.opengis.net/def/uom/OGC/1.0/> namespace.

In Graph Lakehouse, these literals are represented as RDFLiteral objects, which is a

combination of a string and a data type URI. All of the geometries are represented in the graph as

either WKT (well-known-text format) or GML (Geometry Markup Language) serialization forms.

They may also be represented as objects or string literals.

Relational Properties

GeoSPARQL introduces a set of properties to be used in SPARQL graph patterns. There are

three types of relational families: Simple Features (sf), Egenhofer (eh), and RCC8 (rcc8).

For additional information on the operation of functions, see the Geographic Query Language for

RDF Data specification.

Functions

The geoSPARQL functions are grouped by the following categories:

l Non-Topological Functions

l Simple Feature Family (Topological) Functions

l Egenhofer Family (Topological) Functions

l RCC8 Family (Topological) Functions

Note
The URI for the geoSPARQL functions is

<http://www.opengis.net/def/function/geosparql/>. For readability, the syntax

for each function below includes the prefix geof:, defined as PREFIX geof:

<http://www.opengis.net/def/function/geosparql/>.

Geospatial Library 852

https://www.ogc.org/standards/geosparql
https://www.ogc.org/standards/geosparql

Non-Topological Functions

l distance: Computes the shortest distance between two geometries.

l buffer: Returns a geometric object that represents all points whose distance from a geometry

is less than or equal to the specified radius.

l convexHull: Returns a geometric object that represents all points in the convex hull of the

specified geometry.

l intersection: Returns all points that intersect two geometries.

l union: Returns all points in the union of two geometries.

l difference: Returns all points in the set of difference between two geometries.

l symDifference: Returns all points in the set of symmetric difference between two geometries.

l envelope: Returns the minimum bounding box of the specified geometry.

l boundary: Returns the closure of the boundary of the specified geometry.

l getSRID: Returns the spatial reference system URI for the specified geometry.

l relate: Evaluates whether the spatial relationship between the specified geometries

corresponds to the specified pattern matrix.

distance

This function takes two geometries as input and computes the shortest distance between them

based on the SRID of the first geometry. The function converts the distance in meters to the

specified unit of measure.

Syntax

geof:distance(geom1, geom2, units)

Parameter Type Description

geom1 geomLiteral The first geometry.

Geospatial Library 853

Parameter Type Description

geom2 geomLiteral The second geometry.

units URI The unit of measure in OGC format.

If no SRID is specified in geom1 or geom2, the function assumes CRS84 as the default unit of

measure and assumes coordinates in Long, Lat format. If geom1 and geom2 are specified as WKT

strings and no SRID details are provided, the function computes the Euclidean distance between

the two geometries regardless of what unit of measure is provided.

To find the spherical distance between two geometries, you can use 4047 as the SRID. The 4047

value specifies a spherical coordinate system number. The spherical distance gets computed based

on Great circle algorithms, and Planer geodesics distances are computed using ellipsoidal

formulas.

Returns

Type Description

double The shortest distance.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

SELECT (geof:distance(?x,?y,?z) as ?distance)

WHERE {

VALUES (?x ?y ?z) {

('<http://www.opengis.net/def/crs/EPSG/0/4326>Point (0 0)'

'<http://www.opengis.net/def/crs/EPSG/0/4326>Point (3 4)' uom:millimeter)

('<http://www.opengis.net/def/crs/EPSG/0/4326>Point (0 0)'

'<http://www.opengis.net/def/crs/EPSG/0/4326>Point (3 4)' uom:kilometer)

('<http://www.opengis.net/def/crs/EPSG/0/4326>Point (0 0)'

'<http://www.opengis.net/def/crs/EPSG/0/4326>Point (3 4)' uom:metre)

('<http://www.opengis.net/def/crs/EPSG/0/4326>Point (0 0)'

'<http://www.opengis.net/def/crs/EPSG/0/4326>Point (3 4)' uom:foot)

Geospatial Library 854

}

}

buffer

This function takes a geomLiteral and radius argument in a given unit of measure and produces a

polygon of points that has a distance less than or equal to the given radius from a central

geomLiteral position. The input radius is converted from the source unit of measure based on 1°

equal to 111 km and returns the polygon of points less than or equal to the distance from the

geomLiteral position on an XY plane.

Syntax

geof:buffer(geom, radius, units)

Parameter Type Description

geom geomLiteral The geometry.

radius double The radius of the geometry.

units URI The unit of measure in OGC format.

Returns

Type Description

geomLiteral Polygon of points.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX uom: <http://www.opengis.net/def/uom/OGC/1.0/>

SELECT (geof:buffer(?x,?y,?z) as ?buffer)

WHERE {

Geospatial Library 855

VALUES (?x ?y ?z) {

('Point (0 0)' 2 uom:meter)

('POLYGON ((1 1 , 1 4, 4 4, 4 1))'^^geo:wktLiteral 20 uom:millimeter)

}

}

convexHull

This function returns a geometric object that represents all points in the convex hull of the geometry.

Calculations are in the spatial reference system of the specified geometry.

Syntax

geof:convexHull(geom)

Parameter Type Description

geom geomLiteral The geometry.

Returns

Type Description

geomLiteral All points in the convex hull.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:convexHull(?x) as ?convexHull)

WHERE {

VALUES (?x) {

('POINT(1 2)')

('<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>2,0

2,3</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

('POLYGON ((1 1 , 1 4, 4 4, 4 1))'^^geo:wktLiteral)

}

}

Geospatial Library 856

intersection

This function returns a geometric object that represents all points in the intersection of the input

geometries. Calculations are in the spatial reference system of the first geometry.

Syntax

geof:intersection(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

geomLiteral All points in the intersection.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:intersection(?x,?y) as ?intersection)

WHERE {

VALUES (?x ?y) {

('LINESTRING (8 7, 7 8)' 'LINESTRING (2 0, 2 3)')

('LINESTRING (0 2, 0 0, 2 0)' 'LINESTRING (0 3, 0 1, 1 0, 3 0)')

}

}

union

This function returns a geometric object that represents all points in the union of two geometries.

Calculations are in the spatial reference system of the first geometry.

Geospatial Library 857

Syntax

geof:union(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

geomLiteral All points in the union.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:union(?x,?y) as ?union)

WHERE {

VALUES (?x ?y) {

('<http://www.opengis.net/def/crs/EPSG/0/4326>LINESTRING (8 7, 7

8)'^^geo:wktLiteral '<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>2,0

2,3</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

('LINESTRING (0 2, 0 0, 2 0)'^^geo:wktLiteral 'LINESTRING (0 3, 0 1, 1 0, 3

0)'^^geo:wktLiteral)

}

}

difference

This function returns a geometric object that represents all points in the set of difference between

two geometries. Calculations are in the spatial reference system of the first geometry.

Geospatial Library 858

Syntax

geof:difference(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

geomLiteral All points in the set of difference.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:difference(?x,?y) as ?intersection)

WHERE {

VALUES (?x ?y) {

('<http://www.opengis.net/def/crs/EPSG/0/4326>LINESTRING (8 7, 7

8)'^^geo:wktLiteral '<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>2,0

2,3</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

('LINESTRING (0 2, 0 0, 2 0)'^^geo:wktLiteral 'LINESTRING (0 3, 0 1, 1 0, 3

0)'^^geo:wktLiteral)

}

}

symDifference

This function returns a geometric object that represents all points in the set of symmetric difference

between two geometries. Calculations are in the spatial reference system of the first geometry.

Geospatial Library 859

Syntax

geof:symDifference(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

geomLiteral All points in the symmetric difference.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:symDifference(?x,?y) as ?symdiff)

WHERE {

VALUES (?x ?y) {

('<http://www.opengis.net/def/crs/EPSG/0/4326>LINESTRING (8 7, 7

8)'^^geo:wktLiteral '<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>2,0

2,3</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

('LINESTRING (0 2, 0 0, 2 0)'^^geo:wktLiteral 'LINESTRING (0 3, 0 1, 1 0, 3

0)'^^geo:wktLiteral)

}

}

envelope

This function returns the minimum bounding box of the specified geometry.

Geospatial Library 860

Syntax

geof:envelope(geom)

Parameter Type Description

geom geomLiteral The geometry.

Returns

Type Description

geomLiteral The minimum bounding box.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:envelope(?x) as ?envelope)

WHERE {

VALUES (?x) {

('POLYGON ((2 0, 2 3, 3 0))'^^geo:wktLiteral) ('POLYGON ((2 0, 2 1, 3 1))')

}

}

boundary

This function returns the closure of the boundary of the specified geometry.

Syntax

geof:boundary(geom)

Parameter Type Description

geom geomLiteral The geometry.

Geospatial Library 861

Returns

Type Description

geomLiteral The closure of the boundary.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:boundary(?x) as ?boundary)

WHERE {

VALUES (?x) {

('POLYGON ((2 0, 2 3, 3 0))'^^geo:wktLiteral) ('<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>2,0

2,3</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

}

}

getSRID

This function returns the spatial reference system URI for the specified geometry.

Syntax

geof:getSRID(geom)

Parameter Type Description

geom geomLiteral The geometry.

Returns

Type Description

URI The spatial reference system URI.

Geospatial Library 862

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:getSRID(?x) as ?srid)

WHERE {

VALUES (?x) {

('POLYGON ((2 0, 2 3, 3 0))'^^geo:wktLiteral) ('<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>2,0

2,3</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

}

}

relate

This function evaluates whether the spatial relationship between the specified geometries relates to

the specified pattern matrix. The spatial reference system for the first geometry is used for spatial

calculations.

Syntax

geof:relate(geom1, geom2, "pattern_matrix")

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

pattern_
matrix

string Represents a DE-9IM intersection pattern consisting of T (true)
and F (false) values. For example, "T*F***FF*".

Returns

Type Description

boolean True if the spatial relationship relates to the specified pattern matrix. False if not.

Geospatial Library 863

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:relate(?x,?y,"T*F**FFF*") as ?relate)

WHERE {

VALUES (?x ?y) {

('<http://www.opengis.net/def/crs/EPSG/0/4326>LINESTRING (2 0, 2

3)'^^geo:wktLiteral '<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>2,0

2,3</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

('LINESTRING (0 2, 0 0, 2 0)'^^geo:wktLiteral 'LINESTRING (0 3, 0 1, 1 0, 3

0)'^^geo:wktLiteral)

}

}

Simple Feature Family (Topological) Functions

The Simple Feature Family relation functions test DE-9IM intersection patterns between two

geometries. Each function tests a different pattern matrix and returns true or false depending on

whether the specified relation exists or not. Multi-row intersection patterns should be interpreted as

a logical OR of each row. Click a function name in the list below to view the syntax and see details

about function arguments and return values.

l sfEquals: Tests whether the specified geometries are equal.

l sfDisjoint: Tests whether the specified geometries are disjoint.

l sfIntersects: Tests whether the specified geometries intersect.

l sfTouches: Tests whether the specified geometries touch.

l sfCrosses: Tests whether the first geometry spatially crosses the second geometry.

l sfWithin: Tests whether the first geometry is spatially within the second geometry.

l sfContains: Tests whether the first geometry spatially contains the second geometry.

l sfOverlaps: Tests whether the first geometry spatially overlaps the second geometry.

Geospatial Library 864

sfEquals

This function tests whether the specified geometries are equal. The spatial reference system of the

first geometry is used for spatial calculations. The defining DE-9IM intersection pattern is

TFFFTFFFT.

Syntax

geof:sfEquals(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the geometries are equal. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:sfEquals(?x,?y) as ?is_equal)

WHERE {

VALUES (?x ?y) {

('Point (2 3)' 'Point (2 3)')

('<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((1 1, 1 4, 4 4, 4

1))'^^geo:wktLiteral '<gml:Point gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326">

<gml:coordinates>2,3</gml:coordinates></gml:Point>'^^geo:gmlLiteral)

}

}

Geospatial Library 865

sfDisjoint

This function tests whether the specified geometries are disjoint. The spatial reference system of

the first geometry is used for spatial calculations. The defining DE-9IM intersection pattern is

FF*FF****.

Syntax

geof:sfDisjoint(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the geometries are disjoint. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:sfDisjoint(?x,?y) as ?is_disjoint)

WHERE {

VALUES (?x ?y) {

('LINESTRING (0 0, 0 1)' 'LINESTRING (1 0, 0 1)')

('<http://www.opengis.net/def/crs/EPSG/0/4326>LINESTRING (1 1, 1

0)'^^geo:wktLiteral '<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>0,0

0,1</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

}

}

Geospatial Library 866

sfIntersects

This function tests whether the specified geometries intersect. The spatial reference system of the

first geometry is used for spatial calculations. The defining DE-9IM intersection pattern is as follows:

T********

*T*******

T**

****T****

Syntax

geof:sfIntersects(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the geometries intersect. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:sfIntersects(?x,?y) as ?intersects)

WHERE {

VALUES (?x ?y) {

('LINESTRING (8 7, 7 8)' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((1 1, 4 1, 4 4, 1

4))'^^geo:wktLiteral '<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>2,0

2,3</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

Geospatial Library 867

}

}

sfTouches

This function tests whether the specified geometries touch. The spatial reference system of the first

geometry is used for spatial calculations. The defining DE-9IM intersection pattern is as follows:

FT*******

F**T*****

F***T****

Syntax

geof:sfTouches(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the geometries touch. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:sfTouches(?x,?y) as ?touches)

WHERE {

VALUES (?x ?y) {

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'Point (1 2)')

('<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((30 10 , 40 40, 20 40, 10

20, 30 10))'^^geo:wktLiteral '<gml:Point gml:id="p21"

Geospatial Library 868

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"> <gml:coordinates>-

106.4453583,39.11775</gml:coordinates></gml:Point>'^^geo:gmlLiteral)

}

}

sfCrosses

This function tests whether the first geometry spatially crosses the second geometry. The spatial

reference system of the first geometry is used for spatial calculations. The defining DE-9IM

intersection pattern is as follows:

For P/L, P/A, L/A:

T*T***T**

For L/L:

0*T***T**

Syntax

geof:sfCrosses(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the first geometry spatially crosses the second geometry. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:sfCrosses(?x,?y) as ?crosses)

WHERE {

Geospatial Library 869

VALUES (?x ?y) {

('LINESTRING (2 0, 2 3)' 'POLYGON ((30 10 , 40 40, 20 40, 10 20, 30 10))')

('<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>2,0

2,3</gml:coordinates></gml:LineString>'^^geo:gmlLiteral

'<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((1 1 , 1 4, 4 4, 4

1))'^^geo:wktLiteral)

}

}

sfWithin

This function tests whether the first geometry is spatially within the second geometry. The spatial

reference system of the first geometry is used for spatial calculations. The defining DE-9IM

intersection pattern is T*F**F***.

Syntax

geof:sfWithin(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the first geometry is spatially within the second geometry. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:sfWithin(?x,?y) as ?is_within)

Geospatial Library 870

WHERE {

VALUES (?x ?y) {

('Point (-106.4453583 39.11775)' 'POLYGON ((30 10 , 40 40, 20 40, 10 20, 30 10))')

('<gml:Point gml:id="p21" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">

<gml:coordinates>2,3</gml:coordinates></gml:Point>'^^geo:gmlLiteral

'<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((1 1, 1 4, 4 4, 4

1))'^^geo:wktLiteral)

}

}

sfContains

This function tests whether the first geometry spatially contains the second geometry. The spatial

reference system of the first geometry is used for spatial calculations. The defining DE-9IM

intersection pattern is T*****FF*.

Syntax

geof:sfContains(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the first geometry spatially contains the second geometry. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:sfContains(?x,?y) as ?contains)

Geospatial Library 871

WHERE {

VALUES (?x ?y) {

('POLYGON ((1 1, 1 4, 4 4, 4 1))'^^geo:wktLiteral 'Point (2 3)'^^geo:wktLiteral)

('<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((1 1, 1 4, 4 4, 4

1))'^^geo:wktLiteral '<gml:Point gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326">

<gml:coordinates>2,3</gml:coordinates></gml:Point>'^^geo:gmlLiteral)

('<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>45.67,88.56

55.56,89.44</gml:coordinates></gml:LineString>'^^geo:gmlLiteral '<gml:Point

gml:id="p21" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">

<gml:coordinates>45.67,88.56</gml:coordinates></gml:Point>'^^geo:gmlLiteral)

}

}

sfOverlaps

This function tests whether the first geometry spatially overlaps the second geometry. The spatial

reference system of the first geometry is used for spatial calculations. The defining DE-9IM

intersection pattern is as follows:

For A/A, P/P:

T*T***T**

For L/L:

1*T***T**

Syntax

geof:sfOverlaps(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Geospatial Library 872

Returns

Type Description

boolean True if the first geometry spatially overlaps the second geometry. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:sfOverlaps(?x,?y) as ?overlaps)

WHERE {

VALUES (?x ?y) {

('POLYGON ((2 0, 2 1, 1 3))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('POLYGON ((2 0, 2 1, 3 1))'^^geo:wktLiteral 'POLYGON ((1 1, 1 4, 4 4, 4

1))'^^geo:wktLiteral)

}

}

Egenhofer Family (Topological) Functions

The Egenhofer Family relation functions test DE-9IM intersection patterns between two geometries.

Each function tests a different pattern matrix and returns true or false depending on whether the

specified relation exists or not. Multi-row intersection patterns should be interpreted as a logical OR

of each row. Click a function name in the list below to view the syntax and see details about function

arguments and return values.

l ehEquals: Tests whether the specified objects are equal.

l ehDisjoint: Tests whether the specified objects are disjoint.

l ehMeet: Tests whether the specified geometries meet.

l ehOverlap: Tests whether the specified geometries overlap.

l ehCovers: Tests whether the first geometry spatially covers the second geometry.

l ehCoveredBy: Tests whether the first geometry is covered by the second geometry.

Geospatial Library 873

l ehInside: Tests whether the first geometry is inside the second geometry.

l ehContains: Tests whether the first geometry is contained in the second geometry.

ehEquals

This function tests whether the specified objects are equal based on their associated primary

geometry objects. The spatial reference system of the first geometry is used for spatial calculations.

The defining DE-9IM intersection pattern is TFFFTFFFT.

Syntax

geof:ehEquals(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the objects are equal. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ehEquals(?x,?y) as ?is_equals)

WHERE {

VALUES (?x ?y) {

('Point (2 3)' 'Point (2 3)')

('<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((1 1, 1 4, 4 4, 4

1))'^^geo:wktLiteral '<gml:Point gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326">

<gml:coordinates>2,3</gml:coordinates></gml:Point>'^^geo:gmlLiteral)

Geospatial Library 874

}

}

ehDisjoint

This function tests whether the specified objects are disjoint based on their associated primary

geometry objects. The spatial reference system of the first geometry is used for spatial calculations.

The defining DE-9IM intersection pattern is FF*FF****.

Syntax

geof:ehDisjoint(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the objects are disjoint. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ehDisjoint(?x,?y) as ?is_disjoint)

WHERE {

VALUES (?x ?y) {

('LINESTRING (0 0, 0 1)' 'LINESTRING (1 0, 0 1)')

('<http://www.opengis.net/def/crs/EPSG/0/4326> LINESTRING (1 1, 1

0)'^^geo:wktLiteral '<gml:LineString gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"><gml:coordinates>0,0

0,1</gml:coordinates></gml:LineString>'^^geo:gmlLiteral)

Geospatial Library 875

}

}

ehMeet

This function tests whether the specified geometries meet based on their associated primary

geometry objects. The spatial reference system of the first geometry is used for spatial calculations.

The defining DE-9IM intersection pattern is as follows:

FT*******

F**T*****

F***T****

Syntax

geof:ehMeet(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the geometries meet. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ehMeet(?x,?y) as ?meets)

WHERE {

VALUES (?x ?y) {

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'Point (1 2)')

('<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((30 10 , 40 40, 20 40, 10

Geospatial Library 876

20, 30 10))'^^geo:wktLiteral '<gml:Point gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326"> <gml:coordinates>-

106.4453583,39.11775</gml:coordinates></gml:Point>'^^geo:gmlLiteral)

}

}

ehOverlap

This function tests whether the specified geometries overlap based on their associated primary

geometry objects. The spatial reference system of the first geometry is used for spatial calculations.

The defining DE-9IM intersection pattern is T*T***T**.

Syntax

geof:ehOverlap(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the geometries overlap. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ehOverlap(?x,?y) as ?overlaps)

WHERE {

VALUES (?x ?y) {

('POLYGON ((2 0, 2 1, 1 3))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('LINESTRING(0 0, 4 4)'^^geo:wktLiteral 'POLYGON ((1 1, 1 4, 4 4, 4

Geospatial Library 877

1))'^^geo:wktLiteral)

}

}

ehCovers

This function tests whether the first geometry spatially covers the second geometry. The spatial

reference system of the first geometry is used for spatial calculations. The defining DE-9IM

intersection pattern is T*TFT*FF*.

Syntax

geof:ehCovers(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the first geometry spatially covers the second geometry. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ehCovers(?x,?y) as ?covers)

WHERE {

VALUES (?x ?y) {

('POLYGON ((2 0, 2 1, 1 3))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))'^^geo:wktLiteral 'LINESTRING(1 1, 4

4)'^^geo:wktLiteral)

('LINESTRING(1 1, 4 4)' 'LINESTRING(2 2, 4 4)')

Geospatial Library 878

('LINESTRING(3 3, 4 4)' 'LINESTRING(2 2, 4 4)')

}

}

ehCoveredBy

This function tests whether the first geometry is covered by the second geometry. The spatial

reference system of the first geometry is used for spatial calculations. The defining DE-9IM

intersection pattern is TFF*TFT**.

Syntax

geof:ehCoveredBy(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the first geometry is covered by the second geometry. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ehCoveredBy(?x,?y) as ?is_covered)

WHERE {

VALUES (?x ?y) {

('POLYGON ((2 0, 2 1, 1 3))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('LINESTRING(1 1, 4 4)' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('LINESTRING(1 1, 4 4)' 'LINESTRING(2 2, 4 4)')

('LINESTRING(3 3, 4 4)' 'LINESTRING(2 2, 4 4)')

Geospatial Library 879

}

}

ehInside

This function tests whether the first geometry is inside the second geometry. The spatial reference

system of the first geometry is used for spatial calculations. The defining DE-9IM intersection

pattern is TFF*FFT**.

Syntax

geof:ehInside(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the first geometry is inside the second geometry. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ehInside(?x,?y) as ?is_inside)

WHERE {

VALUES (?x ?y) {

('Point (-106.4453583 39.11775)' 'POLYGON ((30 10 , 40 40, 20 40, 10 20, 30 10))')

('<gml:Point gml:id="p21" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">

<gml:coordinates>2,3</gml:coordinates></gml:Point>'^^geo:gmlLiteral

'<http://www.opengis.net/def/crs/EPSG/0/4326>POLYGON ((1 1, 1 4, 4 4, 4

1))'^^geo:wktLiteral)

Geospatial Library 880

}

}

ehContains

This function tests whether the first geometry is contained in the second geometry. The spatial

reference system of the first geometry is used for spatial calculations. The defining DE-9IM

intersection pattern is T*TFF*FF*.

Syntax

geof:ehContains(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the first geometry is contained in the second geometry. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:ehContains(geof:ST_GeomFromText(?x),geof:ST_GeomFromText(?y)) as

?contains)

WHERE {

VALUES (?x ?y) {

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'Point (2 3)')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'Point (7 8)')

}

}

Geospatial Library 881

RCC8 Family (Topological) Functions

The RCC8 Family relation functions test DE-9IM intersection patterns between two geometries.

Each function tests a different pattern matrix and returns true or false depending on whether the

specified relation exists or not. Click a function name in the list below to view the syntax and see

details about function arguments and return values.

l rcc8eq: Tests whether the specified geometries are equal.

l rcc8dc: Tests whether the specified geometries are disjoint.

l rcc8ec: Tests whether the specified geometries are externally connected.

l rcc8po: Tests whether the specified geometries overlap.

l rcc8tpp: Tests whether one geometry is a tangential proper part of another geometry.

l rcc8tppi: Tests whether one geometry is a tangential proper part inverse of another

geometry.

l rcc8ntpp: Tests whether one geometry is a non-tangential proper part of another geometry.

l rcc8ntppi: Tests whether one geometry is a non-tangential proper part inverse of another

geometry.

rcc8eq

This function tests whether the specified objects are equal based on their associated primary

geometry objects. The spatial reference system of the first geometry is used for spatial calculations.

The defining DE-9IM intersection pattern is TFFFTFFFT.

Syntax

geof:rcc8eq(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

Geospatial Library 882

Parameter Type Description

geom2 geomLiteral The second geometry.

Returns

Type Description

boolean True if the objects are equal. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:rcc8eq(?x,?y) as ?is_eq)

WHERE {

VALUES (?x ?y) {

('POLYGON ((1 1, 1 4, 4 4, 4 1))'^^geo:wktLiteral 'POLYGON ((1 1, 1 4, 4 4, 4

1))'^^geo:wktLiteral)

}

}

rcc8dc

This function tests whether the specified objects are disjoint based on their associated primary

geometry objects. The spatial reference system of the first geometry is used for spatial calculations.

The defining DE-9IM intersection pattern is FFTFFTTTT.

Syntax

geof:rcc8dc(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Geospatial Library 883

Returns

Type Description

boolean True if the objects are disjoint. False if not.

Example

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:rcc8dc(?x,?y) as ?is_dc)

WHERE {

VALUES (?x ?y) {

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((11 11, 11 14, 14 14, 14 11))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))'^^geo:wktLiteral 'POLYGON ((1 1, 1 4, 4 4, 4

1))'^^geo:wktLiteral)

}

}

rcc8ec

This function tests whether the specified objects are externally connected based on their associated

primary geometry objects. The spatial reference system of the first geometry is used for spatial

calculations. The defining DE-9IM intersection pattern is FFTFTTTTT.

Syntax

geof:rcc8ec(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Geospatial Library 884

Returns

Type Description

boolean True if the objects are externally connected. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:rcc8ec(?x,?y) as ?is_ec)

WHERE {

VALUES (?x ?y) {

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((4 1, 6 1, 6 4, 4 4))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

}

}

rcc8po

This function tests whether the specified geometries overlap based on their associated primary

geometry objects. The spatial reference system of the first geometry is used for spatial calculations.

The defining DE-9IM intersection pattern is TTTTTTTTT.

Syntax

geof:rcc8po(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Geospatial Library 885

Returns

Type Description

boolean True if the geometries overlap. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:rcc8po(?x,?y) as ?is_po)

WHERE {

VALUES (?x ?y) {

('POLYGON ((2 0, 2 1, 1 3,1 1))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((4 1, 6 1, 6 4, 4 4))')

}

}

rcc8tpp

This function tests whether one geometry is a tangential proper part of another geometry based on

their associated primary geometry objects. The spatial reference system of the first geometry is

used for spatial calculations. The defining DE-9IM intersection pattern is TFFTTFTTT.

Syntax

geof:rcc8tpp(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Geospatial Library 886

Returns

Type Description

boolean True if the second geometry is a tangential proper part of the first geometry. False if
not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:rcc8tpp(?x,?y) as ?is_tpp)

WHERE {

VALUES (?x ?y) {

('POLYGON ((2 2, 5 2, 5 4, 2 4))' 'POLYGON ((1 1, 1 6, 4 1, 4 6))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

}

}

rcc8tppi

This function tests whether one geometry is a tangential proper part inverse of another geometry

based on their associated primary geometry objects. The spatial reference system of the first

geometry is used for spatial calculations. The defining DE-9IM intersection pattern is TTTFTTFFT.

Syntax

geof:rcc8tppi(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Geospatial Library 887

Returns

Type Description

boolean True if the second geometry is a tangential proper part inverse of the first geometry.
False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:rcc8tppi(?x,?y) as ?is_tppi)

WHERE {

VALUES (?x ?y) {

('POLYGON ((2 2, 5 2, 5 4, 2 4))' 'POLYGON ((1 1, 1 6, 4 1, 4 6))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

}

}

rcc8ntpp

This function tests whether one geometry is a non-tangential proper part of another geometry based

on their associated primary geometry objects. The spatial reference system of the first geometry is

used for spatial calculations. The defining DE-9IM intersection pattern is TFFTFFTTT.

Syntax

geof:rcc8ntpp(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Geospatial Library 888

Returns

Type Description

boolean True if the second geometry is a non-tangential proper part of the first geometry.
False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:rcc8ntpp(?x,?y) as ?is_ntpp)

WHERE {

VALUES (?x ?y) {

('POLYGON ((2 2, 5 2, 5 4, 2 4))' 'POLYGON ((1 1, 1 6, 4 1, 4 6))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

}

}

rcc8ntppi

This function tests whether one geometry is a non-tangential proper part inverse of another

geometry based on their associated primary geometry objects. The spatial reference system of the

first geometry is used for spatial calculations. The defining DE-9IM intersection pattern is

TTTFFTFFT.

Syntax

geof:rcc8ntppi(geom1, geom2)

Parameter Type Description

geom1 geomLiteral The first geometry.

geom2 geomLiteral The second geometry.

Geospatial Library 889

Returns

Type Description

boolean True if the second geometry is a non-tangential proper part inverse of the first
geometry. False if not.

Example

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT (geof:rcc8ntppi(?x,?y) as ?is_ntppi)

WHERE {

VALUES (?x ?y) {

('POLYGON ((2 2, 5 2, 5 4, 2 4))' 'POLYGON ((1 1, 1 6, 4 1, 4 6))')

('POLYGON ((1 1, 1 4, 4 4, 4 1))' 'POLYGON ((1 1, 1 4, 4 4, 4 1))')

}

}

Matrix Utilities Library

The matrix utilities return information on various attributes of vector space mapping and related

matrix tensors.

l Matrix Information: These utilities are used to retrieve information from a given matrix, vector,

or tensor.

l Matrix Properties: These utilities are used to evaluate the characteristics of a matrix or

vector.

l Matrix and Vector Construction: These utilities are used to create a matrix or vector.

l Submatrix and Subvector Extraction: These utilities are used to extract elements from a

matrix or vector.

l Correlation and Similarity: These utilities are used to calculate correlation and similarity

between variables or row vectors.

Matrix Utilities Library 890

l Distance and Vector Flattening: These utilities are used to calculate distance or flatten

vectors.

l Dimensionality Reduction: These utilities are used to perform dimensionality reduction using

Linear Discriminant Analysis, Principal Component Analysis, or Singular Value

Decomposition.

l Mathematical Operations: These utilities are used to perform mathematical operations on

vectors.

l Relational Condition Evaluation: These utilities are used to evaluate conditions on a vector or

matrix.

Note
The URI for the matrix utilities is

<http://cambridgesemantics.com/anzograph/matrices#>. For readability, the

syntax for each function below includes the prefix matrices:, defined as PREFIX

matrices: <http://cambridgesemantics.com/anzograph/matrices#>.

Matrix Information

l dump_tensor: Displays the Armadillo header and the first few elements of the matrix or

vector as a string.

l dump_vec: Returns the string representation of a row or column vector.

l get_cols: Returns the number of columns present in a tensor.

l get_diag: Extracts a diagonal from a matrix or sparse matrix.

l get_elem: Accesses one or more elements that are stored in a tensor.

l get_max_val: Retrieves the maximum value from a tensor.

l get_min_val: Retrieves the minimum value from a tensor.

l get_nonzero: Returns the number of non-zero elements that are present in a sparse matrix.

l get_order: Returns the tensor order.

Matrix Utilities Library 891

l get_rows: Returns the number of rows present in a tensor.

l get_shape: Formats the shape of a tensor as a string.

l get_slices: Returns the number of slices present in a tensor.

l get_subvec: Extracts a range of elements from a row or column vector.

l get_total_elem: Returns the total number of elements that are present in a tensor.

dump_tensor

This function displays the Armadillo header and the first few elements of the matrix or vector as a

string.

Syntax

matrices:dump_tensor(b [, type] [, isRowWise])

Parameter Type Description

b http://anzograph.com/matrices#tensor A tensor of matrix/row
vector/column vector.

type int Optional argument that specifies
the type of tensor: 0=row vector,
1=column vector, 2=matrix. Default
is 2.

isRowWise Boolean Optional argument that indicates
whether the display matrix is
column- or row- wise:
false=column-wise, true=row-
wise. Default is true.

Matrix Utilities Library 892

Returns

Type Description

string Row- or column- wise string representation of the vector or matrix.

dump_vec

This function returns the string representation of a row or column vector.

Syntax

matrices:dump_vec(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The row or column vector to convert
to a string.

Returns

Type Description

string The string representation of the row or column vector.

get_cols

This function returns the number of columns present in a tensor.

Syntax

matrices:get_cols(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The tensor to evaluate.

Matrix Utilities Library 893

Returns

Type Description

long The number of columns.

get_diag

This function extracts a diagonal from a matrix or sparse matrix.

Syntax

matrices:get_diag(b [, k])

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix or sparse matrix.

k long Optional diagonal number. By
default, the main diagonal is
accessed (k=0). For k>0 , the kth
super-diagonal is accessed (top
right corner). For k<0, the kth sub-
diagonal is accessed (bottom left
corner).

Returns

Type Description

http://anzograph.com/matrices#tensor The tensor representation of the diagonal as a column
vector.

get_elem

This function accesses one or more elements that are stored in a tensor.

Matrix Utilities Library 894

Syntax

matrices:get_elem(b, i [, j] [, k])

Parameter Type Description

b http://anzograph.com/matrices#tensor The tensor.

i long The element stored in the ith row.

j long Optional argument that lists the
element stored in the jth column.

k long Optional argument that lists the
element stored in the kth slice.

Returns

Type Description

double The element value.

get_max_val

This function retrieves the maximum value from a tensor.

Syntax

matrices:getmax_val(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The tensor from which to return the
maximum value.

Matrix Utilities Library 895

Returns

Type Description

double The maximum value in the tensor.

get_min_val

This function retrieves the minimum value from a tensor.

Syntax

matrices:getmin_val(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The tensor from which to return the
minimum value.

Returns

Type Description

double The minimum value from the tensor.

get_nonzero

This function gets the number of non-zero elements that are present in a sparse matrix.

Syntax

matrices:get_nonzero(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The sparse matrix.

Matrix Utilities Library 896

Returns

Type Description

long The number of non-zero elements.

get_order

This function returns the tensor order.

Syntax

matrices:get_order(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The tensor to evaluate.

Returns

Type Description

long The tensor order.

get_rows

This function returns the number of rows present in a tensor.

Syntax

matrices:get_rows(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The tensor for which to return the
number of rows.

Matrix Utilities Library 897

Returns

Type Description

long The number of rows.

get_shape

This function formats the shape of a tensor as a string.

Syntax

matrices:get_shape(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The tensor to format.

Returns

Type Description

string The shape of the tensor.

get_slices

This function gets the number of slices present in a tensor.

Syntax

matrices:get_slices(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The tensor for which to return the
number of slices.

Matrix Utilities Library 898

Returns

Type Description

long The number of slices.

get_subvec

This function extracts a range of elements from a row or column vector.

Syntax

matrices:get_subvec(b, i, j)

Parameter Type Description

b http://anzograph.com/matrices#tensor The row or column vector.

i long The start index.

j long The end index.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a row or column vector.

get_total_elem

This function returns the total number of elements that are present in a tensor.

Syntax

matrices:get_total_elem(b)

Matrix Utilities Library 899

Parameter Type Description

b http://anzograph.com/matrices#tensor The tensor for which to return the
total number of elements.

Returns

Type Description

long The total number of elements.

Matrix Properties

l has_nan: Evaluates whether a matrix is not a number (NaN).

l is_colvec: Evaluates whether the given matrix is a column vector.

l is_diag_mat: Evaluates whether a matrix is diagonal.

l is_hermitian: Evaluates whether the matrix is hermitian (self-adjoint).

l is_rowvec: Evaluates whether the given matrix is a row vector.

l is_sorted: Evaluates whether a vector or matrix is sorted.

l is_square: Evaluates whether a matrix is square.

l is_symmetric: Evaluates whether a matrix is symmetrical.

l is_tri_mat_lower: Evaluates whether a matrix is lower triangular.

l is_tri_mat_upper: Evaluates whether a matrix is upper triangular.

l is_vec: Evaluates whether the given matrix is a row or column vector.

has_nan

This function evaluates whether a matrix is not a number (NaN).

Syntax

matrices:has_nan(b)

Matrix Utilities Library 900

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Returns

Type Description

boolean Returns true if at least one of the elements is NaN and false if all elements are
numbers.

is_colvec

This function evaluates whether the given matrix is a column vector.

Syntax

matrices:is_colvec(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Returns

Type Description

boolean True if the matrix can be interpreted as a column vector. False if the matrix does not
have exactly one column.

is_diag_mat

This function evaluates whether a matrix is diagonal, i.e., all elements outside of the main diagonal

are zero.

Matrix Utilities Library 901

Syntax

matrices:is_diag_mat(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Returns

Type Description

boolean Returns true if the matrix is diagonal and false if it is not.

is_hermitian

This function evaluates whether a matrix is hermitian (self-adjoint).

Syntax

matrices:is_hermitian(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Returns

Type Description

boolean Returns true if the matrix is hermitian and false if it is not.

is_rowvec

This function evaluates whether the given matrix is a row vector.

Matrix Utilities Library 902

Syntax

matrices:is_rowvec(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Returns

Type Description

boolean True if the matrix can be interpreted as a row vector. False if the matrix does not
have exactly one row.

is_sorted

This function evaluates whether a vector or matrix is sorted.

Syntax

matrices:is_sorted(b [, t] [, d])

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

t boolean Optional argument that specifies the
sort dimension for the matrix. Set to
true if elements are sorted row-
wise and false if they are sorted
column-wise. Default is false.

d int Optional argument that specifies the
sort direction for the matrix. Allowed

Matrix Utilities Library 903

Parameter Type Description

arguments are:

l 0: ascend (default). Elements
are ascending; consecutive

elements can be equal.

l 1: descend. Elements are
descending; consecutive

elements can be equal.

l 2: strictascend. Elements are
strictly ascending; consecutive

elements cannot be equal.

l 3: strictdescend. Elements are
strictly descending;

consecutive elements cannot

be equal.

Returns

Type Description

boolean True if the elements are sorted. False if they are not.

is_square

This function evaluates whether a matrix is square, i.e., the number of rows is equal to the number

of columns.

Syntax

matrices:is_square(b)

Matrix Utilities Library 904

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Returns

Type Description

boolean Returns true if the matrix is square and false if it is not.

is_symmetric

This function evaluates whether a matrix is symmetrical.

Syntax

matrices:is_symmetric(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Returns

Type Description

boolean Returns true if the matrix is symmetrical and false if it is not.

is_tri_mat_lower

This function evaluates whether a matrix is lower triangular, i.e., the matrix is square sized and all

elements above the main diagonal are zero.

Syntax

matrices:is_tri_mat_lower(b)

Matrix Utilities Library 905

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Returns

Type Description

boolean Returns true if the matrix is lower triangular and false if it is not.

is_tri_mat_upper

This function evaluates whether a matrix is upper triangular, i.e., the matrix is square sized and all

elements below the main diagonal are zero.

Syntax

matrices:is_tri_mat_upper(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Returns

Type Description

boolean Returns true if the matrix is upper triangular and false if it is not.

is_vec

This function evaluates whether the given matrix is a row or column vector.

Syntax

matrices:is_vec(b)

Matrix Utilities Library 906

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Returns

Type Description

boolean True if the matrix can be interpreted as a column or row vector. False if the matrix
does not have exactly one column or one row.

Matrix and Vector Construction

l gramian: Creates a Gramian matrix that is commonly used to compute linear independence.

l make_matrix: Creates a matrix of doubles with the given dimensions and values.

l make_tensor_from_string: Constructs a tensor from the given dimensions in a string.

l make_vec: Constructs a row vector with the given index and value to be stored in the index.

l string_from_vector: Formats a row vector as a plain string.

l vector_from_string: Returns a vector from a string representation of a vector.

gramian

The Gramian matrix linear algebra aggregate creates a Gramian matrix commonly used to compute

linear independence.

Syntax

matrices:gramian(x1, x2, ..., xn)

Parameter Type Description

x1–xn double The feature column datasets.

Matrix Utilities Library 907

https://en.wikipedia.org/wiki/Gramian_matrix

Returns

Type Description

http://anzograph.com/matrices#tensor The Gramian matrix.

make_matrix

This function creates a matrix of doubles with the given dimensions and values.

Syntax

matrices:make_matrix(m, n [, v1, v2, ..., vn])

Parameter Type Description

m int The number of rows for the new matrix.

n int The number of columns for the new matrix.

v1–vn double Optional arguments that specify the row-wise matrix elements to
include. Default value is 0 for all elements.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation form x nmatrix of doubles.

make_tensor_from_string

This function constructs a tensor from the given dimensions in a string.

Syntax

matrices:make_tensor_from_string(s [, n])

Matrix Utilities Library 908

Parameter Type Description

s string The string that contains the row-wise elements for constructing the
tensor.

n int Optional argument that specifies the number of columns to include in
the tensor. The default value is 0, which constructs a row vector. A
value of 1 constructs a column vector. A value that is greater than 1
constructs a matrix with the specified number of columns.

Returns

Type Description

http://anzograph.com/matrices#tensor A tensor of doubles.

make_vec

This aggregate constructs a row vector with the given index and value to be stored in the index.

Syntax

matrices:make_vec(n, v)

Parameter Type Description

n int The index into the vector.

v double The value to be stored in the vector at the nth index.

Returns

Type Description

http://anzograph.com/matrices#tensor A row vector.

Matrix Utilities Library 909

string_from_vector

This function formats a row vector as a plain string.

Syntax

matrices:string_from_vector(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The row vector to format.

Returns

Type Description

string The row vector.

vector_from_string

This function returns a vector from a string representation of a vector.

Syntax

matrices:vector_from_string(s)

Parameter Type Description

s string The string representation of a vector.

Returns

Type Description

http://anzograph.com/matrices#tensor The vector as a tensor.

Matrix Utilities Library 910

Submatrix and Subvector Extraction

l subvec_head: Extracts starting elements from a row or column vector.

l subvec_tail: Extracts tailing elements from a row or column vector.

l subview_col: Extracts a column from a matrix or sparse matrix.

l subview_cols: Extracts a range of columns from a matrix or sparse matrix.

l subview_head_cols: Extracts starting columns from a matrix or sparse matrix.

l subview_head_rows: Extracts starting rows from a matrix or sparse matrix.

l subview_mat: Extracts a submatrix from a matrix or sparse matrix.

l subview_row: Extracts a row from a matrix or sparse matrix.

l subview_rows: Extracts a range of rows from a matrix or sparse matrix.

l subview_tail_cols: Extracts tailing columns from a matrix or sparse matrix.

l subview_tail_rows: Extracts tailing rows from a matrix or sparse matrix.

subvec_head

This function extracts starting elements from a row or column vector.

Syntax

matrices:subvec_head(b, n)

Parameter Type Description

b http://anzograph.com/matrices#tensor A row or column vector.

n long The number of elements to extract
from the beginning of the vector.

Matrix Utilities Library 911

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a row or column vector with
elements from 0 to n-1.

subvec_tail

This function extracts tailing elements from a row or column vector.

Syntax

matrices:subvec_tail(b, n)

Parameter Type Description

b http://anzograph.com/matrices#tensor A row or column vector.

n long The number of elements to extract
from the end of the vector.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a row or column vector with n
elements from the tail.

subview_col

This function extracts a column from a matrix or sparse matrix.

Syntax

matrices:subview_col(b, n)

Matrix Utilities Library 912

Parameter Type Description

b http://anzograph.com/matrices#tensor A matrix or sparse matrix.

n long The column index.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a column vector.

subview_cols

This function extracts a range of columns from a matrix or sparse matrix.

Syntax

matrices:subview_cols(b, c1, ..., cn)

Parameter Type Description

b http://anzograph.com/matrices#tensor A matrix or sparse matrix.

c1–n long The start column index to the end
column index.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of the matrix with columns from
c1 to cn.

Matrix Utilities Library 913

subview_head_cols

This function extracts starting columns from a matrix or sparse matrix.

Syntax

matrices:subview_head_cols(b, n)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to extract starting
columns from.

n long The number of columns to extract
from the beginning of the matrix.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a matrix with columns from 0

to n-1.

subview_head_rows

This function extracts starting rows from a matrix or sparse matrix.

Syntax

matrices:subview_head_rows(b, n)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to extract starting rows
from.

Matrix Utilities Library 914

Parameter Type Description

n long The number of rows to extract from
the beginning of the matrix

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a matrix with rows from 0 to
n-1.

subview_mat

This function extracts a submatrix from a matrix or sparse matrix.

Syntax

matrices:subview_mat(b, r1, ..., rn, c1, ..., cn)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to extract a submatrix
from.

r1–n long The start row index to the end row
index.

c1–n long The start column index to the end
column index.

Matrix Utilities Library 915

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a matrix of size [1+(rn-
r1)] x [1+(cn-c1)].

subview_row

This function extracts a row from a matrix or sparse matrix.

Syntax

matrices:subview_row(b, n)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to extract the row from.

n long The row index.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a row vector.

subview_rows

This function extracts a range of rows from a matrix or sparse matrix.

Syntax

matrices:subview_rows(b, r1, ..., rn)

Matrix Utilities Library 916

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to extract the rows from.

r1–rn long The start row index to the end row
index.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of the matrix with rows from r1

to rn.

subview_tail_cols

This function extracts tailing columns from a matrix or sparse matrix.

Syntax

matrices:subview_tail_cols(b, n)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to extract trailing columns
from.

n long The number of columns to extract
from the end of the matrix.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a matrix with n columns from

Matrix Utilities Library 917

Type Description

the tail.

subview_tail_rows

This function extracts tailing rows from a matrix or sparse matrix.

Syntax

matrices:subview_tail_rows(b, n)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to extract tailing rows
from.

n long The number of rows to extract from
the end of the matrix.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a matrix with n rows from the
tail.

Correlation and Similarity

l cancor: Calculates the overall correlation between two sets of variables.

l cosine_similarity: Calculates the cosine similarity between two row vectors.

l covariance: Provides a measure of the strength of the correlation between two or more sets

of random variables.

Matrix Utilities Library 918

cancor

The Canonical correlation aggregate calculates the canonical correlation between two sets of

variables.

Syntax

matrices:cancor(lc, m, x1, x2, ..., xn, y1, y2, ..., yn)

Parameter Type Description

lc int The number of linear combinations for the first canonical correlation.

m int The number of columns in the first set.

x1–xn double The feature columns from the first dataset.

y1–yn double The feature columns from the second dataset.

Returns

Type Description

string Canonical correlation.

string Square of the canonical correlation.

string Canonical coefficient.

cosine_similarity

This function calculates the cosine similarity between two row vectors.

Matrix Utilities Library 919

https://en.wikipedia.org/wiki/Canonical_correlation

Note
The cosine_similarity function is not compatible with column or matrix vectors. The input must

be row vectors.

Syntax

matrices:cosine_similarity(m, n)

Parameter Type Description

m http://anzograph.com/matrices#tensor A row vector.

n http://anzograph.com/matrices#tensor The row vector to compare to the
vector in argument m.

Returns

Type Description

double Results range from -1 to 1: -1 is perfectly dissimilar and 1 is perfectly similar.

covariance

The Covariance aggregate provides a measure of the strength of the correlation between two or

more sets of random variables (or variates).

Syntax

matrices:covariance(x1, x2, ..., xn)

Parameter Type Description

x1–xn double Feature columns from the dataset.

Matrix Utilities Library 920

https://en.wikipedia.org/wiki/Covariance

Returns

Type Description

http://anzograph.com/matrices#tensor The covariance matrix.

Distance and Vector Flattening

l euclidean_distance: Returns the euclidean distance between two vectors.

l flatten_as_col: Returns a flattened version of a matrix as a column vector.

l flatten_as_row: Returns a flattened version of a matrix as a row vector.

euclidean_distance

This function returns the euclidean distance between two vectors.

Syntax

matrices:euclidean_distance(b, c)

Parameter Type Description

b http://anzograph.com/matrices#tensor The first vector in the calculation.

c http://anzograph.com/matrices#tensor The vector to calculate the distance
from vector b.

Returns

Type Description

double The euclidean distance between the input vectors.

flatten_as_col

This function returns a flattened version of a matrix as a column vector.

Matrix Utilities Library 921

Syntax

matrices:flatten_as_col(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to flatten.

Returns

Type Description

http://anzograph.com/matrices#tensor The tensor representation of the matrix as a column
vector.

flatten_as_row

This function returns a flattened version of a matrix as a row vector.

Syntax

matrices:flatten_as_row(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to flatten.

Returns

Type Description

http://anzograph.com/matrices#tensor The tensor representation of the matrix as a row
vector.

Matrix Utilities Library 922

Dimensionality Reduction

l Linear Discriminant Analysis (LDA): These functions use dimensionality reduction to make

predictions.

l Principal Component Analysis (PCA): These functions reduce a high-dimensional dataset

into fewer dimensions while retaining important information.

l Singular Value Decomposition (SVD): These functions are similar to PCA except that the

factorization is done on the data matrix.

l transform: Applies PCA or SVD to transform the samples onto the new subspace.

Linear Discriminant Analysis (LDA)

Linear discriminant analysis functions apply linear discriminant analysis (LDA) to create combined

eigenvalues and vectors that characterize or separate two or more classes of objects or events. The

following functions are available for LDA operations:

l lda::create

l lda::get_eigvec

l lda::get_eigval

l lda::get_raw_eigval

l lda::predict

l lda::transform

lda::create

This aggregate applies LDA to create combined eigenvalues and eigenvectors.

Syntax

matrices:lda::create(y, x1, x2, ..., xn)

Parameter Type Description

y double The class of the feature tuple.

Matrix Utilities Library 923

https://en.wikipedia.org/wiki/Linear_discriminant_analysis

Parameter Type Description

x1–xn double The feature column datasets.

Returns

Type Description

http://anzograph.com/matrices#lda_
result

The combined eigenvalues, eigenvectors, class mean,
count, and class map.

lda::get_eigvec

Given LDA data, this function returns LDA's eigenvectors as a matrix.

Syntax

matrices:lda::get_eigvec(lda_data)

Parameter Type Description

lda_data http://anzograph.com/matrices#lda_result Linear discriminant analysis data.

Returns

Type Description

http://anzograph.com/matrices#tensor Eigenvectors as a matrix.

lda::get_eigval

Given LDA data, this function gets LDA's eigenvalues as a column vector.

Syntax

matrices:lda::get_eigval(lda_data)

Matrix Utilities Library 924

Parameter Type Description

lda_data http://anzograph.com/matrices#lda_result Linear discriminant analysis data.

Returns

Type Description

http://anzograph.com/matrices#tensor Eigenvalues in descending order as a column vector.

lda::get_raw_eigval

Given LDA data, this function gets LDA's unsorted eigenvalues.

Syntax

matrices:lda::get_raw_eigval(lda_data)

Parameter Type Description

lda_data http://anzograph.com/matrices#lda_result LDA data.

Returns

Type Description

http://anzograph.com/matrices#tensor Eigenvalues in unsorted order as a column vector.

lda::predict

This function predicts the class for the samples using LDA as the classifier.

Syntax

matrices:lda::predict(lda_data, p1, p2, ..., pn)

Matrix Utilities Library 925

Parameter Type Description

lda_data http://anzograph.com/matrices#lda_
result

LDA data.

p1–pn double The data sample that contains the
class to predict.

Returns

Type Description

string The class name to which data tuple belongs.

lda::transform

This function applies LDA to transform samples onto the new subspace.

Syntax

matrices:lda::transform(lda_data, d, x1, x2, ..., xn)

Parameter Type Description

lda_data http://anzograph.com/matrices#lda_
result

Linear discriminant analysis data.

d int The number of eigenvectors to
consider from the start.

x1–xn double The feature column datasets.

Matrix Utilities Library 926

Returns

Type Description

double The original data transformed into the tuple of lower dimensional space.

Principal Component Analysis (PCA)

Applies Principal component analysis (PCA) to create combined eigenvalues and vectors that

highlight patterns in a dataset, making it easier to explore and visualize data. The following

functions are available for PCA operations:

l pca::create

l pca::get_eigval

l pca::get_eigvec

l pca::get_raw_eigval

l transform

pca::create

This aggregate applies PCA to create combined eigenvalues and eigenvectors.

Syntax

matrices:pca::create(x1, x2, ..., xn)

Parameter Type Description

x1–xn double The feature column datasets.

Returns

Type Description

http://anzograph.com/matrices#feature_ PCA data containing eigenvalues and

Matrix Utilities Library 927

https://en.wikipedia.org/wiki/Principal_component_analysis

Type Description

result eigenvectors.

pca::get_eigval

This function retrieves PCA's eigenvalues as a column vector from PCA data.

Syntax

matrices:pca::get_eigval(pca_data)

Parameter Type Description

pca_data http://anzograph.com/matrices#feature_
result

Principal Component Analysis
data.

Returns

Type Description

http://anzograph.com/matrices#tensor Eigenvalues in descending order as column vectors.

pca::get_eigvec

This function retrieves PCA's eigenvectors as a matrix from the PCA data.

Syntax

matrices:pca::get_eigvec(pca_data)

Parameter Type Description

pca_data http://anzograph.com/matrices#feature_
result

Principal Component Analysis
data.

Matrix Utilities Library 928

Returns

Type Description

http://anzograph.com/matrices#tensor Eigenvectors as a matrix.

pca::get_raw_eigval

This function gets the PCA's unsorted eigenvalues from the PCA data.

Syntax

matrices:pca::get_raw_eigval(pca_data)

Parameter Type Description

pca_data http://anzograph.com/matrices#feature_
result

Principal Component Analysis
data.

Returns

Type Description

http://anzograph.com/matrices#tensor Eigenvalues in unsorted order as column vectors.

Singular Value Decomposition (SVD)

The Singular value decomposition (SVD) matrix factorization method creates combined singular

values and right singular vectors.

The following functions are available for SVD operations:

l svd::create

l svd::get_sigval

Matrix Utilities Library 929

https://en.wikipedia.org/wiki/Singular_value_decomposition

l svd::get_sigvec

l transform

svd::create

This aggregate applies SVD to create combined singular values and right singular vectors.

Syntax

matrices:svd::create(x1, x2, ..., xn)

Parameter Type Description

x1–xn double The feature column datasets.

Returns

Type Description

http://anzograph.com/matrices#feature_
result

SVD data containing singular values and right
singular vectors.

svd::get_sigval

This function gets SVD's singular values as a column vector from the SVD data.

Syntax

matrices:svd::get_sigval(svd_data)

Parameter Type Description

svd_data http://anzograph.com/matrices#feature_result SVD data.

Matrix Utilities Library 930

Returns

Type Description

http://anzograph.com/matrices#tensor Singular values in descending order as a column
vector.

svd::get_sigvec

This function gets SVD's singular vector as a matrix from the SVD data.

Syntax

matrices:svd::get_sigvec(svd_data)

Parameter Type Description

svd_data http://anzograph.com/matrices#feature_result SVD data.

Returns

Type Description

http://anzograph.com/matrices#tensor Right singular vectors as a matrix.

transform

This function applies PCA or SVD (depending on the input) to transform the samples onto the new

subspace.

Syntax

matrices:transform(data, d, x1, x2, ..., xn)

Matrix Utilities Library 931

Parameter Type Description

data http://anzograph.com/matrices#feature_
result

PCA or SVD data.

d int The number of eigenvectors to
consider from the end.

x1–xn double Feature column datasets.

Returns

Type Description

double Sample data transformed into the tuple of lower dimensional space.

Mathematical Operations

l sigmoid: Returns the logistic sigmoid calculation of a vector.

l vdiff: Returns the difference between two vectors.

l vsum: Returns the sum of two vectors.

sigmoid

This function returns the logistic sigmoid calculation of a vector.

Syntax

matrices:sigmoid(b)

Parameter Type Description

b http://anzograph.com/matrices#tensor The vector to evaluate.

Matrix Utilities Library 932

Returns

Type Description

http://anzograph.com/matrices#tensor The logistic sigmoid of the vector.

vdiff

This function returns the difference between two vectors.

Syntax

matrices:vdiff(b, c)

Parameter Type Description

b http://anzograph.com/matrices#tensor The first vector in the calculation.

c http://anzograph.com/matrices#tensor The vector to subtract from vector b.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of the difference between the
input vectors.

vsum

This function returns the sum of two vectors.

Syntax

matrices:vsum(b, c)

Matrix Utilities Library 933

Parameter Type Description

b http://anzograph.com/matrices#tensor The first vector in the calculation.

c http://anzograph.com/matrices#tensor The vector to add to vector b.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of the sum of the input vectors.

Relational Condition Evaluation

l mat_all: Evaluates whether all elements in a matrix are non-zero or satisfy the specified

relational condition.

l mat_any: Evaluates whether any elements in a matrix are non-zero or satisfy the specified

relational condition.

l vec_all: Evaluates whether all elements in a row or column vector are non-zero or satisfy the

specified relational condition.

l vec_any: Evaluates whether any elements in a row or column vector are non-zero or satisfy

the specified relational condition.

mat_all

This function evaluates whether all elements in a matrix are non-zero or satisfy the specified

relational condition.

Syntax

matrices:mat_all(b [, d] [, c] [, val])

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

Matrix Utilities Library 934

Parameter Type Description

d boolean Optional argument that indicates
whether to check rows or columns.
Set to true for rows or false for
columns. Default is false.

c int Optional argument that specifies the
relational condition to test:

l 0 (default): not equal

l 1: greater than

l 2: less than

l 3: equal

l 4: greater than or equal to

l 5: less than or equal to

val double Optional argument that specifies the
value to apply the condition (c) to.
Default is 0.

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a row vector with each
element as 0 or 1, indicating whether the
corresponding row or column has all non-zero
elements.

Matrix Utilities Library 935

mat_any

This function evaluates whether any elements in a matrix are non-zero or satisfy the specified

relational condition.

Syntax

matrices:mat_any(b [, d] [, c] [, val])

Parameter Type Description

b http://anzograph.com/matrices#tensor The matrix to evaluate.

d boolean Optional argument that indicates
whether to check rows or columns.
Set to true for rows or false for
columns. Default is false.

c int Optional argument that specifies the
relational condition to test:

l 0 (default): not equal

l 1: greater than

l 2: less than

l 3: equal

l 4: greater than or equal to

l 5: less than or equal to

val double Optional argument that specifies the
value to apply the condition (c) to.
Default is 0.

Matrix Utilities Library 936

Returns

Type Description

http://anzograph.com/matrices#tensor Tensor representation of a row vector with each
element as 0 or 1, indicating whether the
corresponding row or column has any non-zero
elements.

vec_all

This function evaluates whether all elements in a row or column vector are non-zero or satisfy the

specified relational condition.

Syntax

matrices:vec_all(b [, c] [, val])

Parameter Type Description

b http://anzograph.com/matrices#tensor The vector to evaluate.

c int Optional argument that specifies the
relational condition to test:

l 0 (default): not equal

l 1: greater than

l 2: less than

l 3: equal

l 4: greater than or equal to

l 5: less than or equal to

val double Optional argument that specifies the

Matrix Utilities Library 937

Parameter Type Description

value to apply the condition (c) to.
Default is 0.

Returns

Type Description

boolean Returns true if all elements are non-zero or satisfy the condition and false if not.

vec_any

This function evaluates whether any elements in a row or column vector are non-zero or satisfy the

specified relational condition.

Syntax

matrices:vec_any(b [, c] [, val])

Parameter Type Description

b http://anzograph.com/matrices#tensor The vector to evaluate.

c int Optional argument that specifies the
relational condition to test:

l 0 (default): not equal

l 1: greater than

l 2: less than

l 3: equal

l 4: greater than or equal to

l 5: less than or equal to

Matrix Utilities Library 938

Parameter Type Description

val double Optional argument that specifies the
value to apply the condition (c) to.
Default is 0.

Returns

Type Description

boolean Returns true if any elements are non-zero or satisfy the condition and false if not.

Sketch Library

The sketch library provides extremely efficient streaming algorithms that approximate calculations,

such as count distinct, quantiles, most frequent items, joins, and matrix computations, and return

data sketches. This topic describes each of the sketch functions.

Note
The URI for the sketch functions is

<http://cambridgesemantics.com/anzograph/statistics/sketch#>. For

readability, the syntax for each function below includes the prefix sketch:, defined as
PREFIX sketch:

<http://cambridgesemantics.com/anzograph/statistics/sketch#>.

l Cardinality Metric (HLL): Uses Apache DataSketches HyperLogLog (HLL) to calculate

cardinality estimates for a dataset.

l Frequent Items (FI): Collection of functions used to create frequency sketches and obtain

information about frequent items.

l Quantile/Rank Sketch (KLL): Collection of functions that use the KLL sketch computation

model to approximate minimum and maximum items in a dataset, the quantile and rank of

items, the Probability Mass Function (PMF), and the Cumulative Distribution Function (CDF).

Sketch Library 939

l Theta Sketch (THETA): Collection of functions that use the Theta Sketch framework to

compute estimates of the cardinality, union, intersection, and difference set operations and

return a Theta Sketch.

Cardinality Metric (HLL)

This aggregate calculates cardinality estimates for a dataset using Apache DataSketches

HyperLogLog (HLL).

Reference: Cardinality Prominence Metric

Syntax

sketch:hll(data [, log_base_2_K] [, hll_target_type])

Parameter Type Description

data byte, short, int,
long, float,
double, string,
URI

The dataset.

log_base_2_
K

int Optional argument that specifies the log base 2 of K, where K
is the number of buckets or slots for the sketch. Must be
between 4 and 21 (inclusive). Default value is 12.

hll_target_
type

int Optional argument that specifies the target type for the HLL
sketch. Supported values are 4 (HLL_4), 6 (HLL_6), or 8
(HLL_8). Default value is 4.

Returns

Type Description

double The cardinality metric value.

Sketch Library 940

https://github.com/addthis/stream-lib/blob/master/src/main/java/com/clearspring/analytics/stream/cardinality/AdaptiveCounting.java

Frequent Items (FI)

The FI aggregate is used to estimate the frequency of items in a dataset, the upper and lower

bounds of the items, the number of active items, and the total stream weight. FI returns a binary

stream (Frequent Items Sketch) containing all of the computed values. Values can retrieved from

the sketch using the Frequent Items Sketch Retrieval Functions: get_estimates, get_active_items_

total_weights, get_top_items, and get_top_strings.

Tip
For more information about frequency sketches, see Frequency Sketches Overview.

FI Syntax

sketch:fi(values [, weight])

Parameter Type Description

values short, int, long, float,
double, string

The dataset.

weight long Optional argument that specifies the weight of val.
The default value is 1.

Returns

Type Description

http://anzograph.com/statistics#fi_sketch Binary Frequent Items Sketch.

Frequent Items Sketch Retrieval Functions

The following functions are available for retrieving values from a Frequent Items Sketch:

l fi::get_estimates

l fi::get_active_items_total_weights

Sketch Library 941

https://zpjiang.me/2017/11/13/top-k-elementes-system-design/

l fi::get_top_items

l fi::get_top_strings

fi::get_estimates

Returns the estimates for the frequency and lower and upper bound of the given item in a sketch.

Syntax

sketch:fi::get_estimates(fi_sketch, item)

Parameter Type Description

fi_sketch http://anzograph.com/statistics#fi_sketch Frequent Items Sketch.

item Object Item for which to get estimates.

Returns

Type Description

long Frequency estimate for the item.

long Lower bound estimate for the item.

long Upper bound estimate for the item.

fi::get_active_items_total_weights

Returns the number of active items and the estimated total stream weight from a sketch.

Syntax

sketch:fi::get_active_items_total_weights(fi_sketch)

Sketch Library 942

Parameter Type Description

fi_sketch http://anzograph.com/statistics#fi_sketch Frequent Items Sketch.

Returns

Type Description

long The estimated number of active items.

long The estimated total stream weight.

fi::get_top_items

Returns the most frequent items and their corresponding frequency.

Syntax

sketch:fi::get_top_items(fi_sketch)

Parameter Type Description

fi_sketch http://anzograph.com/statistics#fi_sketch Frequent Items Sketch.

Returns

Type Description

double The item with the highest frequency.

long Frequency estimate of the first item.

double The item with the second highest frequency.

long Frequency estimate of the second item.

Sketch Library 943

Type Description

double The item with the nth highest frequency.

long Frequency estimate of the nth item.

fi::get_top_strings

Gets top frequent strings and their corresponding frequency.

Syntax

sketch:fi::get_top_strings(fi_sketch)

Parameter Type Description

fi_sketch http://anzograph.com/statistics#fi_sketch Frequent Items Sketch.

Returns

Type Description

string The string with the highest frequency.

long Frequency estimate of the first string.

string The string with the second highest frequency.

long Frequency estimate of the second string.

string The string with the nth highest frequency.

long Frequency estimate of the nth string.

Sketch Library 944

Quantile/Rank Sketch (KLL)

The KLL aggregate uses the KLL Sketch computation model to calculate the approximate minimum

and maximum items in a dataset, the quantile and rank of items, the Probability Mass Function

(PMF), and the Cumulative Distribution Function (CDF). KLL returns a binary stream (KLL Sketch)

containing all of the computed values. Values can retrieved from the sketch using various KLL

Sketch Retrieval Functions.

Tip
For more information about KLL sketches, see KLL Sketch.

KLL Syntax

sketch:kll(values [, k])

Parameter Type Description

values short, int,
long, float,
double,
string

The dataset.

k int Optional argument that configures the size of the sketch and its
estimation error. Can be any value between 8 and 65535
(inclusive). The default value is 200, which results in a normalized
rank error of about 1.65%. Higher values will have a smaller error
but the sketch will be larger (and slower).

Returns

Type Description

http://anzograph.com/statistics#kll_sketch Binary KLL sketch.

Sketch Library 945

https://datasketches.github.io/docs/Quantiles/KLLSketch.html

KLL Sketch Retrieval Functions

The following functions are available for retrieving values from a KLL sketch:

l kll::get_min_value

l kll::get_max_value

l kll::get_n

l kll::get_num_retained

l kll::get_rank

l kll::get_quantile

l kll::get_quantiles

l kll::get_quantiles_str

l kll::get_pmf

l kll::get_cdf

kll::get_min_value

Returns the minimum value in a KLL sketch.

Syntax

sketch:kll::get_min_value(kll_sketch)

Parameter Type Description

kll_sketch http://anzograph.com/statistics#kll_sketch KLL sketch.

Returns

Type Description

double The minimum value in the sketch.

Sketch Library 946

Type Description

string If the input is a string, the minimum string is returned.

kll::get_max_value

Returns the maximum value in a KLL sketch.

Syntax

sketch:kll::get_max_value(kll_sketch)

Parameter Type Description

kll_sketch http://anzograph.com/statistics#kll_sketch KLL sketch.

Returns

Type Description

double The maximum value in the sketch.

string If the input is a string, the minimum string is returned.

kll::get_n

Returns the length of a KLL sketch.

Syntax

sketch:kll::get_n(kll_sketch)

Parameter Type Description

kll_sketch http://anzograph.com/statistics#kll_sketch KLL sketch.

Sketch Library 947

Returns

Type Description

long The length of the sketch.

kll::get_num_retained

Returns the number of retained items (samples) in a sketch.

Syntax

sketch:get_num_retained(kll_sketch)

Parameter Type Description

kll_sketch http://anzograph.com/statistics#kll_sketch KLL sketch.

Returns

Type Description

long The number of retained items (samples) in the sketch.

kll::get_rank

Returns an approximation of the normalized (fractional) rank of the given item.

Syntax

sketch:kll::get_rank(kll_sketch, v)

Parameter Type Description

kll_sketch http://anzograph.com/statistics#kll_sketch KLL sketch.

v double The item to retrieve the rank for.

Sketch Library 948

Returns

Type Description

double The approximate rank of the item from 0 - 1 (inclusive).

kll::get_quantile

Returns an approximation of the value for an item from the rank.

Syntax

sketch:kll::get_quantile(kll_sketch, fraction)

Parameter Type Description

kll_sketch http://anzograph.com/statistics#kll_
sketch

KLL sketch.

fraction double The fractional position in the
hypothetical sorted stream.

Returns

Type Description

double An approximation of the value of the item that would be preceded by the given fraction
of a hypothetical sorted version of the sketch.

string An approximation of the string when the input is a string.

kll::get_quantiles

Provides a more efficient, multiple-query version of kll::get_quantile that enables you to specify a

number of evenly spaced fractional ranks.

Sketch Library 949

Syntax

sketch:kll::get_quantiles(kll_sketch, f1, f2, ..., f10)

Parameter Type Description

kll_sketch http://anzograph.com/statistics#kll_
sketch

KLL sketch.

f1–f10 double Normalized or fractional ranks in the
hypothetical sorted stream. The ranks
must be in the interval 0.0 - 1.0
(inclusive).

Returns

Type Description

double An approximation of the values in the same order as the given fractional positions.

kll::get_quantiles_str

Provides an approximation to the strings when the input is a string type.

Syntax

sketch:kll::get_quantiles_str(kll_sketch, f1, f2, ..., f10)

Parameter Type Description

kll_sketch http://anzograph.com/statistics#kll_
sketch

KLL sketch.

f1–f10 double Normalized or fractional ranks in the
hypothetical sorted stream. The ranks

Sketch Library 950

Parameter Type Description

must be in the interval 0.0 - 1.0
(inclusive).

Returns

Type Description

string An approximation of the strings.

kll::get_pmf

Provides an approximation to the Probability Mass Function (PMF) of the input stream.

Syntax

sketch:kll::get_pmf(kll_sketch, v1, v2, ..., v10)

Parameter Type Description

kll_sketch http://anzograph.com/statistics#kll_
sketch

KLL sketch.

v1–v10 Object Input values between the minimum and
maximum values of the input stream.
Values must be unique and
monotonically increasing.

Returns

Type Description

double PMF values corresponding to the input.

Sketch Library 951

kll::get_cdf

Provides an approximation to the Cumulative Distribution Function (CDF), which is the cumulative

analog of the PMF of the input stream.

Syntax

sketch:kll::get_cdf(kll_sketch, v1, v2, ..., v10)

Parameter Type Description

kll_sketch http://anzograph.com/statistics#kll_
sketch

KLL sketch.

v1–v10 Object Input values between the minimum and
maximum values of the input stream.
Values must be unique and
monotonically increasing.

Returns

Type Description

double CDF values corresponding to the input.

Theta Sketch (THETA)

The THETA aggregate uses the Theta Sketch framework to compute estimates of the cardinality,

union, intersection, and difference set operations and return a binary stream (Theta Sketch)

containing the computed values. Values can be retrieved from the sketch using the : cardinality,

union, intersection, and difference.

Sketch Library 952

Tip
Theta Sketches are a generalization of the well-known Kth Minimum Value (KMV) sketches.

For more information about the framework, you may find the following references helpful:

l The Theta Sketch Framework

l Estimating Counts of Distinct Values with KMV

THETA Syntax

sketch:theta(values)

Parameter Type Description

values short, int, long, float, double, string The dataset to operate on.

Returns

Type Description

http://anzograph.com/statistics#theta_sketch Binary Theta Sketch

Theta Sketch Retrieval Functions

The following functions are available for retrieving values from a Theta Sketch:

l theta::cardinality

l theta::union

l theta::intersection

l theta::difference

theta::cardinality

Retrieves the estimated count of values in a Theta Sketch.

Sketch Library 953

https://datasketches.github.io/docs/Theta/ThetaSketchFramework.html
https://blog.demofox.org/2015/02/03/estimating-counts-of-distinct-values-with-kmv/

Syntax

sketch:theta::cardinality(theta_sketch)

Parameter Type Description

theta_sketch http://anzograph.com/statistics#theta_sketch Binary Theta Sketch

Returns

Type Description

double The count of items in the sketch.

theta::union

Retrieves the estimate of the number of items that are in the union of two or more Theta Sketches.

Syntax

sketch:theta::union(theta_sketch1, theta_sketch2 [, theta_sketchN])

Parameter Type Description

theta_sketch1–
N

http://anzograph.com/statistics#theta_
sketch

Any number of Theta
Sketches.

Returns

Type Description

double The estimated number of items in the union.

Sketch Library 954

theta::intersection

Retrieves the estimate of the number of items that are in the intersection between two or more Theta

Sketches.

Syntax

sketch:theta::intersection(theta_sketch1, theta_sketch2 [, theta_sketchN])

Parameter Type Description

theta_sketch1–
N

http://anzograph.com/statistics#theta_
sketch

Any number of Theta
Sketches.

Returns

Type Description

double The estimated number of items that intersect in the sketches.

theta::difference

Retrieves the estimate of the number of items that are in the difference between two Theta

Sketches, i.e., the number of items that are in the first sketch but not in the second sketch.

Syntax

sketch:theta::difference(a, b)

Parameter Type Description

a http://anzograph.com/statistics#theta_
sketch

The first Theta Sketch.

b http://anzograph.com/statistics#theta_
sketch

The Theta Sketch to compare to
sketch a.

Sketch Library 955

Returns

Type Description

double The estimated number of items in the difference between the sketches.

Utilities Library

The utilities library contains several miscellaneous functions. This topic describes each of the

functions.

l LCASE: Converts the letters in a string literal to lower case based on the given locale.

l UCASE: Converts the letters in a string literal to upper case based on the given locale.

l bitap_fuzzy: Performs fuzzy string matching using the Bitap algorithm.

l cpp::fuzzy_match: Compares the given string to the specified pattern and returns a score.

l cpp::levenshtein_dist: Calculates the Levenshtein distance between two strings.

l damerauLevenshteinDistance: Calculates the Damerau-Levenshtein distance between two

strings.

l maskFirstNChars: Masks the beginning N characters with asterisks (*).

l maskLastNChars: Masks the last N characters with asterisks (*).

l regex: Creates a JSON string with all of the matches for the specified regular expression.

Note
The URI for the utilities is

<http://cambridgesemantics.com/anzograph/utilities#>. For readability, the

syntax for each function below includes the prefix util:, defined as PREFIX util:

<http://cambridgesemantics.com/anzograph/utilities#>.

Utilities Library 956

LCASE

This function converts the letters in a string literal to lower case according to the rules of the

specified locale.

Syntax

util:LCASE(text, locale)

Argument Type Description

text string The string literal to convert to lower case.

locale string The locale to use for the conversion.

Returns

Type Description

string The string with lower case characters.

UCASE

This function converts all letters in a string to upper case according to the rules of the specified

locale.

Syntax

util:UPPER(text, locale)

Argument Type Description

text string The string value to convert to upper case.

locale string The locale to use for the conversion.

Utilities Library 957

Returns

Type Description

string The string with upper case characters.

bitap_fuzzy

This function performs fuzzy string matching using the Bitap algorithm. The function evaluates

whether the specified text contains a string that is approximately equal to the given pattern, where

approximate equality is determined in terms of Hamming distance.

Syntax

util:bitap_fuzzy(pattern, text, k)

Argument Type Description

pattern string The pattern to match the text against.

text string The string to match the pattern against.

k int The number of errors that are allowed (the Hamming distance of k).

Returns

Type Description

int The first match's starting index in the text. 0means starting position, and -1means no
match.

cpp::fuzzy_match

This function is modeled after Sublime Text's fuzzy matching and compares the given string to the

specified pattern and returns a score.

Utilities Library 958

https://en.wikipedia.org/wiki/Bitap_algorithm
https://www.sublimetext.com/

Syntax

util:cpp::fuzzy_match(pattern, string)

Argument Type Description

pattern string The pattern to match the string against.

string string The string to match the pattern against.

Returns

Type Description

int The matched score. The score is returned only for matching strings. If there is no match,
the score is -9999.

Example

The following example queries the Tickit data set to find the number of city names that are a fuzzy

match to the specified VALUES.

PREFIX util: <http://cambridgesemantics.com/anzograph/utilities#>

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT (count(*) as ?totalMatches)

FROM <http://anzograph.com/tickit>

WHERE {

?venueid tickit:venuecity ?city .

VALUES (?to_match) {

("Denver") ("Seattle") ("East") ("Toronto")

}

BIND(util:cpp::fuzzy_match(?city, ?to_match) as ?matched)

FILTER(?matched > -9999)

}

totalMatches

10

1 rows

Utilities Library 959

cpp::levenshtein_dist

This function calculates the Levenshtein distance or measure of similarity between two strings. The

distance is the smallest number of insertions, deletions, and/or substitutions required to transform

the first string into the second string.

Syntax

util:cpp::levenshtein_dist(string1, string2)

Argument Type Description

string1 string The string that would be transformed into string2.

string2 string The string to measure string1 against.

Returns

Type Description

int The Levenshtein distance between the strings.

Example

The following example queries the Tickit data set to find cities whose names have a levenshtein

distance that is not equal to 0 and is less than or equal to 5 when compared with the values

"Denver," "Seattle," or "East."

PREFIX util: <http://cambridgesemantics.com/anzograph/utilities#>

PREFIX tickit: <http://anzograph.com/tickit/>

SELECT DISTINCT ?city ?dist

FROM <http://anzograph.com/tickit>

WHERE {

?venueid tickit:venuecity ?city .

VALUES (?to_match) {

("Denver") ("Seattle") ("East")

}

BIND(util:cpp::levenshtein_dist(?city, ?to_match) as ?dist)

FILTER(?dist != 0 && ?dist <= 5)

Utilities Library 960

}

ORDER BY ?city

city | dist

----------+------

Atlanta | 5

Boston | 4

Carson | 4

Dallas | 5

Dayton | 4

Dayton | 5

Detroit | 5

Frisco | 5

Glendale | 5

Hershey | 5

Houston | 5

Landover | 4

Miami | 4

Newark | 5

Ottawa | 5

Saratoga | 5

Seattle | 5

Sunrise | 5

Tampa | 4

Vancouver | 5

20 rows

damerauLevenshteinDistance

This function calculates the Damerau-Levenshtein distance or measure of similarity between two

strings. The distance is the smallest number of insertions, deletions, character transpositions,

and/or substitutions required to transform the first string into the second string.

Syntax

util:damerauLevenshteinDistance(string1, string2)

Argument Type Description

string1 string The string that would be transformed into string2.

Utilities Library 961

Argument Type Description

string2 string The string to measure string1 against.

Returns

Type Description

int The Damerau-Levenshtein distance between the strings.

maskFirstNChars

This function masks the beginning N characters with an asterisk (*).

Syntax

util:maskFirstNChars(string, number_of_chars)

Argument Type Description

string string The string to mask.

number_of_
chars

int The number of characters to mask from the beginning of the
string.

Returns

Type Description

string The string with the masked characters.

maskLastNChars

This function masks the last N characters with an asterisk (*).

Syntax

util:maskLastNChars(string, number_of_chars)

Utilities Library 962

Argument Type Description

string string The string to mask.

number_of_chars int The number of characters to mask from the end of the string.

Returns

Type Description

string The string with the masked characters.

regex

This function creates a JSON string that includes all of the matches for the specified regular

expression.

Syntax

util:regex(string, expression)

Argument Type Description

string string The string to match against the regular expression.

expression string The regular expression in ECMAScript grammar.

Returns

Type Description

JSON
string

The JSON string with all of the regular expression matches with index "0" as the whole
targeted string.

Utilities Library 963

https://262.ecma-international.org/5.1/#sec-A.7

Cypher Query Language Reference

In addition to SPARQL, Graph Lakehouse also provides Cypher language support, patterned after

compatibility with the openCypher community group's language specification for query and update

of graph databases. The openCypher community group is an open, multi-vendor initiative aimed at

making the Cypher language available as a industry-standard query language for graph databases.

Cypher® is a registered trademark of Neo4j, Inc.

This documentation describes compatibility of the Graph Lakehouse Cypher implementation

compared to the Cypher language as described in the openCypher community group's Cypher

Query Language Reference. See the openCypher Resource page available at

https://www.opencypher.org/resources/. A PDF copy of the Version 9 Cypher Query Language

Reference is available at https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf.

Portions of the original Cypher Query Language reference have also been included here for

purposes of comparison to note any limitations, restrictions, or exceptions in the Graph Lakehouse

Cypher implementation. Typically, comparisons to the Cypher Query language specification are

described as Supported, Partially Supported, and Not Supported. Examples included in this
documentation also reference the graph data from the original Neo4j Movie dataset. The Working

with Cypher and the Movie Data topic provides an executable script you can use to replicate the

data in Graph Lakehouse.

In this section:
Cypher Language Overview 965

Cypher Patterns 971

Cypher Types, Lists, and Maps 976

Comparability, Equality, Orderability, and Equivalence 983

Cypher Expressions, Variables, and Parameters 990

Cypher Operators 993

Cypher Clauses 997

Cypher Functions 1013

Cypher Query Language Reference 964

https://www.opencypher.org/resources/
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

Cypher Language Overview

The implementation of Cypher in Graph Lakehouse closely follows the openCypher community

group's version 9 specification of the Cypher language. (See the openCypher Resource page

available at https://www.opencypher.org/resources/. An Acrobat PDF copy of the Cypher Query

Language Reference is available at

https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf.

Important
Some Cypher features, based on the version 9 openCypher specification of the Cypher

language, are not yet supported in Graph Lakehouse:

l Uniqueness

l Cypher statements with interleaving of read and update clauses

l The Merge clause

l Relational and concatenation operators on list and map types

l The Unwind clause with list variables

l Path variable and variable length pattern matching

l Graph Lakehouse UDX and graph algorithms support

l Parameters

For users of previous Graph Lakehouse releases, support for the following new features was

added for Graph Lakehouse Version 2.4 and later releases:

l List and map type support

l The Collect() aggregate

l Functions operating on list and map types

l List comprehension

Cypher Language Overview 965

https://www.opencypher.org/resources/
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

l Property chaining and dynamic property access with the '[]' operator

l Improved node/relationship variables handling in complex expressions

To use Cypher in Graph Lakehouse, queries and other statements can be sent over the Bolt client-

server network protocol to Graph Lakehouse servers. Graph Lakehouse supports Bolt protocol,

version 1.0. Port 7088 is the default port used for the Bolt end-point. The azgbolt CLI provides a

simple way to send Cypher queries to Graph Lakehouse over the Bolt protocol. For example:

azgbolt -f query.cql

azgbolt -c "match (m:Movie) return m"

Graph data can be queried with SPARQL as well as Cypher language statements; both query

modes can co-exist. The Graph Lakehouse Bolt protocol can also be used to execute SPARQL

queries, however, in that case, support for various data types in results returned from queries is

limited.

Tip
For a brief introduction to using Cypher in Graph Lakehouse, see Working with Cypher and

the Movie Data.

In Cypher, CREATE statements can be used to load graph data into Graph Lakehouse, which is

convenient for loading smaller data sets. For bulk loading of larger RDF/RDF* data sets or non-RDF

data, see Load & Manage Data for more information.

Cypher node and relationship data is represented in RDF* triples format as illustrated in the

following example.

Cypher CREATE statements:

CREATE (TheMatrix:Movie {title:'The Matrix', released:1999, tagline:'Welcome to the

Real World'})

CREATE (Keanu:Person {name:'Keanu Reeves', born:1964})

CREATE (Keanu)-[:ACTED_IN {role:'Neo'}]->(TheMatrix)

RDF* triple format of data stored in Graph Lakehouse:

Cypher Language Overview 966

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<TheMatrix> rdf:type <Movie> .

<TheMatrix> <title> 'The Matrix' .

<TheMatrix> <released> 1999 .

<TheMatrix> <tagline> 'Welcome to the Real World' .

<Keanu> rdf:type <Person> .

<Keanu> <name> 'Keanu Reeves' .

<Keanu> <born> 1964 .

<< <Keanu> <ACTED_IN> <TheMatrix> >> <role> 'Neo' .

To query data using Cypher, the auto_predicate configuration setting should be enabled before
loading data into Graph Lakehouse. Saving information about Cypher nodes requires that the node

labels be registered as predicates, so enabling the auto_predicate setting ensures that node labels

are registered as predicates during any subsequent data load operations.

Cypher Syntax Conventions

The specification of Cypher language syntax provides some difference from that used with

SPARQL. The following list describes some specific conventions and styling used in specifying

Cypher command syntax and other elements:

l Node labels are case-sensitive, typically specified in CamelCase format, for example,

(:NetworkAddress).

l Relationship types are styled in all upper-case, using the underscore character between

words, for example: [:ACTED_IN].

l Property keys, variables, parameters, aliases, and functions are case-sensitive and typically

styled in CamelCase where the first letter of one of these elements begins with a lower-case

letter. Capitalization must match either what is in the database (properties), what is already

defined in the query (variables, parameters, aliases), or Cypher definitions (functions).

l Clauses are not case-sensitive, but are typically styled in all capital letters.

l Keywords, such as AND, DISTINCT, IN, CONTAINS, NOT, and others are not case-sensitive

but are typically styled in all capital letters.

Cypher Language Overview 967

l Single quotes are typically used to specify literal string values, except when single quotes are

part of the string.

l Escaping special characters and spaces in property and label names is done by enclosing

the identifer with special characters between single back quote characters (`), for example

`special character`.

l Italics are used in this document to identify placeholder values that you replace in a Cypher

statement.

The Cypher Property Graph Model

The Cypher graph query language operates on property graphs. A property graph is defined as a

directed, vertex-labeled, edge-labeled multigraph with self edges, where edges have their own

identity. In a property graph, the term node is used to denote a vertex, and relationship is used to

denote an edge.

The following elements may exist in a property graph:

l Entity

l Node

l Relationship

l Path

l Token

l Label

l Relationship type

l Property key

l Property

Entities

An entity has a unique, comparable identity which is assigned a set of properties, each of which are

uniquely identified.

Cypher Language Overview 968

Nodes

A node is the basic entity of the graph. In addition:

l A node may be assigned a set of unique labels.

l A node may have zero or more outgoing relationships.

l A node may have zero or more incoming relationships.

Relationships

A relationship is an entity that specifies a directed connection between exactly two nodes, the

source node and the target node. In addition:

l An outgoing relationship is a directed relationship from the point of view of its source node.

l An incoming relationship is a directed relationship from the point of view of its target node. A

relationship is assigned exactly one relationship type.

In Graph Lakehouse, no two relationships can have the same set of start and end nodes connected

by the same relationship type.That is, relationships are uniquely identified by the start node, end

node, and relationship type. Also, unique integer identifiers can be associated with nodes, however

no integer identifier can be designated for relationships.

Paths

A path represents a walk-through of a property graph consisting of a sequence of alternating nodes

and relationships. In addition:

l A path always starts and ends at a node.

l The shortest possible path contains a single node; also called an empty path.

l A path has a length, which is an integer greater than or equal to zero; the length is equal to

the number of relationships in the path.

Tokens

A token is a nonempty string of Unicode characters.

Cypher Language Overview 969

Labels

A label is a token that is assigned only to nodes.

Relationship types

A relationship type is an attribute which is only assigned to relationships.

Property keys

A property key is a token which uniquely identifies an entity’s property.

Properties

A property is a pair consisting of a property key and a property value. A property value is an instance

of one of Cypher’s concrete, scalar types, or a list of a concrete, scalar type.

Reserved Keywords

You can escape any Cypher reserved words by enclosing the reserved word between single back

quote characters (`), for example `reserved word`.

Cypher Language Overview 970

Cypher Patterns

Using patterns in Cypher, you can describe the shape of the data you’re looking for. Patterns

appear in multiple places in Cypher language syntax, such as in MATCH, CREATE, MERGE, and

WHERE clauses. This section describes Graph Lakehouse compatibility with Cypher pattern

features based on the Cypher Query Language Reference specification:

l Uniqueness (Not Supported)

l Patterns for Nodes (Supported)

l Patterns for Related Nodes (Supported)

l Patterns for Labels (Supported)

l Specifying Properties (Supported)

l Patterns for Relationships (Supported)

l Variable-length Pattern Matching (Partially Supported)

l Assigning to Path Variables (Not Supported)

Uniqueness (Not Supported)

While pattern matching, Cypher makes sure that it does not include matches where the same graph

relationship is found multiple times in a single pattern. Cypher specifies the relationship

isomorphism, that is, the relationship is not repeated in a single path matching the pattern.

Important
Graph Lakehouse's implementation of Cypher currently does not support relationship

uniqueness. Thus, it may allow the same relationship to appear multiple times within the

matched path. For example, take the following CREATE statement and the subsequent query:

CREATE (adam:User {name: 'Adam'}), (pernilla:User {name: 'Pernilla'}),

(david:User {name: 'David'}),

(adam)-[:FRIEND]->(pernilla), (pernilla)-[:FRIEND]->(david);

Cypher Patterns 971

MATCH (user:User {name: 'Adam'})-[r1:FRIEND]-()-[r2:FRIEND]-(friend_of_a_friend)

RETURN friend_of_a_friend.name AS fofName;

With uniqueness enforced, the expected result might be the following:

+---------+

| fofName |

+---------+

| "David" |

+---------+

1 row

In Graph Lakehouse, the same query could return the following result:

fofName

"Adam"

"David"

2 rows

Patterns for Nodes (Supported)

A node in a pattern is simply described using a pair of parentheses, and they are typically given a

name. For example:

(a)

In this example, the pattern describes a single node, and the node is named using the variable a.

Patterns for Related Nodes (Supported)

Cypher patterns describe relationships by specifying an arrow between two nodes. For

example:

(a)-[]->(b)

This pattern describes a very simple data shape, that is, two nodes and a single relationship from

one to the other. In this example, the two nodes are named a and b and the relationship is
"directed", as it goes from a to b.

Cypher Patterns 972

Patterns for Labels (Supported)

In addition to describing the shape of a node in the pattern, you can also describe its attributes. The

simplest attribute that can be described in the pattern is a label that the node must have.

For example:

(a:User)-[]->(b)

You can also specify a node that has multiple labels. For example:

(a:User:Admin)-[]->(b)

Specifying Properties (Supported)

Nodes and relationships are the fundamental structures in a graph. Cypher allows the use of

properties on both of these to let users express far richer models. Properties can be expressed in

patterns using a map construct, that is, curly brackets ({ }) surrounding a number of key-expression

pairs, separated by commas. For example, a node with two properties would look like:

(a {name: 'Andres', sport: 'Brazilian Ju-Jitsu'})

When properties appear in patterns, they add an additional constraint to the shape of the data. In

the case of a CREATE clause, the properties will be set in the newly-created nodes and

relationships.

Patterns for Relationships (Supported)

As described earlier, the simplest way to describe a relationship is by specifying an arrow between

two nodes. That way, you can describe that the relationship should exist and also specify its

direction. If you do not care about the direction of the relationship, you can omit the arrow head. For

example:

(a)-[]-(b)

As with nodes, relationships may also be given names. In that case, you can insert a pair of square

brackets to break up the arrow and specify the variable label within the square brackets. For

example:

Cypher Patterns 973

(a)-[r]->(b)

Similar to labels on nodes, relationships can also have types. To describe a relationship with a

specific type, you can specify the type following the variable name. For example:

(a)-[r:REL_TYPE]->(b)

Unlike labels, relationships can only have one type. However, if a relationship could be one of a set

of different types, you can list them all in the pattern, separated by the pipe symbol (|), that is:

(a)-[r:TYPE1|TYPE2]->(b)

Note
Keep in mind that these forms of patterns can only be used to describe existing data (that is,

when using a pattern with the MATCH clause, or as an expression).

Also note that, as with nodes, the name of the relationship can always be omitted. For example:

(a)-[:REL_TYPE]->(b)

Variable-length Pattern Matching (Partially Supported)

Rather than describing a long path using a sequence of many nodes and relationships in a pattern,

the openCypher standard specifies that many relationships (and intermediate nodes) can be

described by specifying a length in the relationship description of a pattern. For example:

(a)-[*2]->(b)

A range of lengths can also be specified. Such relationship patterns are called "variable-length

relationships". For example:

(a)-[*3..5]->(b)

The openCypher specification allows several variations in its syntax to specify the length of a

relationship path. For example, you can omit either the minimum or maximum relationship path

length, or even omit both.

Cypher Patterns 974

Important
Currently, Graph Lakehouse supports only a few variations of Cypher variable length pattern

matching. Graph Lakehouse restrictions are the following:

1. Variable length patterns must include the relationship type. For example:

(a)-[:KNOWS*]->(b)

2. Only Zero Or More and One Or More path patterns are supported. For example:

(a)-[:KNOWS*]->(b), (a)-[:KNOWS*1]->(b)

3. Edge variable projection is not supported, since the list type is not yet supported. For

example:

(a)-[r:KNOWS*]->(b)

Assigning to Path Variables (Not Supported)

A series of connected nodes and relationships is called a "path". The Cypher specification allows

paths to be named using an identifier. For example:

p = (a)-[*3..5]->(b)

Important
The current Graph Lakehouse release does not support naming paths.

Cypher Patterns 975

Cypher Types, Lists, and Maps

This section describes Graph Lakehouse compatibility with the Cypher Language specification for

Cypher types, lists, and maps.

l Types (Partially Supported)

l Type Coercions (Partially Supported)

l Lists (Supported)

l Maps (Supported)

l Working with Null (Supported)

Types (Partially Supported)

The Cypher standard specifies data type support in three different categories:

l Property types

l Structural types

l Composite types

Property Types

Property types include the following:

l NUMBER – Abstract type, which has INTEGER or FLOAT as subtypes.

l STRING – Unicode string type.

l BOOLEAN – true and false values. (Cypher uses ternary logic in the WHERE clause; in

addition to true and false values, a third state is a null ternary value indicating an

indeterminate state.)

Each property type can be returned from Cypher queries, used as parameters, stored as properties,

or constructed with Cypher literals.

Structural Types

Structural types include the following:

Cypher Types, Lists, and Maps 976

l NODE – comprised of ID, label(s), or a map (of properties).

l RELATIONSHIP – comprised of an ID, type, map (of properties), or the ID of the start and

end nodes.

l PATH – An alternating sequence of nodes and relationships.

Important
The PATH type is not supported in the current Graph Lakehouse release.

Each structural type can be returned from Cypher queries. Structural types cannot be used as

parameters, stored as properties, or constructed with Cypher literals.

Note
Nodes, relationships, and paths are returned as a result of pattern matching. Labels are not

values but are a form of pattern syntax.

Composite Types

Composite types include:

l LIST OF T — is a heterogeneous, ordered collections of values, each of which has any

property, structural or composite type T.

l MAP is a heterogeneous, unordered collections of key-value pairs, where the key is a string

and the value has any property, structural, or composite type.

Composite types can be returned from Cypher queries, used as parameters. or constructed with

Cypher literals.

Note
Composite values can also contain null. Composite types cannot be stored as properties.

Type Coercions (Partially Supported)

There are two type coercions described in the Cypher language specification:

Cypher Types, Lists, and Maps 977

l LIST OF NUMBER to LIST OF FLOAT (Not Supported)

l INTEGER to FLOAT

Important
Only the INTEGER to FLOAT coercion is supported in the current Graph Lakehouse release.

Lists (Supported)

The Cypher specification describes support for creating a literal list. You can create a list by using

brackets and separating all elements in the list with commas. For example:

RETURN [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] AS list

This returns the following result:

[0,1,2,3,4,5,6,7,8,9]

To access elements in the list, you can use the square brackets again. For example, with a list of

numbers you could use the range function, which will extract all numbers between and including a
starting and ending number:

RETURN range(0, 10)[3]

With the range function, you can also specify a negative number in square brackets, to start from

the end of a list, rather than from the beginning. For example:

RETURN range(0, 10)[-3]

Finally, you can use ranges within the square brackets to return a range of values from the list:

RETURN range(0, 10)[0..3]

List and Pattern Comprehension (Partially Supported)

The Cypher language specification also describes two syntactic constructs for lists, List
Comprehension and Pattern Comprehension (not yet supported).

Cypher Types, Lists, and Maps 978

l List comprehension is a syntactic construct available in Cypher for creating a list based on

existing lists. It follows the form of the mathematical set-builder notation (set comprehension)

instead of the use of map and filter functions.

l Pattern comprehension (not yet supported) is a syntactic construct available in Cypher for

creating a list based on matching a pattern. A pattern comprehension will match the specified

pattern just like a normal MATCH clause, with predicates (just like in a normal WHERE

clause), but it will yield a custom projection.

List Comprehension (Supported)

List comprehension provides a query construct to create another list based on other existing lists,

for example:

RETURN [x IN range(0,10) WHERE x % 2 = 0 | x^3] AS result

This returns the following result:

[0.0,8.0,64.0,216.0,512.0,1000.0]

In the previous query, either the WHERE part or the expression can be omitted, if you only want to

filter or map results. For example:

RETURN [x IN range(0,10) WHERE x % 2 = 0] AS result

This query, omitting the expression, returns the following result:

[0,2,4,6,8,10]

The following query omits the WHERE clause:

RETURN [x IN range(0,10)| x^3] AS result

This query returns the following result:

[0.0,1.0,8.0,27.0,64.0,125.0,216.0,343.0,512.0,729.0,1000.0]

Maps (Supported)

The Cypher specification describes how to construct maps using Cypher and construct map

projections from nodes, relationships, and other map values.

Cypher Types, Lists, and Maps 979

Literal Maps

The following query example shows how you can create a map based on the Neo4j Movies graph

data:

RETURN {key: 'Value', listKey: [{inner: 'Map1'}, {inner: 'Map2'}]}

The result from this query is the following:

{key: 'Value', listKey: [{inner: 'Map1'}, {inner: 'Map2'}]}

{listKey -> [{inner -> "Map1"},{inner -> "Map2"}], key -> "Value"}

Map Projections (Partially Supported)

Cypher supports a concept called map projection that you can easily construct from nodes,

relationships and other map values. A map projection begins with the variable bound to the graph

entity to be projected from, and contains a body of comma-separated map elements, enclosed by {

and }.

map_variable {map_element, [, …n]}

A map element projects one or more key-value pairs to the map projection. There are four different

types of map projection elements:

l Property selector— Projects the property name as the key, and the value from the map_

variable as the value for the projection.

l Literal entry— This is a key-value pair, with the value being arbitrary expression key:

<expression>.

l Variable selector—Not yet supported in current Graph Lakehouse release. Projects a

variable, with the variable name as the key, and the value the variable is pointing to as the

value of the projection.

l All-properties selector—Not yet supported in current Graph Lakehouse release. Projects

all key-value pairs from the map_variable value.

Cypher Types, Lists, and Maps 980

Note
If the map_variable points to a null value, the whole map projection will evaluate to null.

The following example creates a map projection with a literal entry, which in turn also uses map

projection inside the aggregating collect() .

Query MATCH (actor:Person {name: 'Charlie Sheen'})-[:ACTED_IN]->(movie:Movie) RETURN

actor { .name, .realName, movies: collect(movie { .title, .year })}

This query locates 'Charlie Sheen' and return data about him and the movies he has acted in:

actor

{name -> "Charlie Sheen", movies -> [{title -> "Apocalypse Now", year -> 1979},

{title -> "Red Dawn", year -> 1984},{title -> "Wall Street", year -> 1987}],

realName -> "Carlos Irwin Est évez

Note
Two variations of map projections are not yet supported:

l Variable selector

l All properties selector

For example:

MATCH (actor:Person {name: 'Charlie Sheen'})[:ACTED_IN]>(movie:Movie)

RETURN actor { .name, .realName, movies: collect(movie { .title, .year })}

MATCH (actor:Person)[:ACTED_IN]>(movie:Movie)WITH actor, count(movie)

AS nrOfMoviesRETURN actor { .name, nrOfMovies }

Working with Null (Supported)

In Cypher, null is used to represent missing or undefined values. Conceptually, null represents a
missing or unknown value and it is treated somewhat differently from other values. For example,

obtaining a property value from a node that does not have that property value defined produces a

null. Most expressions that take null as input will also produce a null result. This includes boolean

expressions that are used as predicates in the WHERE clause.

Cypher Types, Lists, and Maps 981

Logical Operations with Null

The logical operators (AND, OR, XOR, NOT) treat null as the unknown value of three-valued logic

(true, false, and unknown). In this case, null values are interpreted as being false.

The IN Operator and Null

If Cypher determines that a value or element exists in a list, the result returned will be true. Any list

that contains a null and doesn’t have an element that matches will return null. Otherwise, the result

returned will be false.

Expressions That Return Null

The following expressions will return null values:

l Accessing a property that does not exist on a node or relationship, that is,
n.missingProperty

l Comparisons where either side of the expression is null, for example: 1 < null

l Arithmetic expressions containing null, for example: 1 + null

l Function calls where any arguments are null, for example: sin(null)

Cypher Types, Lists, and Maps 982

Comparability, Equality, Orderability, and Equivalence

This section describes Graph Lakehouse compatibility with the Cypher Language specification for

equality, comparability, and orderability operations.

l Comparability and Equality (Partially Supported)

l Orderability and Equivalence (Partially Supported)

l Aggregation (Supported)

Cypher provides operations around four distinct concepts related to equality and ordering:

l Comparability: Comparability is specified by the inequality operators (>, <, >=, <=), and
determines how to compare two values.

l Equality : Equality is specified by the equality operators (=, <>), and the list membership
operator (IN) to determine if two values are the same. Equality is also used implicitly by literal

maps in node and relationship patterns, since such literal maps provide a shorthand notation

for equality predicates.

l Orderability: Orderability is specified by the ORDER BY clause and determines how to order

values.

l Equivalence: Equivalence is specified by the DISTINCT modifier and by grouping in
projection clauses (WITH, RETURN) to determine if two values are the same.

Besides providing semantics for equality within the primitive types (boolean, string, integer, and

float) and maps, Cypher also provides semantics for comparability and orderability for integer, float,

and string values within each of the types.

Comparability and Equality (Partially Supported)

Comparability and equality are consistently aligned, that is,

expr1 = expr2 if and only if expr1 >= expr2 && expr1 <= expr2.

If comparison or equality tests involve specific values that evaluate to null, the values are said to be

incomparable.

Comparability, Equality, Orderability, and Equivalence 983

Comparability

Important
List, map, and path type comparisons are not supported in the current Graph Lakehouse

release.

Comparability is defined between any pair of values, as specified below.

l General rules

l Values are only comparable within their most specific type (except for numbers).

l Equal values are grouped together.

l Numbers

l Integers are compared numerically in ascending order.

l Floats (excluding NaN and infinity values) are compared numerically in ascending order.

l Numbers of different types (excluding NaN and infinity values) are compared to each

other as if both numbers would have been coerced to larger precision decimal values

before comparing them numerically in ascending order.

l Positive infinity is of type FLOAT, equal to itself, and greater than any other number

(excluding NaN values).

l Negative infinity is of type FLOAT, equal to itself, and less than any other number

(excluding NaN values).

l NaN values are incomparable.

l Numbers are not comparable with any value that is not also a number.

l Booleans

l Booleans are compared such that false is less than true.

l Booleans are not comparable to any value that is not also a boolean.

Comparability, Equality, Orderability, and Equivalence 984

l Strings

l Strings are compared in dictionary order, that is, characters are compared pair-wise, in

ascending order, from the start of the string to the end. Characters missing in a shorter

string are considered to be less than any other character. For example, 'a' < 'aa'.

l Strings are not comparable to any value that is not also a string.

l Implementation-specific types

l Implementations may choose to define suitable comparability rules for values of

additional, non-canonical types.

l Values of an additional, non-canonical type are expected to be incomparable to values

of a canonical type.

l Null is not comparable with any other value (including other null values).

Equality

To align equality with comparability, the equality of lists and maps that contain null values is treated

in the same way as if they would have been compared outside of those lists and maps, that is, as

individual, simple values.

Important
List and map comparisons are not supported in the current Graph Lakehouse release.

Orderability and Equivalence (Partially Supported)

Based on the Cypher language specification, orderability and equivalence are aligned such that

expr1 is equivalent to expr2 if and only if they have the same position under orderability. As a
result, expr1 and expr2 are sorted before or after any other non-equivalent value in the same way.

Important
List and map comparisons are not supported in the current Graph Lakehouse release.

Comparability, Equality, Orderability, and Equivalence 985

Orderability

Orderability is defined between any pair of values such that the result is always true or false. To

accomplish this, Cypher defines a pre-determined order of types and ensures that each value falls

under exactly one disjoint type in this order.

Important
List and map comparisons are not supported in the current Graph Lakehouse release.

The Cypher language specification prescribes using the following ascending global sort order of

disjoint types:

l MAP types

l Regular map

l NODE

l RELATIONSHIP

l LIST OF

l PATH

l STRING

l BOOLEAN

l NUMBER

Note
NaN values are treated as the largest numbers in orderability, placed after any positive

infinity values.

l VOID (the type of null)

Using this global sort order, all nodes come before all strings.

Comparability, Equality, Orderability, and Equivalence 986

The corresponding descending global sort order is the same order, in reverse. That is, the order

runs from VOID to MAP. Between values of the same type in the global sort order, orderability

defers to comparability, except that equality is overridden by equivalence.

Important
The current release of Graph Lakehouse uses a different type order:

l Void

l Node/Relationship

l Number

l Boolean

l String

Equivalence (Partially Supported)

Equivalence can be defined as being identical to equality except for the following:

l Any two null values are equivalent (both directly or inside nested structures) and, similarly,

any two NaN values are also equivalent (both directly or inside nested structures). However,

null and NaN values are not equivalent (both directly or inside nested structures).

l Equivalence of lists is identical to equality of lists, but it uses equivalence for comparing the

contained list elements.

l Equivalence of regular maps is identical to equality of regular maps, but it uses equivalence

for comparing the contained map entries.

l Equivalence is reflexive for all values.

Important
List and map comparisons are not supported in the current Graph Lakehouse release.

Comparability, Equality, Orderability, and Equivalence 987

Aggregation (Supported)

An aggregation (aggr(expr)) processes all matching rows for each aggregation key found in an
incoming record (where keys are compared using equivalence). For a fixed aggregation key and

each matching record, expr is evaluated to a value. This yields a list of candidate values. Generally,
the order of candidate values is unspecified. However, if the aggregation happens in a projection

with an associated ORDER BY subclause, the list of candidate values is ordered in the same way as

the underlying records and as specified by the associated ORDER BY subclause.

In a regular aggregation (that is, of the form aggr(expr)), the list of aggregated values is the list of
candidate values with all null values removed from it. In a distinct aggregation (that is, aggr
(DISTINCT expr)), the list of aggregated values is the list of candidate values with all null values
removed from it. Furthermore, in a distinct aggregation, only one of all equivalent candidate values

is included in the list of aggregated values, that is, duplicates under equivalence are removed.

However, if the distinct aggregation happens in a projection with an associated ORDER BY

subclause, only one element from each set of equivalent candidate values is included in the list of

aggregated values.

Finally, the remaining aggregated values are processed by the actual aggregation function. If the list

of aggregated values is empty, the aggregation function returns a default value (null unless

otherwise specified; Graph Lakehouse currently returns null). Aggregating values of different types,

like summing a number and a string, may lead to runtime errors.

Important
Currently, the SUM of a number and a string will return null in Graph Lakehouse.

The semantics of a few actual aggregation functions depends on the determination of sameness

and sorting:

l count(expr) returns the number of aggregated values; it returns zero if the list of aggregated
values is empty.

Comparability, Equality, Orderability, and Equivalence 988

l min/max(expr) returns the smallest and largest of the aggregated values under orderability.
Note that null values will never be returned as a maximum, as they are never included in the

list of aggregated values.

l sum(expr) returns the sum of aggregated values; it returns zero if the list of aggregated

values is empty.

l avg(expr) returns the arithmetic mean of aggregated values; it returns zero if the list of
aggregated values is empty.

l collect(expr) returns the list of aggregated values.

l stdev(expr) returns the standard deviation of the aggregated values (assuming they
represent a random sample); it returns zero if the list of aggregated values is empty.

l stdevp(expr) returns the standard deviation of the aggregated values (assuming they form a

complete population); it returns zero if the list of aggregated values is empty.

l percentile_disc(expr) computes the inverse distribution function (assuming a discrete
distribution model); it returns zero if the list of aggregated values is empty.

l percentile_cont(expr) computes the inverse distribution function (assuming a continous
distribution model); it returns zero if the list of aggregated values is empty.

Comparability, Equality, Orderability, and Equivalence 989

Cypher Expressions, Variables, and Parameters

This section describes Graph Lakehouse compatibility with Cypher expression, variables, and

parameter features based on the Cypher Query Language Reference:

l Expressions (Supported)

l CASE expressions (Supported)

l Variables (Supported)

l Parameters (Not Supported)

Expressions (Supported)

Valid expressions in Cipher may include or be specified as any of the following:

l A decimal (integer or double) literal. For example: 13, -40000, 3.14, 6.022E23.

l A hexadecimal integer literal (starting with 0x). For example: 0x13zf, 0xFC3A9, -0x66eff.

l An octal integer literal (starting with zero). For example: 01372, 02127, -05671.

l A string literal. For example: 'Hello', "World".

l A boolean literal. For example: true, false, TRUE, FALSE.

l A variable. For example: n, x, rel, myFancyVariable, .

l A property. For example: n.prop, x.prop, rel.thisProperty, myFancyVariable.

l A dynamic property. For example: n["prop"], rel[n.city + n.zip], map[coll[0]].

l A parameter. For example: $param, $0

l A list of expressions. For example: ['a', 'b'], [1, 2, 3], ['a', 2, n.property, $param], [].

l A function call. For example: length(p), nodes(p).

l An aggregate function. For example: avg(x.prop), count(*).

l A path-pattern. For example: (a)-[]->()<-[]-(b).

l An operator application. For example: 1 + 2 and 3 < 4.

Cypher Expressions, Variables, and Parameters 990

l A predicate expression that returns true or false. For example: a.prop = 'Hello', length(p) >
36 10, exists(a.name).

l A case-sensitive string matching expression. For example: a.surname STARTS WITH
'Sven', a.surname ENDS WITH 'son' or a.surname CONTAINS 'son'

l A CASE expression.

Escape Characters

String literals can contain the following escape sequences:

Character Description

\t Tab

\b Backspace

\n Newline

\r Carriage return

\f Form feed

\' Single quote

\" Double quote

\\ Backslash

\uxxxx Unicode UTF-16 code point (4 hex digits must follow the \u)

\Uxxxxxxxx Unicode UTF-32 code point (8 hex digits must follow the \U)

Cypher Expressions, Variables, and Parameters 991

CASE expressions (Supported)

Generic conditional expressions may be expressed using the well-known CASE construct. For

example:

CASE test

WHEN value THEN result

[WHEN ...]

[ELSE default]

END

Two variants of CASE exist within Cypher: the simple form, which allows an expression to be

compared against multiple values, and the generic form, which allows multiple conditional

statements to be expressed.

Variables (Supported)

When you reference parts of a pattern or a query, you do so by naming them. The names you give

the different parts are called variables. For example:

MATCH (n)-[]->(b) RETURN b

In this example, the variables are n and b.

Variable names are case-sensitive, and can contain underscores and alphanumeric characters (a-z,

0-9), but must always start with a letter. To include other characters are needed, you can escape

them with the single back quote (`) character. The same rule applies to property names.

Parameters (Not Supported)

The Cypher language specification supports querying with parameters. However, the current Graph

Lakehouse release does not support them.

Cypher Expressions, Variables, and Parameters 992

Cypher Operators

This section describes Graph Lakehouse compatibility with Cypher operators based on the Cypher

Query Language Reference specification:

l General Operators (Supported)

l Mathematical Operators (Supported)

l Comparison Operators (Supported)

l Boolean Operators (Supported)

l String Operators (Partially Supported)

l List Operators (Partially Supported)

l Equality and Comparison of Values (Partially Supported)

l Ordering and Comparison of Values (Supported)

l Chaining Comparison Operations (Supported)

General Operators (Supported)

General operators include:

l DISTINCT – removes duplicates values.

l Dot operator – access the property of a node, relationship or literal map.

l Subscript operator ([]) – provides dynamic property access.

Mathematical Operators (Supported)

The mathematical operators supported in Cypher are the following:

l addition (+)

l subtraction or unary minus (-)

l multiplication (*)

l division (/)

Cypher Operators 993

l modulo division (%)

l exponentiation (^)

Comparison Operators (Supported)

Cypher comparison operators include the following:

l equality (=)

l inequality (<>)

l less than (<)

l greater than (>)

l less than or equal to (<=)

l greater than or equal to (>=)

l IS NULL

l IS NOT NULL

String-specific comparison operators in Cypher include the following:

l STARTS WITH – provides case-sensitive prefix searching on strings.

l ENDS WITH – provides case-sensitive suffix searching on strings.

l CONTAINS – provides case-sensitive inclusion searching in strings.

Boolean Operators (Supported)

Cypher Boolean operators, also referred to as logical operators, include the following:

l conjunction – AND

l disjunction – OR

l exclusive disjunction – XOR

l negation – NOT

Cypher Operators 994

String Operators (Partially Supported)

The sole string operator that Cypher supports is the plus sign (+) concatenation operator.

Important
The plus sign (+) string concatenation operator is not supported in the current Graph

Lakehouse release. (The CONCAT() function is supported to perform the same function.)

List Operators (Partially Supported)

Cypher list operators include the concatenation plus sign (+) operator and the IN operator that

checks if an element exists in a list.

Important
List concatenation with the plus sign (+) is not supported in the current Graph Lakehouse

release.

Equality and Comparison of Values (Partially Supported)

Cypher supports comparing values for equality using the equals (=) and less-than-greater-than,

not equals (<>) operators. Values of the same type are only equal if they have the same identical

value, for example, 3 = 3.

Important
List and map comparisons are not supported in the current Graph Lakehouse release.

Values of different types are considered equal based on the following rules:

l Paths are treated as lists of alternating nodes and relationships; they are considered equal to

all lists that contain that very same sequence of nodes and relationships.

l Testing any value against null with either the equals (=) or the less-than-great-than, not

equal (<>) operators always returns null. This includes null = null and null <> null. The only

Cypher Operators 995

way to reliably test if a value v is null is by using the special v IS NULL or v IS NOT NULL
equality operators.

l Maps are only equal if they map exactly the same keys to equal values; lists are only equal if

they contain the same sequence of equal values, for example: [3, 4] = [1+2, 8/2].

All other combinations of value types cannot be compared with each other. Nodes, relationships,

and literal maps also cannot be compared with each other. Attempting to specify comparisons of

values that cannot be compared will return an error.

Ordering and Comparison of Values (Supported)

The following comparison operators are used to compare values for ordering:

l <=

l < (for ascending)

l >=, and > (for descending)

The following details describe how the comparisons are performed:

l Numerical values are compared for ordering using numerical order. For example, 3 < 4 is
true.

l String values are compared for ordering using lexicographic order. For example, "x" < "xy".

l Boolean values are compared for ordering, that is false < true.

l Comparing for ordering when one argument is null returns null. For example, null < 3 is null.

Specifying comparisons for ordering of other types of values will return an error.

Chaining Comparison Operations (Supported)

Comparisons can be chained together arbitrarily. For example, x < y <= z is equivalent to x < y
AND y <= z. As a general practice, if a, b, c, ..., y, z are expressions and op1, op2, ..., opN are

comparison operators, then a op1 b op2 c ... y opN z is equivalent to a op1 b and b op2 c and ...
y opN z.

Cypher Operators 996

Cypher Clauses

This section describes Graph Lakehouse compatibility with Cypher commands based on the Cypher

Query Language Reference:

l MATCH (Supported)

l OPTIONAL MATCH (Supported)

l MANDATORY MATCH (Not Supported)

l RETURN (Supported)

l WITH (Supported)

l UNWIND (Partially Supported)

l WHERE (Supported)

l ORDER BY (Supported)

l SKIP (Supported)

l LIMIT (Supported)

l CREATE (Partially Supported)

l DELETE (Supported)

l SET (Partially Supported)

l REMOVE (Supported)

l MERGE (Not supported)

l CALL […YIELD] (Not Supported)

l UNION and UNION ALL (Supported)

l State Visibility and Behavior between Clauses (Partially Supported)

Cypher Clauses 997

MATCH (Supported)

The Cypher MATCH clause allows you to specify the patterns that Cypher will search for in data.

The MATCH clause is often used with a WHERE clause that adds restrictions or predicates to the

MATCH pattern. In that case, the predicates are part of the pattern description, and should not be

considered just a filter applied only after the matching is done.

The MATCH clause can be included at the beginning of a query or later, for example, as part of a

WITH clause. If it is the first clause in a statement, no data will have been bound yet to the result,

and Cypher will search to find the results matching the pattern in the MATCH clause and any

associated predicates specified in any WHERE clause. This could involve a scan of the database, a

search for nodes of a certain label, or a search of an index to find starting points for the pattern

matching. Nodes and relationships found by this search are available as bound pattern elements,

and can be used for pattern matching of sub-graphs. They can also be used in any further MATCH

clauses, where Cypher will use the known elements, and find further unknown elements from there.

Predicates in a WHERE clause can be evaluated before pattern matching, during pattern matching,

or after finding matches.

Finding All Nodes (Supported)

By specifying a MATCH pattern with just a single node and no labels, all nodes in the graph will be

returned. For example:

MATCH (n)

RETURN n

This example returns all nodes in the database.

Finding All Nodes with a Label (Supported)

To return all nodes with a label, you can specify a single node pattern where the node has a label on

it. For example:

MATCH (movie:Movie)

RETURN movie.title

This example returns all the movies in the database.

Cypher Clauses 998

Finding Related Nodes (Supported)

You can use the notation (-[]-) to find related nodes, without regard to the type or direction of their

relationship. For example:

MATCH (director {name: 'Oliver Stone'})-[]-(movie)

RETURN movie.title

This example returns all the movies directed by 'Oliver Stone'.

Finding Matches with Labels (Supported)

To specify a pattern to return only nodes with labels, you can add the label syntax to your node

match pattern. For example:

MATCH (:Person {name: 'Oliver Stone'})-[]-(movie:Movie)

RETURN movie.title

This example returns only those nodes connected with the Person 'Oliver' that are labeled Movie.

Finding Matches Based on the Direction of Relationships (Supported)

When you want to specify the direction of a relationship in a pattern match, you can use the

directional notation, (->) or (<-). For example:

MATCH (:Person {name: 'Oliver Stone'})-[]->(movie)

RETURN movie.title

This example returns any nodes connected with the Person 'Oliver' by an outgoing relationship.

Directed Relationships and Variables (Supported)

Cypher allows you to use variables in MATCH queries, either for filtering on properties of a

relationship, or to return the relationship. For example:

MATCH (:Person {name: 'Oliver Stone'})-[r]->(movie)

RETURN type(r)

This example returns the type of each outgoing relationship from 'Oliver'.

Cypher Clauses 999

Specifying Matches Based on Relationship Type (Supported)

You can specify matches based on the relationship type by entering a colon followed by the

relationship type. For example:

MATCH (wallstreet:Movie {title: 'Wall Street'})<-[:ACTED_IN]-(actor)

RETURN actor.name

This example returns all actors that ACTED_IN 'Wall Street'.

Specifying Matches Based on Multiple Relationship Types (Supported)

To specify a match based on multiple relationship types, you can combine the different relationship

types with the pipe (|) symbol. For example:

MATCH (wallstreet {title: 'Wall Street'})<-[:ACTED_IN|:DIRECTED]-(person)

RETURN person.name

This example returns nodes with an ACTED_IN or DIRECTED relationship to 'Wall Street'.

Specifying Matches on the Relationship Types Using Variables (Supported)

Cypher also allows you to used a variable in pattern matches based on the relationship type and

then return the relationship in the variable. For example:

MATCH (wallstreet {title: 'Wall Street'})<-[r:ACTED_IN]-(actor)

RETURN r.role

This example returns the ACTED_IN roles for the movie 'Wall Street'.

Specifying Matches for Relationship Types That Contain Non-letter Characters (Supported)

If your database contains relationship types that include non-letter characters or spaces, you can

use the single back quote (`) character to escape the type. For example, to demonstrate this, you

could add an additional relationship between 'Charlie Sheen' and 'Rob Reiner':

MATCH (charlie:Person {name: 'Charlie Sheen'}),

(rob:Person {name: 'Rob Reiner'})

CREATE (rob)-[:`TYPE WITH SPACE`]->(charlie)

This example returns a relationship type with a space in it:

Cypher Clauses 1000

type(r)

"TYPE WITH SPACE"

1 row

Finding Matches with Multiple Relationships (Supported)

To find matches for multiple relationships, you can specify the relationship match pattern using the

form:

(- [] -)

You could then string them together in a single MATCH statement. For example:

MATCH (charlie {name: 'Charlie Sheen'})-[:ACTED_IN]->(movie)<-[:DIRECTED]-(director)

RETURN movie.title, director.name

This example returns the movie that 'Charlie Sheen' acted in and also returns its director's name.

Variable-length relationships (Partially Supported)

Based on the Cypher Language specification, nodes that are a variable number of relationship ->
node hops away can be found using the following syntax:

-[:TYPE*minHops..maxHops]→.

In this case, minHops and maxHops are optional and default to 1 and infinity. When no bounds are

given, the dots may be omitted. The dots may also be omitted when setting only one bound and this

implies a fixed-length pattern.

Important
Currently, Graph Lakehouse supports only a few variations of variable length pattern

matching:

l Variable length patterns must include the relationship type. For example:

(a)-[:KNOWS*]->(b)

l Only ZeroOrMore and OneOrMore path patterns are supported. For example:

(a)-[:KNOWS*]->(b), (a)-[:KNOWS*1]->(b)

Cypher Clauses 1001

Edge variable projection is not supported, since the list type is not currently supported in

Graph Lakehouse.

Using Relationship Variable in Variable-length Relationships (Supported)

When the connection between two nodes is of variable length, the list of relationships comprising

the connection can be returned using the following syntax:

MATCH p = (actor {name: 'Charlie Sheen'})-[:ACTED_IN*2]-(co_actor)

RETURN relationships(p)

This example returns a list of relationships.

Match with Properties on a Variable-length Path (Supported)

A variable-length relationship with properties defined on in it means that all relationships in the

path must have the property set to the given value.

Zero-length Paths (Supported)

Using variable-length paths that have the lower bound set to zero means that two variables can

point to

the same node. If the path length between two nodes is zero, they are, by definition, the same node.

Note that when matching zero-length paths, the result may contain a match even when matching on

a relationship type that is not in use. For example:

MATCH (wallstreet:Movie {title: 'Wall Street'})-[*0..1]-(x)

RETURN x

This example returns the movie itself as well as actors and directors one relationship away.

Named Paths (Supported)

If you want to return or specify a filter on a path in your pattern graph, you can introduce a named

path. For example:

MATCH p = (michael {name: 'Michael Douglas'})-[]->()

RETURN p

Cypher Clauses 1002

This example returns the two paths starting from 'Michael Douglas'.

Matching on a Bound Relationship (Supported)

When a pattern contains a bound relationship, and that relationship pattern does not specify

direction, Cypher will attempt to match the relationship in both directions. For example:

MATCH (a)-[r]-(b)

WHERE id(r)= 0

RETURN a,b

This example returns the two connected nodes, the start node, and the end node.

Finding the Single Shortest Path (Not Supported)

You can use the shortestPath() function to find a single shortest path between two nodes. For
example:

MATCH (martin:Person {name: 'Martin Sheen'}), (oliver:Person {name: 'Oliver Stone'}),

p = shortestPath((martin)-[*..15]-(oliver))

RETURN p

Important
Finding the single shortest path operation is not supported in the current Graph Lakehouse

release.

Finding All Shortest Paths (Not Supported)

You can use the allShortestPaths() function to find all the shortest paths between two nodes. For
example:

MATCH (martin:Person {name: 'Martin Sheen'}), (michael:Person {name: 'Michael

Douglas'}), p = allShortestPaths((martin)-[*]-(michael))

RETURN p

Important
Operations to find all shortest paths are not supported in the current Graph Lakehouse

release.

Cypher Clauses 1003

Finding Nodes by ID (Supported)

You can use the id() function in a predicate to search for nodes. For example

MATCH (n)

WHERE id(n)= 0

RETURN n

This example returns the corresponding node.

Finding a Relationship by ID (Not Supported)

Based on the Cypher language specification, you can use the id() function in a predicate to search
for relationships. For example:

MATCH ()-[r]->()

WHERE id(r)= 0

RETURN r

Important
Finding a relationship by ID is not supported in the current Graph Lakehouse release.

Finding Multiple Nodes by ID (Supported)

You can use the id() function with the IN clause in a predicate to find multiple nodes by ID. For

example:

MATCH (n)

WHERE id(n) IN [0, 3, 5]

RETURN n

This example returns the nodes listed in the IN expression.

OPTIONAL MATCH (Supported)

This clause is used to specify the patterns to search for, while using nulls for missing parts of the

pattern.

Cypher Clauses 1004

Optional Relationships (Supported)

If a relationship is optional, you can use the OPTIONAL MATCH clause to find relationships, similar

to how an outer join works in SQL. Cypher returns the relationship if it is found; otherwise a null is

returned.

MATCH (a:Movie {title: 'Wall Street'})

OPTIONAL MATCH (a)-[]->(x)

RETURN x

This example returns null, since the node has no outgoing relationships.

Returning Null for Null Properties on Optional Elements (Supported)

Returning a property from an optional element that is null will also return null. For example:

MATCH (a:Movie {title: 'Wall Street'})

OPTIONAL MATCH (a)-[]->(x)

RETURN x, x.name

This example will return the x element (null in this query), and null as its name.

Optional Typed and Named Relationships (Supported)

Just as with a normal relationship, you can decide which variable a relationship goes into, and what

relationship type you want to return. For example:

MATCH (a:Movie {title: 'Wall Street'})

OPTIONAL MATCH (a)-[r:ACTS_IN]->()

RETURN a.title, r

This example returns the title of the node, that is, 'Wall Street'. If the node has no outgoing ACTS_IN

relationships, null is returned for the relationship denoted by r.

MANDATORY MATCH (Not Supported)

The Cypher MANDATORY MATCH clause lets you specify the patterns to search for.

Important Not supported in the current Graph Lakehouse release.

Cypher Clauses 1005

RETURN (Supported)

The RETURN clause specifies what to include in a query result set. Based on the Cypher language

specification, any expression, literals, predicates, properties, and functions, can be used as a return

item. For example:

MATCH (a {name: 'A'})

RETURN a.age > 30, "I'm a literal", (a)-[]->()

Important
In the current Graph Lakehouse release, the pattern expression “RETURN (a)-[]->()” is not
supported.

WITH (Supported)

The WITH clause allows queries to be chained together, piping the results from one query to be

used as the starting point or search criteria for the next query.

UNWIND (Partially Supported)

The UNWIND clause expands a list into a sequence of records.

Important
In the current Graph Lakehouse release, UNWIND is currently only supported for operation on

a list of literals. For example:

UNWIND [1, 2, 3] AS xRETURN x

WHERE (Supported)

The WHERE clause adds constraints to the patterns in a MATCH or OPTIONAL MATCH clause or

used to filter the results of a WITH clause.

Filter on Dynamically-computed Node Property (Supported)

Based on the Cypher language specification, you can use square bracket syntax to filter on a

property using a dynamically-computed name. For example:

Cypher Clauses 1006

WITH 'AGE' AS propname

MATCH (n)

WHERE n[toLower(propname)]< 30

RETURN n.name, n.age

Checking for the Existence of a Property (Supported)

Based on the Cypher language specification, you can use the exists() function to only include in
results the nodes or relationships in which a property exists.. For example:

MATCH (n)

WHERE exists(n.belt)

RETURN n.name, n.belt

Filter on Patterns with Properties (Supported)

Based on the Cypher language specification, you can add properties to filter patterns. For example:

MATCH (n)

WHERE (n)-[:KNOWS]-({name: 'Tobias'})

RETURN n.name, n.age

ORDER BY (Supported)

An ORDER BY clause following RETURN or WITH specifies that the output should be sorted in

either ascending (the default) or descending order.

Ordering Null (Not Supported)

Based on the Cypher language specification, when sorting the result set, null values will always be

placed at the end of the result set with ascending sorting, and first in the result when doing

descending sort.

Query

MATCH (n)

RETURN n.length, n.name, n.age ORDER BY n.length

Important
Orderability across types and null values is not supported in the current Graph Lakehouse

release.

Cypher Clauses 1007

SKIP (Supported)

The SKIP clause specifies the record to start including in output records.

Using an Expression with SKIP to Return a Subset of the Rows (Not Supported)

Based on the Cypher language specification, SKIP accepts any expression that evaluates to a

positive integer, as long as it is not referring to any external variables. For example:

MATCH (n)

RETURN n.name ORDER BY n.name

SKIP toInteger(3*rand())+ 1

Important
Specifying a constant expression in the SKIP clause is not supported in the current Graph

Lakehouse release.

LIMIT (Supported)

The LIMIT clause specifies the maximum number of records to include in output results.

Using an Expression with LIMIT to Return a Subset of the Rows (Partially Supported)

Based on the Cypher language specification, LIMIT accepts any expression that evaluates to a

positive integer, as long as it is not referring to any external variables:

MATCH (n)

RETURN n.name

ORDER BY n.name

LIMIT toInteger(3 * rand())+ 1

Important
Specifying a constant expression in the LIMIT clause is not supported in the current Graph

Lakehouse release.

CREATE (Partially Supported)

The CREATE clause is used to create nodes and relationships.

Cypher Clauses 1008

Return Created Node (Not Supported)

Based on the Cypher language specification, you can use RETURN to return the name and details

about newly created nodes. For example:

CREATE (a {name: 'Andres'})

RETURN a

Important
An update statement (CREATE, DELETE, SET, or REMOVE) followed by RETURN is not

supported in the current Graph Lakehouse release.

Create Node with a Parameter for the Properties (Not Supported)

Based on the Cypher language specification, you can also create a graph entity from a map.

All the key-value pairs in the map will be set as properties on the created relationship or node.

Important Use of parameters is not currently supported in Graph Lakehouse.

Create Multiple Nodes with a Parameter for Their Properties (Not Supported)

Based on the Cypher language specification, if you provide Cypher with an array of maps, it will

create a node for each map.

Important
The current Graph Lakehouse release does not allow you to use multiple update clauses

(CREATE/DELETE/SET/REMOVE) in a statement. See State Visibility and Behavior between

Clauses (Partially Supported).

DELETE (Supported)

The DELETE clause lets you specify nodes, relationships or paths to delete. Any node to be deleted

must also have all associated relationships explicitly deleted.

The DETACH DELETE clause lets you delete a node or set of nodes. All associated relationships

will automatically be deleted.

Cypher Clauses 1009

SET (Partially Supported)

The SET clause can be used to update labels on nodes and properties on nodes and relationships.

Copying Properties between Nodes and Relationships (Not Supported)

Based on the Cypher language specification, you can also use SET to copy all properties from one

graph element to another. Doing this also removes all other properties on the receiving graph

element.

Important
Copying properties between nodes and relationships is currently not supported in Graph

Lakehouse.

Set a Property Using a Parameter (Not Supported)

Based on the Cypher language specification, you can use a parameter to specify the value of a

property.

Important
The use of parameters is currently not supported in Graph Lakehouse.

Set All Properties Using a Parameter (Not Supported)

Based on the Cypher language specification, you can replace all existing properties on a node with

a new set of properties provided by the parameter.

Important
The use of parameters is currently not supported in Graph Lakehouse.

REMOVE (Supported)

The REMOVE clause lets you remove properties and labels from nodes and relationships.

Cypher Clauses 1010

MERGE (Not supported)

The MERGE clause ensures that a pattern exists in the graph. Either the pattern already exists, or if

it does not already exist, it will be created.

Important
MERGE operations are not currently supported in Graph Lakehouse.

CALL […YIELD] (Not Supported)

The CALL [...YIELD] clause lets you invoke a procedure and return any results.

Important
Cypher CALL [...YIELD] operations are not currently supported in Graph Lakehouse.

UNION and UNION ALL (Supported)

The UNION and UNION ALL clauses are used to combine the result of multiple queries into a single

result set. UNION combines the results of two or more queries into a single result set that includes

all the records that belong to all queries in the union. The number and the names of the fields must

be identical in all queries combined by using UNION.

When using the UNION clause, it will combine and remove duplicates from the result set. To keep

all the result records, you can use UNION ALL.

Combining Two Queries and Removing Duplicates (Supported)

By using the UNION clause without the ALL keyword, duplicates are removed from the combined

result set. For example:

MATCH (n:Actor)

RETURN n.name AS name

UNION

MATCH (n:Movie)

RETURN n.title AS name

The combined result is returned, without duplicates.

Cypher Clauses 1011

Combining Two Queries and Retaining Duplicates (Supported)

You can combine the results from two queries, and keep duplicate records in the result, by using

UNION ALL. For example:

MATCH (n:Actor)

RETURN n.name AS name

UNION ALL MATCH (n:Movie)

RETURN n.title AS name

The combined result is returned, including duplicates.

State Visibility and Behavior between Clauses (Partially Supported)

Based on the Cypher Language specification, Cypher allows clauses that read data from a graph to

be interleaved with clauses that write to the graph. Some Cypher clauses can both read from a

graph and write to it at the same time. Explicit state change visibility makes it possible to understand

queries without having to worry about ordering of updates and reads.

Important
There is a restriction on state visibility and statement interleaving in the current Graph

Lakehouse release: READ, UPDATE, or READ statements may be followed by UPDATE.

However, a READ clause should not follow the UPDATE clause.

Cypher Clauses 1012

Cypher Functions

This section describes Graph Lakehouse compatibility with the Cypher Language specification for

Cypher functions.

l Predicate Functions (Supported)

l Scalar Functions (Partially Supported)

l Aggregating Functions (Supported)

l List Functions (Supported)

l Mathematical Numeric Functions (Partially Supported)

l Mathematical Logarithmic Functions (Partially Supported)

l Mathematical Trigonometric Functions (Partially Supported)

l String Functions (Partially Supported)

l User-defined Functions (Not Supported)

l Comments (Supported)

l Compatibility and Versioning (Not Supported)

Predicate Functions (Supported)

These functions return either true or false for the given arguments:

l exists(): Returns true if the specified property exists in the node, relationship, or map.

Scalar Functions (Partially Supported)

These functions return a single value:

l coalesce(): Returns the first non-null value in a list of expressions.

l endNode(): Returns the end node of a relationship.

l head(): Returns the first element in a list.

Cypher Functions 1013

l id(): Returns the id of a relationship or node.

Important
In Graph Lakehouse, nodes have a unique integer identifier, however, relationships do

not; so id() on relationships is not available. Relationships can, however, be uniquely

identified by their start and end node IDs and relationship type.

l last(): Returns the last element in a list.

l length(): Returns the length of a path.

Important
Paths are not supported in the current Graph Lakehouse release, so functions on path

arguments are also not supported.

l properties(): Returns a map containing all the properties of a node or relationship.

l size(): Returns the number of items in a list. When applied to a pattern expression, the

function returns the number of sub-graphs matching the pattern expression. When applied to

a string, the function returns the size of a string.

l startNode(): Returns the start node of a relationship.

l timestamp(): Returns the difference, measured in milliseconds, between the current time
and midnight January 1 1970 UTC.

Important
Date/time functions are not supported in the current Graph Lakehouse release.

l toBoolean(): Converts a string value to a boolean value.

l toFloat(): Converts an integer or string value to a floating point number.

l toInteger(): Converts a floating point or string value to an integer value.

l type(): Returns the string representation of the relationship type.

Cypher Functions 1014

Aggregating Functions (Supported)

Aggregating functions accept multiple values as arguments and calculate and return an aggregated

result value.

l avg(): Returns the average of a set of numeric values.

l collect(): Returns a list containing the values returned by an expression.

l count(): Returns the number of values or records.

l max(): Returns the maximum value in a set of values.

Important
The max() function is not supported on List types in the current release.

l min(): Returns the minimum value in a set of values.

Important
In the current Graph Lakehouse release, there is a result mismatch for min(val) due to

different orderability behavior. The min() function on List types is also not supported in

the current release.

l percentileCont(): Returns the percentile of a value over a group using linear interpolation.

Important
The percentileCont() function is partially supported in the current Graph Lakehouse

release, with the percentileCont() function supported with the GROUP BY clause.

l percentileDisc(): Returns the nearest value to a specified percentile over a group using a
rounding method.

Cypher Functions 1015

Important
The percentileDisc() function is partially supported in the current Graph Lakehouse

release, with the percentileDisc() function supported with the GROUP BY clause.

l stDev(): Returns the standard deviation for a given value over a group for a sample of a
population.

l stDevP(): Returns the standard deviation for a given value over a group for an entire
population.

l sum(): Returns the sum of a set of numeric values.

List Functions (Supported)

Cypher List functions include the following:

l keys(): Returns a list containing the string representations for all the property names of a
node relationship or map.

l labels(): Returns a list containing the string representations for all the labels of a node.

l nodes(): Returns a list containing all the nodes in a path.

Important
Paths are not supported in the current Graph Lakehouse release, so functions on path

arguments are also not supported.

l range(): Returns a list comprising all integer values within a specified range.

l relationships(): Returns a list containing all the relationships in a path.

Important
Paths are not supported in the current Graph Lakehouse release, so functions on path

arguments are also not supported.

Cypher Functions 1016

l reverse(): Returns a list in which the order of all elements in the original list have been
reversed.

l tail(): Returns all but the first element in a list.

Mathematical Numeric Functions (Partially Supported)

Cypher mathematical numeric functions all operate only on numeric expressions. They will return an

error if used with any other values.

l abs(): Returns the absolute value of a number.

l ceil(): Returns the smallest floating point number that is greater than or equal to a number
and equal to a mathematical integer.

l floor(): Returns the largest floating point number that is less than or equal to a number and
equal to a mathematical integer.

l rand(): Returns a random floating point number in the range from 0 (inclusive) to 1

(exclusive); that is [0 ; 1).

l round(): Returns the value of a number rounded to the nearest integer.

l sign(): Returns the sign of a number: returns 0 if the number is 0; returns -1 for any negative
number; and returns 1 for any positive number.

Important The sign() function is not supported in the current release.

Mathematical Logarithmic Functions (Partially Supported)

Cypher mathematical logarithmic functions all operate only on numeric expressions. They will return

an error if used with any other values.

l e(): Returns the base of the natural logarithm.

Important The e() function is not supported in the current release.

Cypher Functions 1017

l exp(): Returns e^n where e is the base of the natural logarithm and n is the value of the

argument expression.

l log(): Returns the natural logarithm of a number.

l log10(): Returns the common logarithm (base 10) of a number.

l sqrt(): Returns the square root of a number.

Mathematical Trigonometric Functions (Partially Supported)

Cypher mathematical trigonometric functions all operate only on numeric expressions. They will

return an error if used with any other values.

Important
The acos, asin, atan, atan2, cot, and degrees functions are not supported in the current
Graph Lakehouse release.

l cos(): Returns the cosine of a number.

l pi(): Returns the mathematical constant pi.

l radians(): Converts degrees to radians.

l sin(): Returns the sine of a number.

l tan(): Returns the tangent of a number.

String Functions (Partially Supported)

Cypher string functions all operate only on string expressions. They will return an error if used with

any other values. The exception to this rule is toString(), which also accepts numbers and

boolean values as arguments.

l left(): Returns a string containing the specified number of left-most characters of the original
string.

l lTrim(): Returns the original string with leading whitespace removed.

Cypher Functions 1018

l replace(): Returns a string in which all occurrences of a specified string in the original string
have been replaced by another specified string.

l reverse(): Returns a string in which the order of all characters in the original string have been
reversed.

l right(): Returns a string containing the specified number of rightmost characters of the
original string.

l rTrim(): Returns the original string with trailing white space removed.

l split(): Returns a list of strings resulting from the splitting of the original string around

matches of the given delimiter.

l substring(): Returns a substring of the original string, beginning with a zero-based index
start and length.

l toLower(): Returns the original string in lowercase.

l toString(): Converts an integer, float, or boolean value to a string.

l toUpper(): Returns the original string in uppercase.

l trim(): Returns the original string with leading and trailing white space removed.

User-defined Functions (Not Supported)

The use of user-defined functions is not supported in the current release.

Comments (Supported)

Comments may be added to queries. Single line or inline comments begin with //, and multi- line
comments are delimited by /* and */. For example:

MATCH (n) RETURN n // This is an end of line comment.

Compatibility and Versioning (Not Supported)

The use of previous compatible version selection is not supported in the current release.

Cypher Functions 1019

Admin

This section provides information about managing the configuration and administration of Graph

Lakehouse.

In this section:
Start and Stop Graph Lakehouse 1021

Deploy the Frontend Container 1023

Authentication and Access Control 1031

Manage the Server Configuration 1064

Admin 1020

Start and Stop Graph Lakehouse

The Query & Admin Console provides options to stop and start Graph Lakehouse. The following

information provides instructions for starting and stopping Graph Lakehouse from the file system

when the Query & Admin Console is not included in the deployment or is unavailable.

Note
The system management daemon, azgmgrd, should remain running at all times. When you

restart the database, do not stop and start the daemon. There are three circumstances that

require you to restart azgmgrd:

1. When changing a system configuration setting value that requires a restart of the

system management daemon, such as sysmgr_port or auto_restart_max_attempts.

2. When upgrading or re-installing Graph Lakehouse in a RHEL/Rocky environment.

3. When making changes to the <install_path>/config/ip_addrs.conf file to add

or remove servers from a cluster in a RHEL/Rocky environment.

Follow the appropriate instructions below, depending on the current state of Graph Lakehouse and

your use case:

l Stop the Database and Leave the System Management Daemon Running

l Start the Database (the System Management Daemon is Running)

l Stop the Database and the System Management Daemon

l Start the System Management Daemon and the Database

l Reinitialize the Database

Stop the Database and Leave the System Management Daemon Running

To stop the database, run the following command from the leader server:

sudo systemctl stop anzograph

Start and Stop Graph Lakehouse 1021

If queries are running, the system manager waits the number of seconds in stop_timeout (the

default value is 30 seconds) for any outstanding queries to complete and then stops the database.

Start the Database (the System Management Daemon is Running)

To start the database, run the following command from the leader server:

sudo systemctl start anzograph

Stop the Database and the System Management Daemon

To stop the database and system management daemon, run the following commands from the

leader server:

sudo systemctl stop anzograph

sudo systemctl stop azgmgrd

Start the System Management Daemon and the Database

To start the system management daemon, run the following command. On clusters, run the

command on each server in the cluster:

sudo systemctl start azgmgrd

To start the database after the system management daemon is running, run the following command

on the leader node:

sudo systemctl start anzograph

Reinitialize the Database

If you need to reinitialize the database to remove the generated code and any persisted data, run

the following command. The system management daemon (azgmgrd) should be running.

/<install_path>/bin/azgctl -start -init

Start and Stop Graph Lakehouse 1022

Deploy the Frontend Container

This topic provides instructions for deploying the frontend container with Docker for Linux and then

connecting the frontend to your existing cluster. For information on installing the frontend using the

RHEL/Rocky installer, see Enterprise Linux 9 Deployments.

Follow the instructions below to deploy the Graph Lakehouse frontend console on Docker for Linux.

Tip
You might want to follow the steps in Post-installation steps for Linux to make sure that a non-

root user can run Docker commands and you do not need to include "sudo" in the commands

below.

1. If necessary, start Docker with sudo systemctl start docker.

Note
Docker caches images on the Docker host. If you have deployed a front end container

previously, that image is cached on the host and can be used to redeploy the front end

console. If you want to deploy the latest release, first pull the latest image. To do so,

run the following command, and then proceed to the next step.

docker pull cambridgesemantics/anzograph-frontend:latest

You can deploy alternate front end console versions by replacing the "latest" tag with

any of the tags that are available on the Graph Lakehouse Frontend Docker Hub site.

2. Run the following Docker command to deploy the Graph Lakehouse front end container

image. The command instructs Docker to start the container and configure HTTP and HTTPS

access to the application by mapping the container ports to the HTTP and HTTPS ports on

the local host:

docker run -d -p host_http_port:8080 -p host_https_port:8443 --name=container_

name cambridgesemantics/anzograph-frontend:tag

The list below describes each of the parameters:

Deploy the Frontend Container 1023

https://docs.docker.com/install/linux/linux-postinstall/
https://hub.docker.com/r/cambridgesemantics/anzograph-frontend/tags

l host_http_port is the port on the local host to use for HTTP access to the Graph

Lakehouse console user interface. In the container, the user interface binds to port

8080 for HTTP access. Altair recommends that you specify 80 to map the container's
HTTP port to port 80 on the local host. If port 80 is in use, specify an alternate port for

host_http_port.

l host_https_port is the port on the local host to use for HTTPS access to the Graph

Lakehouse console user interface. In the container, the user interface binds to port

8443 for HTTPS access. Altair recommends that you specify 443 to map the container's
HTTPS port to port 443 on the local host. If port 443 is in use, specify an alternate port

for host_https_port.

l container_name is the short name to use to identify the Graph Lakehouse front end
container. For example, anzograph-frontend.

l tag is the tag from the Graph Lakehouse Frontend Docker Hub site that identifies the

version of the front end console to deploy. If you pulled an image in the first step, this

tag should match the tag from the pull command. Usually the latest tag is specified so
the most recent release is deployed.

For example:

docker run -d -p 80:8080 -p 443:8443 --name=anzograph-frontend

cambridgesemantics/anzograph-frontend:latest

When the prompt returns the container ID, the container is running. For example:

7ad7a2c2b60c0b15e75af9f05d41edc665497c58939da561249c9067f04b59fc

3. The front end console user interface is now installed and ready to use. To open the console,

open a browser and go to the following URL:

https://IP_address

Where IP_address is the IP address of the host server where Docker for Linux is installed. If

you mapped the container's HTTPS port to port 443 on the host, you do not need to specify a

port. If you specified a port other than 443, include the port in the URL. For example:

Deploy the Frontend Container 1024

https://hub.docker.com/r/cambridgesemantics/anzograph-frontend/tags

https://10.100.0.1:8888

Note
If you are using Docker for Linux locally on the same server as the Graph Lakehouse

leader node and need to know the IP address of the front end console container, you

can run the following command:

docker inspect container_name | grep '"IPAddress"' | head -n 1

For example:

docker inspect anzograph-frontend | grep '"IPAddress"' | head -n 1

"IPAddress": "172.17.0.2"

4. The browser displays the Graph Lakehouse console login screen. On the login screen,

specify the following credentials and then click Sign In.

Username: admin

Password: Passw0rd1

The End User License Agreement (EULA) is displayed.

5. Review the EULA and click Accept to proceed. The front end console (also referred to as the
Query and Admin Console) is displayed.

Deploy the Frontend Container 1025

6. The top right of the screen displays the Server Context. Because the user interface was
deployed separately and is not associated with an Graph Lakehouse deployment, the Server

Context is initially "None." Click the Server Context drop-down list and select MANAGE
CONFIGURATION.

The Server Setting or Contexts screen is displayed:

Deploy the Frontend Container 1026

By default, the Server Configuration context is used both for authenticating front end
console users and providing access to an Graph Lakehouse deployment to execute SPARQL

queries. Depending on settings in the Graph Lakehouse settings.conf configuration file, the

LDAP Configuration option provides the capability to do the following:

1. Authenticate users to access the front end console, while still using the Server

Configuration context to access Graph Lakehouse.

2. Configure Graph Lakehouse to both authenticate users and use LDAP group

membership to authorize Graph Lakehouse to execute specific SPARQL queries and

other statements.

Note
See Configure Graph Lakehouse for LDAP Authentication and Create and Manage Roles

from the Console for information on setting up Graph Lakehouse to use LDAP directory

services for Console and Graph Lakehouse authentication and authorization.

Updating the Server Context

To configure or update settings for the Graph Lakehouse server configuration context:

1. Select the Server Configuration option and then click the menu icon () to the right of the

default context and select Edit. The Edit Context screen is displayed:

Deploy the Frontend Container 1027

2. On the Edit Context screen, configure the connection to your Graph Lakehouse site

deployment by supplying the values for the following required fields:

l IP: Specify the IP address for the Graph Lakehouse leader server. Even if this Docker

container is installed on the Graph Lakehouse leader node, you must enter the routable

IP address for the server.

l Management Port (gRPC): This port is the system management communications port.

It is set to 5600 by default and is rarely changed. Accept the default value of 5600
unless you have changed the Graph Lakehouse sysmgr_port setting in <install_
path>/azg/config/settings.conf.

l SPARQL Port (gRPC): This port is the secure, encrypted, gRPC-based protocol port
used to send SPARQL queries and receiving results. It is set to 5700 by default and is
rarely changed. Accept the default value of 5700 unless you have changed the anzo_
protocol_port setting in <install_path>/azg/config/settings.conf.

l Bolt Port: This field is for future use. Accept the default value of 0.

Deploy the Frontend Container 1028

l Concurrency Limit: This parameter specifies the maximum number of concurrent

threads allowed per database context for the gRPC connection and queries executed

from the Graph Lakehouse front end console user interface. The default value is 10.

l Username: This is the gRPC admin user name that you created for the connection.

l Password: This is the password that you created for the gRPC user.

1. When you have supplied all of the connection details, click Test Connection at the bottom
of the screen to ensure that the connection is valid. For example:

If the test fails, adjust the values as needed and test the connection again.

3. Click Save to save the connection. At the top of the screen, click the Server Context drop-
down list again and select default. The context is now green to show that the console user

interface is now connected:

Deploy the Frontend Container 1029

You can now use the front end console to query and manage your Graph Lakehouse deployment.

For more information on using the console, see Use the Query & Admin Console.

Deploy the Frontend Container 1030

Authentication and Access Control

The topics in this section provide details about how Graph Lakehouse authentication and access

control works, instructions for setting it up, and configuring or changing roles and privileges to

access data.

In this section:
Access Control Basics and Terminology 1032

Configure Graph Lakehouse for LDAP Authentication 1046

Create and Manage Roles from the Console 1050

Monitor Access Control Activity 1061

Authentication and Access Control 1031

Access Control Basics and Terminology

Graph Lakehouse supports two basic modes of authentication and access control for users

submitting requests to access data.

1. The first mode is one in which both user authentication and authorization of privileges are

performed entirely by Graph Lakehouse.

2. In the second mode, a trusted external LDAP or directory service system provides

authentication of users to validate their identity before submitting a request to Graph

Lakehouse.

Note
In many access control systems, privileges are often referred to as permissions.

Regardless of the authentication mode selected, Graph Lakehouse supports Access Control Lists

(ACLs) to manage and control which users have privileges to read or write (update) database

objects such as graphs and views. The ACLs are "role-based" which means, for example, that

someone in a "manager" role may be permitted to read and update certain graphs, but someone in

an "admin" role, with additional privileges, may be permitted to create and drop graphs. When

remote authentication is used, an LDAP or directory server returns the list of groups/roles that a

validated user is a member of and Graph Lakehouse checks if the user is authorized to perform the

requested operation.

When you configure Graph Lakehouse to perform its own authentication of users (without using

LDAP or another external directory service), Graph Lakehouse stores both user credentials as well

as the privileges that a user has been given. An administrator, or another authorized user given the

same authority, can grant users additional privileges or add users to other roles where they will

inherit the privileges associated with those roles. When a user submits a request to perform some

operation, Graph Lakehouse first validates the user's credentials and then checks the user's

privileges before processing their request.

Access Control Basics and Terminology 1032

With the integration of LDAP or another directory service, users are authenticated remotely. Before

a user's request to access data is sent to Graph Lakehouse, a user's identity is first validated based

on the credentials they present for the directory server. If the user's credentials are validated, the

service passes to Graph Lakehouse the list of groups/roles that the user is a member of. Graph

Lakehouse uses that information to check the user's privileges against the defined ACLs. Graph

Lakehouse then processes the user's requested operation if the user's privileges allow it.

Note
In LDAP and other external directory services, roles are commonly referred to as groups.

When LDAP or another directory service is used to authenticate users, administrators of those

systems are responsible to make sure the group (role) names that are maintained in the

directory service match and are kept in sync with the role names defined in Graph Lakehouse.

If a group/role name specified by a directory service does not yet exist as a role defined in

Graph Lakehouse, an authenticated user is granted access only to the database objects

authorized for whatever other roles the user is a member of. The definition of Graph

Lakehouse roles can be specified in the db.ini file used to configure roles and privileges when
Graph Lakehouse is restarted. Roles can also be modified later by a user assigned

SUPERUSER role privileges.

ACL Configuration Settings

Two configuration settings, enable_acl and enable_external_auth, in the <install_
path>/config/settings.conf file, control the methods of authentication and authorization are

used. The enable_acl setting controls whether any type of access control, local or remote, is
enabled. If access control is first enabled, the enable_external_auth setting specifies whether
users are authenticated by an external LDAP or directory service or whether Graph Lakehouse is

used to authenticate users.

Graph Lakehouse Roles

Access to Graph Lakehouse database objects (graphs, views, and queries) and the ability to

perform other operations is controlled by defining "user" roles or "group" roles to which users can be

assigned. Each role specifies a set of privileges that will be granted to members assigned to the

Access Control Basics and Terminology 1033

role. Role and privilege information is saved in a system graph, which can be queried just like any

other graph data by users with sufficient privileges.

A role can be either a "user" role (when using local authentication), a "group" role, or both. Roles

can own database objects or entities and members of those roles can assign privileges on those

same objects to other roles. Additionally, it is possible to grant membership of a role to a group,

which allows all members of that role all the privileges assigned to that group.

After a user has been authenticated and is logged in, any subsequent queries and other operations

run in a current session are attributed to that user (which is the user role when using local Graph

Lakehouse authentication). For example, if the current logged-in user runs the CREATE GRAPH

command, the newly created graph will have the current user designated as the owner of the graph.

Similarly, if a SELECT query is run, the privileges to perform the query are verified against the

privileges granted to the current user through their membership in specific group roles.

Note
When configured to have Graph Lakehouse provide user authentication, only user roles that

have the LOGIN attribute enabled can connect to Graph Lakehouse.

Role Attributes

Role attributes define privileges or permissions provided to members of a specific role. You assign

attributes to a role using the CREATE ROLE command, or update later with the ALTER ROLE

command. You can also delete roles with the DROP ROLE command.

Attributes you can assign to a role are the following:

LOGIN | NOLOGIN

Only roles that have the LOGIN attribute set can be used to connect to Graph Lakehouse (when

using Graph Lakehouse "local" authentication). The default role setting is NOLOGIN.

INHERIT | NOINHERIT

If a role is created with this attribute, and when it is added to another group role, then this role will

inherit all the privileges of the group role. The default role setting is INHERIT.

Access Control Basics and Terminology 1034

SUPERUSER | NOSUPERUSER

The SUPERUSER attribute designates a role with superuser privileges. A database superuser

bypasses all available privileges and checks to access Graph Lakehouse data. So, it is

recommended that the SUPERUSER attribute only be used very rarely, and that most database

operations be done within a role that is not assigned superuser privileges. The default setting for

roles is NOSUPERUSER.

PASSWORD = “password” | NOPASSWORD

The PASSWORD | NOPASSWORD attribute specifies whether a password is required for user login

when Graph Lakehouse is used to provide authentication. If a PASSWORD is supplied at the time of

role creation (or added later), then login must supply this same password to connect to the database

for that role.

CREATEROLE | NOCREATEROLE

This attribute allows a role to create other roles. Any user logged in as a member of this role with the

CREATEROLE attribute set can create, alter, or drop roles as well as grant or revoke membership

of roles. A SUPERUSER privilege is required to change the membership of a superuser status.

SYSCATALOG | NOSYSCATALOG

This attribute determines if a role has the ability to SELECT from system graphs or views. The

default is NOSYSCATALOG. Only users with SUPERUSER privilege can create a role having the

SYSCATALOG privilege.

CREATEGRAPH | NOCREATEGRAPH

This attribute allows a role to create graphs. The default role setting is NOCREATEGRAPH.

CREATEVIEW | NOCREATEVIEW

This attribute allows a role to create views. The default role setting is NOCREATEVIEW.

CREATEQUERY | NOCREATEQUERY

This attribute allows a role to create queries. The default role setting is NOCREATEQUERY.

Access Control Basics and Terminology 1035

ROWLIMIT = <num_rows> | NOROWLIMIT

This attribute specifies a positive integer value that determines the maximum number of output rows

this role is allowed to retrieve from a SELECT query. The default role setting is NOROWLIMIT.

PRIORITY = <priority_value> | NOPRIORITY

The priority value of a role determines its priority for Graph Lakehouse job scheduling. The default

priority value is 50. The range of values allowed is between 1 to 100, with 100 being the highest

priority.

Creating, Altering, or Dropping Roles

Two commands are available to create or delete (drop) a role. The syntax for these commands is

the following:

CREATE ROLE <rolename> [privilege attributes list]

When you create a role, Graph Lakehouse inserts the following triples into the <sbxroles> system
graph based on the attributes specified with the CREATE ROLE command:

<role>

<attrs> attributes; # combined list of attributes

<password> “password”^^xsd:string; # optional triple added if PASSWORD set

<rowlimit> NNN; # optional triple added if ROWLIMIT set

<priority> NNN; # optional triple added if PRIORITY set

<grants> “member1,member2,...”; # list of all the members to which privilege is

granted

.

Tip
For more information on system graphs used to store Graph Lakehouse roles and privileges,

see Access Control System Graphs.

The syntax of the command to delete or drop a role is the following:

DROP ROLE <rolename>

Access Control Basics and Terminology 1036

In both the CREATE ROLE and DROP ROLE commands, <rolename> is a URI, which specifies a

user role (when using only local authentication), or a group role that define privileges granted to

group members for specific operations.

Once a role is created, its attributes can be altered with the ALTER ROLE command. The syntax for

this command is the following:

ALTER ROLE <rolename> [LOGIN | NOLOGIN | INHERIT | NOINHERIT |

SUPERUSER | NOSUPERUSER | CREATEGRAPH | NOCREATEGRAPH |

CREATEVIEW | NOCREATEVIEW | CREATEQUERY | NOCREATEQUERY |

CREATEROLE | NOCREATEROLE | PASSWORD "password"| NOPASSWORD |

...]

The ALTER ROLE command can specify multiple attributes in the same statement. For example:

ALTER ROLE <manager> LOGIN NOINHERIT CREATEGRAPH CREATEROLE

After roles are defined, you can use the GRANT command to add role membership to other roles.

Similarly, you can use the REVOKE command to remove a role's membership from another role. In

addition, a couple of additional commands, SET ROLE and RESET ROLE, allow you to clear and

reset roles to their original definitions.

Note
The following section describes inheritance of roles when one role is added as a member of

another role, and use of the GRANT, REVOKE, SET ROLE, and RESET ROLE commands to

change role membership and associated privileges.

Role Membership and Inheritance

There are few differences between "user” roles and "group" roles. If you assign (or grant) a user role

to another role, that group simply becomes a group role. To grant privileges of a group to another

role, you can run the following command:

GRANT <group_rolename> TO <rolename>

To remove privileges of a group from a role, you can run the following command:

REVOKE <group_role> FROM <rolename>

For example:

Access Control Basics and Terminology 1037

CREATE ROLE <msmith> LOGIN INHERIT;;

CREATE ROLE <pjones> LOGIN INHERIT;;

CREATE ROLE <engineers> NOLOGIN INHERIT;;

CREATE ROLE <managers> NOLOGIN INHERIT;;

GRANT <managers> TO <msmith> ;; # privileges of <managers> added to <msmith>

GRANT <engineers> TO <pjones> ;; # privileges of <engineers> added to <pjones>

GRANT <engineers> TO <managers> ;; # <engineers> privileges added to <managers>

GRANT <dba> TO <msmith> ;; # <dba> privileges added to <msmith>

After the statements above are executed, the <msmith> role will have all the privileges it was

originally assigned, but will also inherit all the privileges defined for the <managers> role. In

addition, the <managers> role will inherit all the privileges of the <engineers> role with the GRANT

command. Any role can be granted multiple other roles (that is, it may be added to more than one

group). The structure of roles can be thought of as a hierarchical inheritance structure, with a single

user having the combined privileges of all the groups they are a member of.

To remove membership in a role, you can use the REVOKE command. For example:

REVOKE <dba> FROM <msmith>

If a user is logged into Graph Lakehouse as <msmith>, you can use the SET ROLE command to

remove all of <msmith>’s assigned privileges, so the <msmith> role will just be assigned all the

privileges from the user or group role it is set to. For example:

SET ROLE <msmith> TO <engineers>

To reset a role to its original definition, you can execute the following commands:

SET ROLE <smith> TO NONE;;

RESET ROLE <smith>

Assigning Ownership of Database Objects

By default, Graph Lakehouse assigns original ownership of database objects such as graphs,

views, and queries to the currently logged-in user or user role that created an object. You can

change the ownership of an object with the ALTER <object> OWNER command. For example:

ALTER GRAPH <tpch> OWNER TO <msmith>

Access Control Basics and Terminology 1038

To remove a role and assign ownership of all the database objects currently owned by that role to a

new role, you can use the REASSIGN OWNED BY command. For example:

REASSIGN OWNED BY <obsolete-role> TO <new-successor-role>;;

DROP OWNED BY <obsolete-role> ;;

DROP ROLE <obsolete-role>

Database Object Permissions

The roles that a user is a member of determine the Graph Lakehouse data privileges that a user is

granted (or can be revoked) after they log in and are authenticated. When an Graph Lakehouse

object is created, for example, a graph, query, or view, the creator of that object is designated as the

owner of that object. To allow other roles to access the same object, the owner must grant specific

privileges on that object to other roles.

The different privileges that can be granted or revoked for database objects are the following:

SELECT

READ privilege for a named GRAPH, VIEW, or QUERY.

UPDATE

Permission for SELECT, INSERT, DELETE, COPY, MOVE, ADD, or CLEAR operations on a named

GRAPH.

DROP

Permission to drop a named GRAPH, VIEW, or QUERY.

Granting and Revoking Object Permissions

Unless ownership has been reassigned, the <owner> of a database object has full privileges to

perform operations on that object. Owners can use the GRANT and REVOKE commands to grant or

revoke privileges to other roles to perform operations on those same database objects they own.

For example, to grant UPDATE privileges on an existing <tpch> graph to the <msmith> role, the

owner or other authorized users could run the following command:

GRANT UPDATE on <tpch> TO <msmith>

Access Control Basics and Terminology 1039

A special PUBLIC keyword is available to represent all roles, so you could execute the following

command to grant privileges to all roles on a database object:

GRANT UPDATE on <tpch> TO PUBLIC

Note
PUBLIC is a special role, which encompasses all roles currently created, as well as any future

roles that may be defined in Graph Lakehouse. If PUBLIC has been granted a privilege, then

that privilege is available for all current roles, and the same privilege will be extended to future

roles that have not been created yet. If PUBLIC has been granted, then revoking that privilege

from roles will not have any effect. The PUBLIC role cannot be created, dropped, or altered.

Another special keyword, ALL, is available to specify granting or revoking "all privileges". For

example, to grant all privileges on the <tpch> graph to the <msmith> user, you could run the

following command:

GRANT ALL on <tpch> TO <msmith>

To revoke privileges from a database object, you can use the REVOKE command. For example, to

revoke access to <tpch> from everyone (except for the OWNER and SUPERUSER roles), you could

run the following command:

REVOKE ALL on <tpch> FROM PUBLIC

As with the GRANT command, you can also specify privileges with the REVOKE command. For

example, to revoke only the UPDATE privilege from the <msmith> role, you could run the following

command:

REVOKE UPDATE on <tpch> FROM <msmith>

Access Control Initialization and Updates

When Graph Lakehouse is first started or when you reinitialize Graph Lakehouse, the db.ini
initialization file, located in the <installdir>/config directory (by default), is executed. The db.ini file
contains various DDL statements, for example, CREATE ROLE, DROP ROLE, ALTER ROLE, and

Access Control Basics and Terminology 1040

GRANT commands. The db.ini file is treated as "trusted", so statements contained within the file can

create any number of roles with any allowed attributes. However, the db.ini file cannot contain any

DML statements such as SELECT, CONSTRUCT, ASK, DESCRIBE, etc.

When Graph Lakehouse first starts up, it creates two system roles, @system and @sysadmin. Both

are considered superusers, however, by default, you cannot log into Graph Lakehouse with these

system roles. In the case of Graph Lakehouse local authentication, you should create other roles

that you can login with, by creating those new login roles in the db.ini file. (At least one of the roles

should typically be given SUPERUSER privileges.) New user roles may be altered, given

passwords, or dropped during the bootstrap initialization process using statements included in the

db.ini file.

Important
You need to create the db.ini file before updating enable_acl and enable_external_auth
settings in the settings.conf file to enable either local or remote authentication and access
control. To reinitialize Graph Lakehouse with new ACL configuration settings, you can run the

following command:

/install_path/bin/azgctl -start -init

Alternatively, you could also run the following command:

/install_path/bin/azgctl -start -init data

For more information on starting and stopping, restarting and initializing Graph Lakehouse,

see Start and Stop Graph Lakehouse.

If Graph Lakehouse fails to successfully execute the db.ini file due to errors, Graph Lakehouse will

not start up. To prevent this situation from occurring, an administrator should test and make sure the

db.ini file can be executed without errors.

Here is a sample db.ini file that shows some of the statements the file might include:

group roles

CREATE OR REPLACE ROLE <superadmin> SUPERUSER LOGIN PASSWORD = 'superadmin' ;;

CREATE OR REPLACE ROLE <manager> NOLOGIN NOINHERIT CREATEROLE CREATEGRAPH CREATEVIEW

CREATEQUERY ;;

CREATE OR REPLACE ROLE <dev> NOLOGIN NOINHERIT CREATEGRAPH CREATEVIEW CREATEQUERY ;;

Access Control Basics and Terminology 1041

login users (local authentication mode only)

CREATE OR REPLACE ROLE <julio> LOGIN ;;

CREATE OR REPLACE ROLE <john> LOGIN ;;

CREATE OR REPLACE ROLE <mary> LOGIN ;;

grant privileges to local user roles

GRANT <dev> TO <julio> <john> <mary>;;

GRANT <manager> TO <julio>

LDAP/Directory Services Integration

There are various ways to configure integration of LDAP or another directory service system with

Graph Lakehouse, depending on the security policy needs and the current IT infrastructure in place

within an organization. First, customers can choose from any number of open source or

commercially available authenticator applications, for example, from companies such as Apple,

Facebook, and Google, or other authentication solutions published on web sites such as GitHub.

These applications can provide an interface between client applications and directory servers and

can also be configured to provide authentication and delivery of user profile and group/role

information to Graph Lakehouse.

For additional security, many customers may also choose to use a reverse proxy web server to

isolate their authentication systems and Graph Lakehouse from direct connection to their client

applications and exposure to other potential threats. The following diagram shows a configuration in

which a reverse proxy web server processes incoming Graph Lakehouse queries and other

requests from a client application. A client application directs the user's credentials and the

requested operation through the reverse proxy server to an LDAP/Directory Services system for

authentication. If the user is validated, the reverse proxy then forwards the user profile, the names

of the groups in which the user is a member, and their original operation request, to Graph

Lakehouse.

Access Control Basics and Terminology 1042

The basic operation common to all these configurations is that a client application first constructs

and outputs a formatted request that includes a user's credentials along with the Graph Lakehouse

operation the user wants to perform. For example:

azgi -u username:password -c "create graph <abc>"

Note
Many authenticator programs allow client applications to omit password entries from the

request, and then prompt users later to enter a password. In addition, authenticator programs

will often cache an authentication token once a user's credentials have been validated so that

a user's credentials do not need to be re-validated for every request unless the token has

expired.

After validating the user, the LDAP or directory service systems looks up whatever group/role

membership a user has been assigned. That information is then forwarded to Graph Lakehouse as

a base 64 encoded JSON string in the User-Entry header of the HTTP request. For example, a

JSON string might look like the following:

{"name":"jsmith","groups":[{"name":"manager"}]}

The JSON blob returned for validated users can also specify multiple assigned groups/roles. It may

also include nested groups/roles if your privilege hierarchy is set up to use them. For example:

{

"name": "jsmith",

"member_of": [{

"name": "engineering",

Access Control Basics and Terminology 1043

"member_of": [{ "name": "manager" }]

},

{ "name": "support" }]

}

Note
LDAP and other directory services use the term group, synonymous to roles in Graph

Lakehouse, to reflect a common set of privileges or privileges granted to any members

assigned to the same group.

Once Graph Lakehouse receives the User-Entry JSON string, it compares the specified group

names with roles of the same name defined in Graph Lakehouse. Graph Lakehouse then checks

the Access Control privileges (ACLs) on database objects to verify the user's privileges to perform

the requested operation. If the user has the appropriate privileges, Graph Lakehouse processes the

request and returns results back to the client application; otherwise it returns a message indicating

the request is not allowed.

Note
The names of all groups specified in the User-Entry JSON string must exactly match role

names already defined in Graph Lakehouse for the current user to be given the associated

role privileges. Graph Lakehouse roles may be defined at startup with entries in the db.ini file

or by issuing role creation commands after Graph Lakehouse has started.

Sample LDAP/Directory Services Configuration

Sample files and instructions for configuring an example integration of Graph Lakehouse with an

LDAP server is provided on the Cambridge Semantics GitHub web site:

https://github.com/cambridgesemantics/csi-anzograph-ldap-demo

The README.md file on the site describes the series of steps you can perform to install and

configure this example setup. The sample configuration of the LDAP/Directory Services integration

with Graph Lakehouse includes the following components:

Access Control Basics and Terminology 1044

https://github.com/cambridgesemantics/csi-anzograph-ldap-demo

l NGINX: Free, open source HTTP web server to which client application operation requests

are sent.

l LDAP authentication proxy: Example Python program that processes requests to validate

user credentials and pass client operation requests to an LDAP server.

l OpenLDAP: Open source LDAP implementation that maintains user profile and group/role

membership information for Graph Lakehouse privileges.

l Graph Lakehouse database engine pre-configured for remote authentication and access
control.

After completing the setup steps in the instructions, you can use any HTTP client application to send

Graph Lakehouse operation requests to the reverse proxy server. For demonstration purposes, you

can also use the AZGI CLI to submit requests.

In addition to the basic setup, you can install and use other third party tools such as Apache

Directory Studio to administer changes to OpenLDAP user profiles and group/role membership. You

can also use tools such as Postman to submit queries and other requests to Graph Lakehouse.

Access Control Basics and Terminology 1045

Configure Graph Lakehouse for LDAP Authentication

By default, the Graph Lakehouse front end console is configured to use authentication and

authorization credentials maintained by Graph Lakehouse itself. You can also configure the Graph

Lakehouse front end console to use a specified LDAP or directory service to authenticate users and

authorize Graph Lakehouse operations based on user membership in LDAP groups. See Create

and Manage Roles from the Console for information on creating uer roles and granting or revoking

permissions to access specific Graph Lakehouse database objects (graphs, views, and queries),

whether you are using local Graph Lakehouse or LDAP service authentication of users.

Define an LDAP Configuration

To configure the Graph Lakehouse front end console and Graph Lakehouse to use LDAP

authentication:

1. Select LDAP Configuration from the Server Settings list to display the LDAP Configuration

screen.

2. On the LDAP Configuration screen, configure the connection to your Graph Lakehouse

deployment by selecting the Enable LDAP Authentication checkbox and then choosing
among the various radio button options and supplying values for the required fields.

Selecting the Enable LDAP Authentication checkbox enables front end authentication
using the the LDAP configuration.

Configure Graph Lakehouse for LDAP Authentication 1046

Field entries for the LDAP Configuration are the following:

l Enable LDAP Authentication checkbox: Selection that allows you to enable front end
authentication using the LDAP configuration.

l Host: Host name or IP address of the LDAP directory server.

l Port: The port used to connect to the LDAP directory server.

l HTTPS radio buttons: Specifies whether the directory server uses an SSL (LDAPS) or a
StartTLS protocol connection.

l User Base DN: LDAP distinguished name that contains users than can be

authenticated, for example: dc=example,dc=org.

l User Filter Prefix: Property name that a user name is mapped to, for example: cn.

l Groups Search Filter: Filter used to search for LDAP group names, for example:

(objectClass=groupOfUniqueNames).

Configure Graph Lakehouse for LDAP Authentication 1047

l Groups Member Filter Prefix: Property name prefix used for searching if user is part
of group, for example: uniqueMember.

l Search Subtree checkbox: Option to specify whether to search LDAP subtrees.

l Anonymous Bind checkbox: Option to specify whether the Graph Lakehouse front
end console connects to the directory server anonymously.

l User DN: Full distinguished name of the account that the Graph Lakehouse front end
console will bind against to perform authentication on the directory server, for example:

cn=admin,dc=example,dc=org.

l Password: Password specified for the User DN.

3. When you have supplied all of the necessary connection details, click Test Connection at
the bottom of the screen to ensure that the connection with your LDAP directory service can

be made.

If the test fails, adjust the values as needed and test the connection again.

4. Click Save to save the connection.

Enable LDAP Authentication for the Console

To use an LDAP configuration to authenticate Console login and authorize Graph Lakehouse

operations users are able to perform, you need to update settings in the Graph Lakehouse

settings.conf configuration file. That is, to enable external LDAP authentication to the console, you

need to configure the following options in the Graph Lakehouse settings.conf file (located in the

InstallDir/anzograph/config directory) :

enable_acl=true

enable_external_auth=true

Important
After updating the settings in the Graph Lakehouse configuration file, you need to restart

Graph Lakehouse for the new settings to take effect. For example:

<install_path>/anzograph/bin/azgctl -restart

Configure Graph Lakehouse for LDAP Authentication 1048

With these new ACL settings, Graph Lakehouse front end console users will be authenticated

against an externally- configured LDAP directory service. A user's LDAP group membership

information will be passed to Graph Lakehouse along with any submitted SPARQL query request or

statement they submit to help in authorizing requests. Where Graph Lakehouse roles are already

defined that match the names of LDAP groups a user is a member of, the Graph Lakehouse

assigned role permissions will determine a user's authorization or permission to execute any

submitted SPARQL request.

Note
See Access Control Basics and Terminology for more information on Graph Lakehouse ACL

operations and additional methods of integrating LDAP directory services with Graph

Lakehouse.

You can now use the front end console using LDAP directory service authentication of users. For

more information on using the front end console, see Use the Query & Admin Console. Also refer to

Create and Manage Roles from the Console for information on defining or updating roles that

control Console user access and permissions.

Configure Graph Lakehouse for LDAP Authentication 1049

Create and Manage Roles from the Console

Graph Lakehouse supports two basic modes of authentication and access control for users

submitting requests to access or perform operations on data. The first mode is one in which both

user authentication and authorization of privileges are performed entirely by Graph Lakehouse. In

the second mode, a trusted external LDAP or directory service system provides authentication of

users to validate their identity before submitting an operation request to Graph Lakehouse, where a

user's Graph Lakehouse role permissions determine the operations a user is able to perform.

The particular way in which Graph Lakehouse operates depends on two switch settings in the

settings.conf file, enable_acl and enable_external_auth. (See Authentication and Access
Control for more information on these two Graph Lakehouse configuration settings.)

When using the Query & Admin Console to access and perform Graph Lakehouse operations, the

operations that a user can perform are controlled by the specific attributes of a user's role and the

permissions granted to a user or role on specific Graph Lakehouse database objects, for example,

graphs, views, and queries. A user with special SUPERUSER administration permissions can login

into the Console, create roles that will define permissions granted to new users in those roles, and

specify permissions to access specific Graph Lakehouse database objects.

The following sections describe the process to configure Graph Lakehouse for authentication and

authorization (also referred to as ACL) and provides more information on how to define new roles for

users (or those corresponding to LDAP groups) from the Console, and specify attributes or

permissions granted to those roles.

l Configure Graph Lakehouse for User Role Management

l Create and Configure User Roles

l Grant Permissions to Database Objects

l Add Roles Mapped to LDAP Groups

l Enable External LDAP Authentication

Create and Manage Roles from the Console 1050

Configure Graph Lakehouse for User Role Management

To use the Query & Admin Console to create and manage roles for Graph Lakehouse authentication

and authorization there are a few basic configuration steps you first need to perform:

1. Create a db.ini file in the InstallDir/anzograph/config directory in which you define a local
user role with LOGIN and SUPERUSER attributes. For example:

CREATE OR REPLACE ROLE <superadmin> SUPERUSER LOGIN PASSWORD = 'superadmin' ;;

Note
Graph Lakehouse includes a sample file, db.ini-example, that you can rename and
use as a starting point for your own custom access control initialization. The sample file

defines a default SUPERUSER LOGIN user role named <superadmin> that provides
initial administrator access to the Console when Graph Lakehouse access control is

first enabled. See Access Control Initialization and Updates for more information on the

db.ini file and Graph Lakehouse access control initialization and updates.

2. In the InstallDir/jetty/frontend directory, include the following line in the anzograph-
frontend.properties file to provide administrator access to the Console that matches the
SUPERUSER user role defined in the Graph Lakehouse db.ini file:

database.super.user= superadmin

Note
Updating the database.super.user setting and restarting the Jetty application, as
described in these steps, is not required if you keep the <superadmin> user role name
as defined, by default, in the db.ini-example sample file. The Eclipse Jetty application
is a Java web server and Java Servlet container that provides the web user interface for

the Graph Lakehouse Query & Admin Console.

3. Restart the Jetty web server.

/usr/sbin/su-exec jetty jetty.sh restart

Create and Manage Roles from the Console 1051

4. Update the settings.conf file located in the InstallDir/anzograph/config directory to
include the following two settings:

enable_acl=true

enable_external_auth=false

5. Run the following commands to stop and reinitialize Graph Lakehouse with the new

settings.conf configuration file settings and db.ini entries:

/InstallDir/anzograph/bin/azgctl -stop

/InstallDir/anzograph/bin/azgctl -start -init

6. Log in to the Query & Admin Console using the new superadmin user role credentials defined

in the db.ini file.

After successful user login, the console displays the main Admin tab web page.

Create and Configure User Roles

When you log in to the Query & Admin Console with the Graph Lakehouse superadmin user role
credentials, you have full access to Graph Lakehouse operations and data, including permission

and access to all options available in the Console, and the User Role Management option in the

Admin navigation panel. When you first select the User Role Management option, the Console
displays a single role, that of the superadmin user role you defined in the db.ini file.

Create and Manage Roles from the Console 1052

To view the access and permissions of the superadmin role or any other defined role, you can

simply click on the role's name to display the information in a panel display on the right side of the

Console.

Access and permission settings correspond to ACL attributes and permissions that may be

specified for Graph Lakehouse roles as described in Role Attributes and Database Object

Permissions.

Adding a New Role

To create a new role:

Create and Manage Roles from the Console 1053

1. Click the Add Role button.

The Console displays a popup dialog in which you can choose a name for the new role and

specify other properties of the role.

Note
New role names may not start with either an@ or $ character. Role names may also not
contain spaces or any of the following special characters:

- < > ? / \ [] { } + = () * & ^ % ~ ` ” '

More generally, role names may not contain any ASCII code control characters ranging

from 0 through 32 with ASCII code 32 being the space character.

Options in the Add Role dialog allow you to specify the following:

l Make this role a superuser — if enabled, allows user role to access the Admin tab of the

Console, versus just the Query Console tab.

l Inherit permissions from other roles — if enabled, this role may be selected to inherit

permissions as a member of other roles.

Create and Manage Roles from the Console 1054

l Allow this role to login — when enabled and using local Graph Lakehouse authentication

(enable_external_auth=false), allows this user role to login to Graph Lakehouse.

l Select permissions for this role — specifies operations that a user role is allowed to

perform in Graph Lakehouse.

l Select other roles to inherit permissions from this role — allows you to specify other

existing user roles that will inherit permissions from this role.

l Query Row Limit and Priority — Specifies limits to rows that a user role's query may

return; also lets you specify the execution priority of this user role's queries.

Note
See Role Attributes for more information on attributes or permissions that can be

assigned to specific roles.

2. When you've finished selecting options for the new user role, click Add.

The new user role now appears in the Admin Console's list of created roles.

Grant Permissions to Database Objects

When an Graph Lakehouse database object is created, for example, a graph, query, or view, the

creator of that object is designated as the owner of that object, by default. To allow other roles to

access the same object, or to change ownership, the owner may grant specific privileges on that

object to other roles.

Besides being able to change ownership, SELECT, UPDATE, and DROP permissions privileges on

database objects can be granted or revoked from specific roles.

To assign or change object permissions:

1. From the Admin tab, click on a database object (Graphs, Views, or Queries) in the left-side

navigation panel. For example, selecting the Graphs option displays a list of graphs currently

loaded into Graph Lakehouse.

Create and Manage Roles from the Console 1055

2. On the far-right side of a listed object (in this example, the tickit graph), click the button.

The Console displays a popup dialog in which the current owner and permissions of other

existing roles are displayed.

Besides being able to change ownership, privileges that can be granted or revoked on

database objects for specific roles are the following:

l SELECT - grant or revoke read privilege on a named graph, view, or query.

l UPDATE - grant or revoke permission for SELECT, INSERT, DELETE, COPY, MOVE,

Create and Manage Roles from the Console 1056

ADD, or CLEAR operations on a named graph.

l DROP - grant or revoke permission to drop a named GRAPH, VIEW, or QUERY.

3. When you've finished selecting permissions granted or revoked for specific roles, click Save.

The Console confirms that permissions for the object have been updated.

Add Roles Mapped to LDAP Groups

In addition to defining roles for use when local Graph Lakehouse authentication is enabled, you can

also define roles that are mapped to LDAP groups for use when external LDAP authentication is

used. That way, when users log into the Console using LDAP authentication, the data they can

access and the operations they can perform are controlled by the permissions defined in roles

corresponding to their LDAP group membership.

To define Console roles based on LDAP groups, you need to first specify and enable the LDAP

configuration you want to define Graph Lakehouse roles for. Once the LDAP configuration is

enabled, you can define roles based on LDAP directory groups the same way as you defined roles

using local Graph Lakehouse authentication.

Note
When using external LDAP authentication, you should define at least one LDAP group role

that has SUPERUSER privileges configured, so that member users of that group have access

to the Admin tab of the Console.

To add an LDAP group role:

1. Define the LDAP Configuration that you want to define Graph Lakehouse roles for. For

specific instructions on doing that, see Configure Graph Lakehouse for LDAP Authentication.

2. From the Console, select the Settings menu option, or select the LDAP Configuration
option from the Server Context/Server Settting page and make sure the Enable LDAP
Configuration checkbox option is selected.

Create and Manage Roles from the Console 1057

When you return to the User Role Management display on the Admin tab page, the Console

now shows an Add Directory Group button on the far right, next to the Add Role button.

3. Click the Add Directory Group button.

The Console now retrieves a list of groups defined in the LDAP directory.

4. Click the down arrow icon to display a drop-down list of LDAP groups. Note that the

Console replaces any spaces in group names with an underscore character.

Create and Manage Roles from the Console 1058

Note
Graph Lakehouse role names may not start with either an@ or $ character. Also, role
names may not contain spaces or any of the following special characters:

- < > ? / \ [] { } + = () * & ^ % ~ ` ” '

More generally, role names may not contain any ASCII code control characters ranging

from 0 through 32 with ASCII code 32 being the space character.

5. Select an LDAP group from the list that you want to define an Graph Lakehouse role for.

The Console now displays a popup dialog, the same as for local roles, to specify group

attributes and permissions for the new Graph Lakehouse role.

6. When you've finished selecting options for the new role based on an existing LDAP group,

click Add.

Create and Manage Roles from the Console 1059

The new LDAP group role now appears in the Admin Console's list of created roles. Besides

the role's basic attributes and permissions, you can also grant or revoke specific object

permissions for the new LDAP group role.

Enable External LDAP Authentication

To change the Graph Lakehouse mode of authentication, from authentication of user credentials

stored within Graph Lakehouse itself, to authentication of credentials validated by an external LDAP

directory service, you need to update ACL settings specified in the Graph Lakehouse settings.conf

configuration file.

1. Update the settings.conf file located in the <install_path>/anzograph/config
directory to specify the following two settings:

enable_acl=true

enable_external_auth=true

2. Next, run the following command to stop and restart Graph Lakehouse to use the new

configuration settings in the settings.conf file:

/InstallDir/anzograph/bin/azgctl -restart

Graph Lakehouse authentication requests, including login to the Query & Admin Console, will

now be authenticated using the LDAP Configuration you specified.

3. Login to the Query & Admin Console using the user credentials provided by your LDAP

directory service administrator.

With LDAP authentication enabled, users will enter their LDAP user login credentials to be

authenticated. However, following authentication, each user's permissions to perform Graph

Lakehouse operations will be defined by their membership in LDAP groups for which Graph

Lakehouse roles are defined.

Create and Manage Roles from the Console 1060

Monitor Access Control Activity

All Graph Lakehouse data access and access control modifications are logged in a system table

named sth_acl. System administrators can monitor the sth_acl system table for various types of

access control entries and activities. Those events include:

l "Init file execution"

l "Authorization Success"

l "Authorization Failure"

l "Create Role"

l "Drop Role"

l "Alter Role"

l "Alter Graph" (changes of ownership)

l "Alter Owned By"

l "Grant Membership"

l "Grant Privilege"

l "Revoke Membership"

l "Revoke Privilege"

In addition to monitoring access, an administrator can diagnose failures by examining the entries in

the "sth_acl" table. You can query the Graph Lakehouse system table using regular SPARQL

queries just like that of any other database source. For example:

azgi -c "select * where {table 'sth_acl'}"

The following provides a sample query of sth_acl table entries following execution of a

GRANT statement:

xrowid | query | time | user | action_type | detail

---------+-------+---------------+------+-----------------------+----------------------

1219813 | 12453 | 2020-11-20... | test | Grant Privilege | Granted privileges 1

Monitor Access Control Activity 1061

on <testGraph> to <jsmith>

1220751 | 0 | 2020-11-20... | | Authorization Success | test

1219294 | 0 | 2020-11-20... | | Authorization Success | test

1212465 | 12370 | 2020-11-20... | test | Grant Membership | Granted membership of

<engineers> to <jsmith>

Access Control System Graphs

All Graph Lakehouse role and object attributes and privileges are stored in one of two system

graphs, <sbxroles> or <sbxaclobj>.

Regardless of whether users are authenticated locally or by a remote directory service, the

privileges granted to specific groups or roles is stored locally within the system graph named

<sbxroles>.

Note
A second system graph named <sbxaclobj> stores privileges to perform operations such as

SELECT, UPDATE, DROP, and EXECUTE on objects such as graphs, views, and queries.

When an object is created, its creator is designated as the owner of that object and that

information is recorded with the entry of a triple in the <sbxaclobj> system graph. To allow

other users to access the same object, the owner can grant privileges on that object to other

Graph Lakehouse roles.

The <sbxaclobj> system graph is updated with new triples whenever an object is either

created or dropped or if its privileges are altered. Only system administrators assigned the

superuser role or belonging to a group with administration privileges have the ability to modify

the <sbxaclobj> system graph to update privileges.

The <sbxroles> System Graph

The Graph Lakehouse<sbxroles> system graph is updated whenever a role is created, altered, or

dropped. The following triples get inserted, updated, or removed from the <sbxroles> graph,
whenever one of these operations is performed.

INSERT DATA {

GRAPH <sbxroles> {

<role1> a <Role>;

Monitor Access Control Activity 1062

<attrs> attrib_list; # combined list of attributes

<password> "passwd"^^xsd:string; # optional triple for local authentication

<rowlimit> NNN; # optional triple

<priority> NNN; # optional triple

<grants> "member1,member2"; # list of all the roles granted privileges

.

}

}

The <sbxaclobj> System Graph

A second system graph, named <sbxaclobj>, is updated with new triples whenever an object is

created or dropped or if its privileges are altered. The following triples get inserted, updated, or

removed from the <sbxroles> system graph whenever one of these operations is performed.

INSERT DATA {

GRAPH <sbxaclobj> {

<aclobj_uri> # <based on objname,objtype,objcontainer

<objname> name;

<objtype> <graph | view | query | udx | subject | predicate | triple> ;

<privileges> acl; # mandatory: serialized json string for Privileges

<objid> (graphid | viewid | queryid); # optional: for graph

<container> “container” ; # optional: for udx; name of the library

for subject - name of the graph

for predicate - name of the graph

for triple - name of the graph

.

}

}

Note
Again, only an Graph Lakehouse system administrator, assigned the superuser role or

belonging to a group with administration privileges, has the ability to directly modify the

<sbxaclobj> system graph.

Monitor Access Control Activity 1063

Manage the Server Configuration

This section provides reference information for the Graph Lakehouse server settings and includes

instructions for changing the configuration file.

In this section:
System Settings Reference 1065

Change System Settings 1079

Manage the Server Configuration 1064

System Settings Reference

This topic provides reference information for each of the Graph Lakehouse system configuration

settings. The configuration file, <install_path>/config/settings.conf, categorizes the

settings as either Basic or Advanced. The advanced-level settings should only be configured by
system administrators or users with an advanced level of knowledge about Graph Lakehouse or

databases in general. For instructions on changing settings, see Change System Settings.

l Basic Settings

l Advanced Settings

Basic Settings

This section describes the settings in the Basic section of settings.conf.

l anzo_protocol_port

l auto_restart_directory

l enable_persistence

l enable_sparql_protocol

l enable_ssl_protocol

l internal_directory

l license_file

l load_errors_graph

l load_normalize_datetime

l log_directory

l log_rotate_counter

l log_size_limit

l max_memory

l output_format

System Settings Reference 1065

l persistence_directory

l service_graph_rowset_limit

l sparql_protocol_port

l sparql_spec_default_graph

l spill_directory

l ssl_protocol_port

l startup_info

l stop_timeout

l truncate_clob

l use_custom_ssl_files

l user_queues

l xray_sth_portion

l xray_sth_spool_duration

l xray_sth_spool_maxgb

Setting
Default Value
(type)

Description

anzo_protocol_
port

5700 (int) The Anzo protocol (gRPC) port for secure communication
between Graph Lakehouse and other Altair applications.

auto_restart_
directory

Not set (char) Specifies the base location of the auto_restart directory,
which contains the denied_list, warned_list, and
unanalyzed_list directories. When not set, the default
is <install_path>/internal. For more information
about the auto-restart feature, see Manage Automatic
Database Restart Options.

System Settings Reference 1066

Setting
Default Value
(type)

Description

enable_
persistence

true (boolean) Controls Graph Lakehouse's save data to disk option. By
default, persistence is enabled and the data in memory is
saved to disk (in the persistence_directory) after every
transaction. Each time the database is restarted, the
persisted data is automatically loaded back into memory.
When persistence is disabled, data must be reloaded
back into memory when the database is restarted.

enable_sparql_
protocol

true (boolean) This setting controls whether to enable the standard
SPARQL-compliant HTTP endpoint. The sparql_
protocol_port setting controls the port to use to access the
endpoint. The SPARQL HTTP endpoint is not secured.

enable_ssl_
protocol

true (boolean) This setting controls whether to enable the secure HTTPS
SPARQL endpoint. The ssl_protocol_port setting controls
the port to use. The SPARQL HTTPS endpoint is
encrypted but not authenticated.

internal_
directory

Not set (char) The directory where Graph Lakehouse should save
internal database-related files such as generated code,
logs, and query plans. When not set, the default is
<install_path>/internal. For more information,
see Relocate Graph Lakehouse Directories.

license_file license.pem
(char)

This setting specifies the name of the license file. Do not
change this value unless instructed to do so by Altair
Support.

load_errors_
graph

load_errors
(char)

This setting specifies the name of the graph to load error
messages to if LOAD SILENT is specified with a SPARQL
LOAD query and errors are encountered during the load.

System Settings Reference 1067

Setting
Default Value
(type)

Description

load_
normalize_
datetime

Not set (char) This setting specifies a dateTime value to use in place of
any invalid dateTime values that are found when loading
files with a SPARQL LOAD query. If Graph Lakehouse
returns a "Datum is not a datetime, use setting 'load_
normalize_datetime' to patch bad data" error, you can
specify the value to substitute for any invalid dateTimes.
For example, "0001-01-01T00:00:00Z".

log_directory Not set (char) Specifies where to write systemmanagement daemon
(azgmgrd) log files. These types of logs (azgmgrd.log,
azgctl-<user>.log, azgpidmgr.log, and
azgpids.log) are created before the system is
initialized and may be written before the <install_
path>/internal/log directory exists. Therefore, they
are located outside of the Graph Lakehouse file system,
/tmp by default. If you change the log_directory
value, Altair recommends that you choose another
location that is outside the internal Graph Lakehouse
directories. When not set, the default location is /tmp.

log_rotate_
counter

5 (int) This setting controls the number of azgmgrd.log files to
retain when the logs are rotated and a new one is created.
Logs are rotated once a file reaches the size limit
specified in log_size_limit. By default, 5 files are kept plus
the current one. When this value is 0, the log files are not
rotated and a single file will contain all of the azgmgrd
logging information.

log_size_limit 1790000 bytes
(int)

This setting sets the limit (in bytes) for the size of the
azgmgrd.log file. When the limit is reached, the current file
is saved and a new one is started.

System Settings Reference 1068

Setting
Default Value
(type)

Description

max_memory 0=System-based
(int)

Specifies the amount of memory (in MB) that is available
for Graph Lakehouse. The default is system-based; at
startup, Graph Lakehouse determines the amount of RAM
that is available and sets max_memory. In test
environments where Graph Lakehouse may be co-
located with other programs, you can set the max_
memory value to put a limit on the amount of memory
Graph Lakehouse can use. However, Altair recommends
that you do not set max_memory unless instructed by
Support.

output_format xml (char) Specifies the default output format for Graph Lakehouse
responses. Valid values are xml, json, or csv.

persistence_
directory

Not set (char) The directory where Graph Lakehouse should save data
when enable_persistence is true and data is persisted to
disk. When not set, the default is <install_
path>/persistence. For more information, see
Relocate Graph Lakehouse Directories.

service_graph_
rowset_limit

1000 (int) This setting places a limit on the number of rows that can
be returned per request against the SPARQL endpoint.

sparql_
protocol_port

7070 (int) This setting specifies the port to use to access the
SPARQL HTTP endpoint when enable_sparql_protocol is
true.

sparql_spec_
default_graph

false (boolean) Controls the default scope of SPARQL queries when
FROM clauses are excluded from a query. When false,
queries without FROM clauses target the default graph
(DEFAULTSET) only. Triples in named graphs will not be

System Settings Reference 1069

Setting
Default Value
(type)

Description

included in the scope of the query. When true, Graph
Lakehouse conforms to the SPARQL specification and
includes the default graph and all named graphs in the
scope of a query that omits the FROM clause. For more
information, see Change the Default FROM Clause
Behavior.

spill_directory Not set (char) The directory where Graph Lakehouse should save
temporary query files that spill to disk. When not set, the
default is <install_path>/spill. For more
information, see Relocate Graph Lakehouse Directories.

Important
Graph Lakehouse uses O_DIRECT to read the

spill files into the database. If you relocate the spill

directory, make sure to place it on an ext4 file

system that supports O_DIRECT.

ssl_protocol_
port

8256 (int) This setting specifies the port to use to access the
SPARQL HTTPS endpoint when enable_ssl_protocol is
true.

startup_info 1 (int) Controls how verbose the database startup message is: -
0-quiet, 1-ready, 2-ports, 3-more.

stop_timeout 30 (int) When the database stop command is issued, this setting
specifies the number of seconds to wait for queries to
finish before stopping the database.

truncate_clob false (boolean) Controls whether to automatically truncate large strings to

System Settings Reference 1070

Setting
Default Value
(type)

Description

the maximum string size (2 MB).

use_custom_
ssl_files

false (boolean) Indicates whether you are replacing Graph Lakehouse's
self-signed certificates with your own custom certificates.
To configure Graph Lakehouse to use your certificates,
place the certificate files in the <install_
path>/config directory and set use_custom_ssl_
files to true. Restart the systemmanagement daemon
(azgmgrd) as well as the database to apply the
configuration change.

user_queues 64 (int) This setting configures the limit on the number of queries
that can run concurrently.

xray_sth_
portion

0.001 (float) This setting configures the percentage of total memory to
use for storing historical system table information in
memory before spilling to disk. The default value 0.001 =
0.1% of memory.

xray_sth_
spool_duration

7days (char) This setting controls the length of time to accumulate
historical system table information on disk for xrays.

xray_sth_
spool_maxgb

20 (int) This setting controls the maximum size (in GB) per node
of historical system table information to keep on disk for
xrays. When the limit is reached, Graph Lakehouse
deletes the oldest N records, where N depends on the
server workload, but is typically about 5 to 6 minutes
worth of system table data.

Advanced Settings

This section describes the settings in the Advanced section of settings.conf.

System Settings Reference 1071

l auto_restart_max_attempts

l auto_restart_time

l comm_enable_ssl

l comm_port_base

l compile_concurrent

l compile_max_memory

l compile_max_seconds

l compile_optimized

l copy_file_size

l cron_graphs

l cron_graphs_recheck

l enable_acl

l enable_external_auth

l enable_ocx

l enable_owlstats

l enable_refresh_stats_on_update

l enable_root_user

l enable_unbound_variables

l float_decimals

l float_format

l ignore_deniedlist_queries

l jvm_max_memory

l jvm_options

System Settings Reference 1072

l policy_file_enabled

Setting
Default Value
(type)

Description

auto_restart_
max_
attempts

5 (int) Specifies the number of times the systemmanager should
attempt to start the database after a crash. The default
value is 5, which means the systemmanager will attempt to
restart the database a maximum of 5 times. Changing auto_
restart_max_attempts to 0 disables the auto-restart feature.
For more information about the auto-restart feature, see
Manage Automatic Database Restart Options.

auto_restart_
time

600 (int) Specifies the number of seconds to spend attempting to
restart the database. If all attempts fail and this time limit is
reached, the systemmanager stops trying to restart the
database. The default value is 600, which means that the
systemmanager will attempt to restart the database for a
maximum of 600 seconds (10 minutes). For more
information about the auto-restart feature, see Manage
Automatic Database Restart Options.

comm_
enable_ssl

false (boolean) This setting controls whether SSL rather than gRPC is used
for communication between the nodes in a cluster.

comm_port_
base

9100 (int) This setting specifies the port to use for internal cluster
communication.

compile_
concurrent

8 (int) This setting specifies the maximum number of generated
code compilations to perform concurrently.

compile_
max_memory

500 (int) Sets the limit on the amount of memory (in MB) that Graph
Lakehouse can allocate for compiling generated code
before switching from optimized compile to non-optimized

System Settings Reference 1073

Setting
Default Value
(type)

Description

compile.

compile_
max_seconds

30 (int) Sets the limit on the number of seconds to spend compiling
generated code before switching from optimized compile to
non-optimized compile.

compile_
optimized

background
(char)

Specifies the type of optimized compile to perform.

copy_file_
size

5 (int) This setting controls the size (in MB) of the Turtle files that
are generated when graphs are exported to files. For more
information, see Copy Graphs to Files.

cron_graphs Not set (char) This setting configures the comma-separated list of the cron
graph names to enable. For information about cron graphs,
see Schedule Automated Data Updates.

cron_graphs_
recheck

10 (int) This setting specifies the interval (in seconds) to wait before
re-checking the cron_graphs value to determine if there are
changes.

enable_acl false (boolean) This setting controls whether Graph Lakehouse's internal
access control mechanism is enabled.

enable_
external_auth

false (boolean) This setting controls whether external access control is
enabled. For information about access control, see
Authentication and Access Control.

enable_ocx true (boolean) This setting controls whether support for OpenCypher and
BOLT protocol is enabled. For information about
OpenCypher support, see Cypher Query Language

System Settings Reference 1074

Setting
Default Value
(type)

Description

Reference.

enable_
owlstats

true (boolean) In order to generate query execution plans, Graph
Lakehouse needs to gather statistics about the data, such
as the number of triples per graph and number of distinct
subjects and predicates. This setting controls whether
advanced statistics gathering, called OWL stats, is enabled.
OWL stats use the metadata from data models to generate
statistics. Altair recommends that you leave enable_
owlstats enabled unless otherwise instructed.

enable_
refresh_
stats_on_
update

true (boolean) Controls whether the statistics in Graph Lakehouse are
flagged as outdated when a graph is updated.

enable_root_
user

false (boolean) This setting controls whether to allow a user running with
root privileges to start Graph Lakehouse.

enable_
unbound_
variables

false (boolean) Controls whether Graph Lakehouse returns an empty result
or an error if a query references a missing graph or includes
unbound variables. This value is set to false by default,
which means Graph Lakehouse returns an error. For more
information, see Ignore Missing Graphs and Unbound
Variables in Queries.

float_
decimals

6 (int) This setting does not apply to results that are returned
from Graph Lakehouse to other Altair gRPC protocol
applications. This setting would only affect results that are
returned directly from Graph Lakehouse to another
application over HTTP/S protocol.

System Settings Reference 1075

Setting
Default Value
(type)

Description

Graph Lakehouse formats floating point types using the

printf format string%.precision format, where precision
is the value of the float_decimals, and format is the
value of float_format.

Note
The interpretation of float_decimals differs

depending on the value in float_format. For fixed

point formats (f and F), float_decimals specifies

the number of digits to include after the decimal

point, padded with zeros if necessary. For floating

point formats (e, E, g, and G), float_decimals

specifies the number of significant digits to round

the result to.

float_format g (char) This setting does not apply to results that are returned
from Graph Lakehouse to other Altair gRPC protocol
applications. This setting would only affect results that are
returned directly from Graph Lakehouse to another
application over HTTP/S protocol.

Graph Lakehouse formats floating point types using the

printf format string%.precision format, where format is
the value of the float_format, and precision is the value
of float_decimals. Valid values for float_format are e, E,
f, F, g, or G. In the default configuration, a value of
10000000000.123 is returned as 1e+10.

ignore_
deniedlist_

true (boolean) Controls whether denied list queries are blocked from

System Settings Reference 1076

Setting
Default Value
(type)

Description

queries running or are allowed to be run when the database is
returned to normal operation. The default value is true,
which means denied list queries are ignored. Incoming
queries are not compared with the denied list and are
permitted to run. If ignore_deniedlist_queries is false,
denied list queries are not ignored and are therefore
blocked from running until they are removed from the
denied list. For more information about the auto-restart
feature, see Manage Automatic Database Restart Options.

jvm_max_
memory

Not set (char) Specifies the maximum size of the heap that can be used by
the embedded Java virtual machine (JVM). Use k,m, or g
(case insensitive) for KiB, MiB, or GiB. You can also specify
% to indicate a percentage of the total memory that is
available to Graph Lakehouse. By default, this value is not
set, which means jvm_max_memory defaults to either 5%
of the total memory or 4g, whichever value is smaller. When
not set, the default is 5% or 4g, depending on which value is
smaller.

jvm_options Not set (char) Lists any optional parameters to use for configuring the
embedded JVM. Use a semicolon-delimited (;) list to specify
multiple parameters. For information about JVM options,
see Options in the Java Documentation.

policy_file_
enabled

false (boolean) Enables or disables file system access control policies.
When policy_file_enabled is false (the default value),
Graph Lakehouse does not perform file path access checks
when a query reads or writes files or directories on the file
system. When policy_file_enabled is true and a
query attempts to access a file or directory on the file

System Settings Reference 1077

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html#CBBIJCHG

Setting
Default Value
(type)

Description

system, Graph Lakehouse performs the file path access
checks that are configured in the file_policy_* settings
and returns an access denied error message if the path is
not accessible. For instructions on configuring file access
policies and the file_policy_read, write, delete, and deny
settings, see Manage File Access Policies.

System Settings Reference 1078

Change System Settings

The default system configuration is optimized for most Graph Lakehouse installations. If want to

change settings due to your own preferences, or if Altair Support recommends that you change the

configuration, follow the instructions below to change setting values.

Note
Each time you start the database, Graph Lakehouse reads settings from the configuration file

and stores the values in memory. After you save configuration changes, you must restart

Graph Lakehouse for the new settings to take effect. On a cluster, change settings.conf on
the leader server only. See System Settings Reference for information about the units of

measurement for the settings as well as any special instructions.

1. Open the <install_path>/config/settings.conf file in a text editor.

The settings.conf file groups settings into two categories: Basic and Advanced. The
Basic settings are intended for users with basic knowledge about Graph Lakehouse or

databases in general, and the Advanced settings are intended for system administrators or

users with an advanced level of knowledge about Graph Lakehouse or databases.

2. Locate the setting whose value you want to change.

Each setting has two lines: the first line describes the setting, and the second line lists the

setting name and its current value (setting=value). Settings that are set to the default

value are commented out. For example, in the following two lines, the first line describes the

purpose of the sparql_protocol_port setting, and the second line lists the actual setting

and its current value. Since the setting/value pair is commented out, it shows that sparql_

protocol_port is set to the default value and has not been changed:

sparql_protocol_port (overall) - The port to open for HTTP (SPARQL end-

point) clients

sparql_protocol_port=7070

Change System Settings 1079

Note
If Altair Support has recommended that you change a setting that does not appear in

the file, add a new line to the end of the file and specify the setting name and value.

Graph Lakehouse applies settings from the top to the bottom of the file. If the same

setting appears more than once, Graph Lakehouse applies the value for the last

instance of the setting. The last instance overrides any previous instances.

3. If necessary, uncomment the line and then change the value for the setting. To add settings

to settings.conf, add the new setting and value in the format below. Type each setting and

value pair on a new line.

setting_name=value

4. When you finish changing settings, save and close the settings.conf file.

5. Restart Graph Lakehouse for the new settings to take effect.

In this section:
Manage File Access Policies 1080

Ignore Missing Graphs and Unbound Variables in Queries 1084

Change the Default FROM Clause Behavior 1085

Relocate Graph Lakehouse Directories 1086

Manage Automatic Database Restart Options 1087

Manage File Access Policies

In Graph Lakehouse and AnzoGraph DB Version 2.5.6 and later, you can configure file system

access control policies to ensure that only certain files or directories are accessible to Graph

Lakehouse during the execution of a query. This topic describes the configuration settings that

define the file access policies and provides instructions for setting up policies.

l File Access Policy Settings Reference

l File Access Control Behavior

Manage File Access Policies 1080

l Setting Up File Access Policies

File Access Policy Settings Reference

policy_file_enabled

The policy_file_enabled setting is the parent setting that controls whether or not file system
access policies are enabled and followed. When policy_file_enabled is false (the default value),
Graph Lakehouse does not perform file path access checks when a query references files or

directories on the file system. When policy_file_enabled is true and a query attempts to access a
file or directory on the file system, Graph Lakehouse performs the file path access checks that

are configured in the policy_file_read, write, delete, and deny settings described below.

policy_file_read, write, delete, and deny

The policy_file_read, write, delete, and deny settings specify the paths to directories and/or
files on the file system that Graph Lakehouse requests are allowed to read from, write to, or

delete from. For each of the "allowed" read, write, and delete settings, there is a corresponding

deny setting that configures the paths for which requests are denied read, write, and delete
access. This enables you to allow broad access to parent directories, if desired, and then use the

deny settings to restrict access to certain subdirectories under them if needed.

The values for the settings are wildcard patterns that Graph Lakehouse uses to match directories

and/or file names. Patterns are specified using basic file globbing syntax as described in the glob

(7) Linux manual page. Each policy_file_* setting accepts one or more patterns. Separate

multiple patterns with a semicolon (;). For readability, you can also include spaces between

patterns.

Important
Prior to matching paths in an incoming request to the configured access policy patterns,

Graph Lakehouse resolves the paths in the request to canonical paths (using the

std::filesystem::weakly_canonical function described here at

cppreference.com). That means segments such as /./ or /../ are fully expanded prior to

being compared to patterns. If a segment in the request path is a symlink, that segment is

Manage File Access Policies 1081

https://www.man7.org/linux/man-pages/man7/glob.7.html
https://www.man7.org/linux/man-pages/man7/glob.7.html
https://en.cppreference.com/w/cpp/filesystem/canonical

also expanded prior to checking for a match. Make sure that all access policy patterns
match absolute paths. Otherwise, expanded relative path or symlink segments in a
request will not match any patterns. For example, if users normally include a path like

/source-files/ in a request but /source-files/ is a symlink to

/mnt/anzoshare/data/source-files/, include the path to

/mnt/anzoshare/data/source-files/ in the pattern.

The following list describes the settings and provides sample pattern values. The File Access

Control Behavior section below includes specifics about pattern matching and access checks.

l policy_file_read: Specifies the pattern(s) to match for paths that queries have permission to
read from. For example, a value such as the following gives Graph Lakehouse requests read-

only access to all files and directories under the /opt/share and /mnt/data directories:

policy_file_read=/opt/share/* ; /mnt/data/*

l policy_file_read_deny: Specifies the pattern(s) to match for paths that queries should not
be allowed to read. For example, the following value means requests will not be allowed to

read any files or directories under /etc or /root:

policy_file_read_deny=/etc/* ; /root/*

l policy_file_write: Specifies the pattern(s) to match for paths that queries have permission to
write to. For example, the following value gives requests write access to the /tmp and /home

directories in addition to the /opt/share and /mnt/data directories.

policy_file_write=/tmp/* ; /home/* ; /opt/share/* ; /mnt/data/*

l policy_file_write_deny: Specifies the pattern(s) to match for paths that queries are denied
write access to.

l policy_file_delete: Specifies the pattern(s) to match for paths that queries have permission
to delete.

l policy_file_delete_deny: Specifies the pattern(s) to match for paths that queries are denied
delete access to.

Manage File Access Policies 1082

Note
The Graph Lakehouse installation path (<install_path>/*) is automatically added to

each of the *_deny policies.

File Access Control Behavior

When a query that includes a path to a file or directory is run (such as in a GDI query with s:url

"/opt/share/data/csv" or in a LOAD <dir:/mnt/data/rdf.ttl.gz> statement), Graph

Lakehouse resolves that path (for example, if the path includes /./ or /../ segments) to a

canonical path prior to checking whether it matches a policy_file pattern. If any segment of the path

is a symlink, that segment is also expanded prior to being matched to a pattern. If the specified file

or directory matches one of the allowed access patterns and it is not matched to a deny pattern, the

query is executed. If the specified path is matched to a denied pattern or is not matched to any of the

allowed patterns, the query is aborted and Graph Lakehouse returns an access denied error

message.

Setting Up File Access Policies

1. Stop the database. See Stop the Database and Leave the System Management Daemon

Running for instructions.

2. On the leader node, open the Graph Lakehouse settings file, settings.conf, in a text editor.
The file is in the <install_path>/config directory.

3. In settings.conf, uncomment the policy_file_enabled=false line and change the value

to true:

policy_file_enabled=true

4. Locate the additional policy_file_* settings:

File system paths that may be deleted (';' delimited) ()

policy_file_delete=

File system paths that may not be deleted (';' delimited) ()

policy_file_delete_deny=

Manage File Access Policies 1083

File system paths that may be read from (';' delimited) ()

policy_file_read=

File system paths that may not be read from (';' delimited) ()

policy_file_read_deny=

File system paths that may be written to (';' delimited) ()

policy_file_write=

File system paths that may not be written to (';' delimited) ()

policy_file_write_deny=

5. Uncomment each of the policy_file_*= lines that you want to set, and add the wildcard

pattern or patterns that you want to match for each of the policies.

6. Save and close settings.conf.

7. Restart the database to apply the configuration change. See Start the Database (the System

Management Daemon is Running) for instructions.

Ignore Missing Graphs and Unbound Variables in Queries

By default, Graph Lakehouse returns a "No such graph or view" error and aborts the query if a query

references a graph that does not exist. You can configure Graph Lakehouse to conform to the

SPARQL specification and return an empty result instead of an error, however, if a query references

a missing graph. Follow the instructions below to configure the system to return empty results

instead of an error when a referenced graph does not exist.

1. Stop the database. See Stop the Database and Leave the System Management Daemon

Running for instructions.

2. On the leader node, open the Graph Lakehouse settings file, settings.conf, in a text editor.
The file is in the <install_path>/config directory.

3. In settings.conf, uncomment the enable_unbound_variables=false line and change

the value to true:

enable_unbound_variables=true

4. Save and close settings.conf.

Ignore Missing Graphs and Unbound Variables in Queries 1084

5. Restart the database to apply the configuration change. See Start the Database (the System

Management Daemon is Running) for instructions.

Note
In addition to allowing queries that reference non-existent graphs to succeed, setting

enable_unbound_variables to true also configures Graph Lakehouse to ignore unbound

variables elsewhere in queries. For example, by default (when enable_unbound_

variables=false), if a query includes a variable in the SELECT list that is not referenced in

a WHERE clause pattern, Graph Lakehouse aborts the query and returns a "Named variable

not in contained WHERE clause" error. When enable_unbound_variables=true, the

user is not warned about unbound variables. Instead, the results are empty for the unbound

variable. For example:

SELECT ?unbound ?person ?name

FROM <http://anzograph.com/people>

WHERE {?person <http://anzograph.com/people#firstname> ?name}

LIMIT 5

unbound | person | name

---------+-------------+---------

| person35632 | Ross

| person20216 | Quin

| person35859 | Kellie

| person2551 | Maris

| person24963 | Madonna

5 rows

Change the Default FROM Clause Behavior

By default, if a query omits FROM clauses, the scope of the query is limited to the default graph

(DEFAULTSET). Triples in named graphs will not be included in the scope of the query. The default

behavior is controlled by the sparql_spec_default_graph configuration setting. To configure Graph

Lakehouse to conform to the SPARQL specification and include the default graph and all named

graphs in the scope of a query that omits the FROM clause, follow the instructions below.

Change the Default FROM Clause Behavior 1085

1. Stop the database. See Stop the Database and Leave the System Management Daemon

Running for instructions.

2. On the leader node, open the Graph Lakehouse settings file, settings.conf, in a text editor.
The file is in the install_path/config directory.

3. In settings.conf, uncomment the sparql_spec_default_graph=false line and change

the value to true:

sparql_spec_default_graph=true

4. Save and close settings.conf.

5. Restart the database to apply the configuration change. See Start the Database (the System

Management Daemon is Running) for instructions.

Relocate Graph Lakehouse Directories

Follow the instructions in this section to designate alternate locations for certain directories included

in the Graph Lakehouse installation. You have the option to relocate the persistence directory
where the system saves the data in memory to the file system, the internal directory where the
system saves database-related files such as logs and generated code, and the spill directory where
the system saves any temporary query files that spill to disk.

You can change the settings described in this section at any time. Once you restart the database,

Graph Lakehouse starts saving any new files in the directory locations that you specify. The system
does not relocate any existing directories or files. You can move the existing files manually
if needed.

1. Stop the database. See Stop the Database and Leave the System Management Daemon

Running for instructions.

2. On the leader node, open the Graph Lakehouse settings file, settings.conf, in a text editor.
The file is in the <install_path>/config directory.

3. In settings.conf, uncomment the lines for any of the following settings. Then edit the value

portion of setting=value to specify the desired directory.

Relocate Graph Lakehouse Directories 1086

l internal_directory: The directory where you want Graph Lakehouse to save internal

database-related files such as generated code, logs, and query plans.

l persistence_directory: The directory where you want Graph Lakehouse to save data

when writing data to disk.

l spill_directory: The directory where you want the Graph Lakehouse to save any

temporary query files that spill to disk.

Important
Graph Lakehouse uses O_DIRECT to read the spill files into the database. If you

relocate the spill directory, make sure to place it on an ext4 file system that

supports O_DIRECT.

4. Save and close settings.conf.

5. Restart the database to apply the configuration change. See Start the Database (the System

Management Daemon is Running) for instructions.

Manage Automatic Database Restart Options

If Graph Lakehouse shuts down unexpectedly, the system manager automatically restarts the

database and evaluates the queries that were running at the time of the shutdown. This topic

describes the process that occurs when Graph Lakehouse automatically restarts and provides

information about the configuration settings that control the functionality as well as administrative

information for managing the evaluated queries.

l Automated Restart Procedure

l Automated Restart System Settings

l Removing a Query from the Block List

Automated Restart Procedure

The steps below describe what occurs during the automatic restart process after Graph Lakehouse

has crashed:

Manage Automatic Database Restart Options 1087

1. The system manager restarts the database in safe mode. In safe mode, Graph Lakehouse is
locked to users and returns the following message if a user runs a query: "Graph Lakehouse

is running in safe-mode. Cannot execute query." In addition, running azgctl -status to

check the status of the database returns the message "Graph Lakehouse is running in safe-

mode." If persistence is enabled, the data that was in memory at the time of the crash is

reloaded into memory.

2. While in safe mode, Graph Lakehouse runs any queries that were inflight at the time of the

crash. By executing the queries that were running, Graph Lakehouse tries to determine if the

crash was directly caused by one of the inflight queries.

3. Depending on the outcome of running the inflight queries, Graph Lakehouse does the

following:

l If all inflight queries run to completion in safe mode, they are all added to the warned_
list. In addition, each query is copied to a file named <query_ID>.txt in the
<install_path>/internal/auto_restart/<timestamp>/warned_list

directory.

Note
When all inflight queries complete successfully, that means it is unlikely that any

one of the queries on its own is the culprit for the crash. However, all of the

queries are added to the warned list because it is possible that the combination of

queries run concurrently could have caused the crash.

l If any of the inflight queries fail or crash the database in safe mode, those queries are

added to the denied_list. In addition, each query is copied to a file named <query_
ID>.txt in the <install_path>/internal/auto_

restart/<timestamp>/denied_list directory.

Manage Automatic Database Restart Options 1088

Note
If an inflight query fails, none of the inflight queries are added to the warned list.

Instead, the failed queries are added to the denied list.

l If Graph Lakehouse runs a query in safe mode and cannot determine if it should be

added to the denied or warned list, those queries are copied to a file named <query_

ID>.txt in the <install_path>/internal/auto_

restart/<timestamp>/unanalyzed_list directory.

l Metadata about the warned_list, denied_list, and unanalyzed_list queries is captured in

the stc_blocklist system table.

Note
The auto_restart_directory setting in the system configuration file, <install_

path>/config/settings.conf, controls the location of the auto_restart directories

listed above. For more information about the setting, see the Automated Restart

System Settings section below.

4. After the inflight queries have been run, Graph Lakehouse restarts the database, loads the

persisted data back into memory, and returns the system to normal operation.

To help prevent the circumstance that caused the database to crash, any queries that were added

to the denied list are blocked from being executed when the system returns to normal operation.

When a user runs a query, Graph Lakehouse compares that query with the denied list. If the query is

on the list, the query is terminated and Graph Lakehouse returns an "Attempting to execute a

denied-listed query" error message. Queries on the warned list are not blocked. A denied list query

cannot be run unless it is removed from the denied list. This behavior is controlled by the ignore_
deniedlist_queries setting. For more information about the setting, see the Automated Restart
System Settings section below. For information about removing queries from the denied list, see

Removing a Query from the Block List below.

Manage Automatic Database Restart Options 1089

Automated Restart System Settings

The automatic restart feature is controlled by the following four settings in <install_

path>/config/settings.conf:

l auto_restart_max_attempts: This setting specifies the number of times the system
manager should attempt to start the database after a crash. The default value is 5, which
means the system manager will attempt to restart the database a maximum of 5 times.

Changing auto_restart_max_attempts to 0 disables the auto-restart feature.

l auto_restart_time: This setting specifies the number of seconds to spend attempting to
restart the database. If all attempts fail and this time limit is reached, the system manager

stops trying to restart the database. The default value is 600, which means that the system
manager will attempt to restart the database for a maximum of 600 seconds (10 minutes).

l auto_restart_directory: This setting specifies the base location of the auto_restart
directory, which contains the denied_list, warned_list, and unanalyzed_list directories. The

default value is <install_path>/internal.

l ignore_deniedlist_queries: This setting controls whether denied list queries are blocked
from running or are allowed to be run when the database is returned to normal operation. The

default value is false, which means denied list queries are not ignored and are therefore
blocked from running. If ignore_deniedlist_queries is true, incoming queries are not
compared with the denied list and are run.

Important
Changing the auto_restart_max_attempts, auto_restart_time, or auto_restart_directory
values requires a restart of the system management daemon, azgmgrd, as well as the
database. See Start and Stop Graph Lakehouse for instructions.

Removing a Query from the Block List

Graph Lakehouse stores metadata about the denied and warned list queries in the stc_blocklist
system table. To remove a query from either list, you remove the entry from the stc_blocklist table

by running the REMOVE_FROM_BLOCKIST command.

Manage Automatic Database Restart Options 1090

REMOVE_FROM_BLOCKLIST '<list_name>' <query_ID>

Where <list_name> is the name of the list that the query is on and <query_ID> is the ID number for

the query. To retrieve the list name and query ID values, run the following query to return the stc_

blocklist contents:

SELECT * WHERE { TABLE 'stc_blocklist'} ORDER BY ?blocklist

For example:

/opt/anzograph/bin/azgi -c "select * where {table 'stc_blocklist'} order by ?blocklist"

query | blocklist | updated | query_text | part

------+-------------+---------------------+---------------------------+------

3587 | denied_list | 2020-08-25 14:29:27 | select * from <http://an..| 0

3592 | denied_list | 2020-08-25 14:29:32 | select * where {?s ?p ?o} | 0

3612 | warned_list | 2020-08-25 14:32:15 | select * from <http://an..| 0

In the results, the <list_name> is the value in the blocklist column, and <query_id> is the value in
the query column. Running the following command removes the first entry from the stc_blocklist

table, which removes that query from the denied list.

REMOVE_FROM_BLOCKLIST 'denied_list' 3587

Manage Automatic Database Restart Options 1091

Develop

Graph Lakehouse exposes a number of extension points that developers can use to customize and

extend their system's analytic capabilities. The extension point interfaces and the user code that

implements them are called user-defined extensions (UDX). Currently, Graph Lakehouse offers

C++ and JVM APIs that developers can use to implement user-defined functions and other

extensions. JVM extensions, for example, include those developed in languages such as Java or

Scala.

Note
Developing C++ UDXs requires a compiler that is compatible with C++ version 11 or later. You

may also use any number of vendor IDEs that are compatible with these requirements, such

as Eclipse or Microsoft Visual Studio Code. Developing JVM UDXs requires that you install

OpenJDK 11. Apache Maven 3.6.2 is also useful in JVM environments for compiling and

packaging JVM source files into JAR files.

The topics in this section introduce you to the fundamental concepts of developing user-defined

extensions and provide instructions for using either the Graph Lakehouse C++ or JVM-based API to

create these user-defined extensions.

In this section:
UDX Terminology and Concepts 1093

Developing User-Defined Extensions 1102

Loading a UDX to the Database 1129

Using Extensions in SPARQL Queries 1130

UDX Examples 1131

Develop 1092

UDX Terminology and Concepts

This topic introduces the Graph Lakehouse user-defined extensions (UDX) interface and describes

fundamental terminology and concepts associated with developing custom Graph Lakehouse

extensions that implement the UDX interface. Subjects covered here are the following:

l Extension Types

l Extension Libraries

l Extension Metadata

l Extension Data Types

l Data Type Handling

Extension Types

Graph Lakehouse extensions are programs that implement the UDX interface and can be registered

and loaded into the Graph Lakehouse system where they can be used within queries or other

command statements. Graph Lakehouse currently supports three different kinds of extensions.

Each extension has similar but distinct requirements:

l User-Defined Functions (UDF): A UDF extension maps or processes a single row of input

values to return a single row of output values. For example, a developer can design a UDF

extension to create an analytic function, such as those that concatenate values or convert

integers to alternate currencies.

l User-Defined Aggregates (UDA): A UDA extension maps or processes multiple rows of

input values to return a single row of output values. For example, a developer can design a

UDA extension, such as those that compute an arithmetic mean, or perform operations like

SUM, STDDEV, or MAX. Unlike a UDF, which returns a distinct value each time it is applied,

a UDA aggregates the collection of values to which it is applied into a single summary value.

l User-Defined Services (UDS): A UDS extension maps or processes multiple rows of input

values to return multiple rows of output values. For example, a developer can design and

register a UDS extension that defines a SPARQL endpoint.

UDX Terminology and Concepts 1093

Extension Libraries

Extension libraries are executable code modules that define and organize a collection of

extensions. Libraries can be implemented in either C++ or any JVM-based language such as Java

or Scala. Developers can create and register any number of extension libraries.

Extension Metadata

Extension libraries are self-describing; that is, they include the necessary metadata that describe

the number, name, type, and calling signature of the various extensions they implement. When a

new UDX is implemented, the developer adds the metadata to an extension library that describes

each new UDX. When the extension library is loaded into Graph Lakehouse, the system adds the

extension library metadata to an internal Graph Lakehouse registry so that the new UDX can be

invoked from within subsequent SPARQL queries.

Extension Data Types

The following table describes the types of values that can be passed into and returned from a user-

defined extension. For each type, we can specify:

l Enum Type: A unique number that identifies the data type.

l RDF Type: The name by which the type is known within the SPARQL query language.

l C++ Type: The type by which it is known within the C++ language.

l JVM Type: The type by which it is known within the JVM language.

l UDX Registry Data Type: The language-independent name by which it is known within the

Graph Lakehouse registry.

UDX Data Types

The following table describes mapping for the various data types that can be specified in an Graph

Lakehouse user-defined extension.

UDX Terminology and Concepts 1094

Note
The data types listed in the table describe values that can be passed into and out of a user-

defined extension. In C++, we do this by placing the values into the elements of a row. In JVM

languages, the values are passed on the stack as explicit parameters to the relevant UDX.

Enum
Type

RDF
Type

Descrip-
tion

C++ Type JVM Type

t_
boolea
n

xsd:boole
an

A non-
nullable 8-
bit
boolean
value

bool boolean boolea
n

t_byte xsd:byte A non-
nullable 8-
bit signed
integer

byte/uint8_t byte byte

t_short xsd:short A non-
nullable
16-bit
signed
integer

short/int1
6_t

short short

t_int xsd:int A non-
nullable
32-bit
signed
integer

int/int32_t int int

t_long xsd:long A non-
nullable

long/int64_t long long

UDX Terminology and Concepts 1095

Enum
Type

RDF
Type

Descrip-
tion

C++ Type JVM Type

64-bit
signed
integer

t_float xsd:float A non-
nullable
32-bit IEE
single
precision
float

float float float

t_
double

xsd:doubl
e

A non-
nullable
64-bit IEE
double
precision
float

double double double

t_
Object

N/A A direct
sum of all
possible
nullable
types

-- java/lang/Object Object

t_
Boolea
n

xsd:boole
an

A nullable
8-bit
boolean
value

bool java/lang/Boolean Boolea
n

t_Byte xsd:byte A nullable
8-bit

byte/uint8_t java/lang/Byte Byte

UDX Terminology and Concepts 1096

Enum
Type

RDF
Type

Descrip-
tion

C++ Type JVM Type

signed
integer

t_Short xsd:short A nullable
16-bit
boolean
integer

short/int1
6_t

java/lang/short Short

t_
Integer

xsd:int A nullable
32-bit
signed
integer

int/int32_t java/lang/Integer Int

t_Long xsd:long A nullable
64 bit
signed
integer

long/int64_t java/lang/Long Long

t_Float xsd:float A nullable
32-bit IEE
single
precision
float

float java/lang/Float Float

t_
Double

xsd:doubl
e

A nullable
64-bit IEE
double
precision
float

double java/lang/Double Double

t_Date xsd:date A nullable udx2::Date java/time/LocalDate Date

UDX Terminology and Concepts 1097

Enum
Type

RDF
Type

Descrip-
tion

C++ Type JVM Type

32-bit

signed

number of

days

since

1/1/2000

t_Time xsd:time A nullable
64-bit
signed
number of
microseco
nds since
1/1/2000

udx2::Time java/time/OffsetTime Time

t_
DateTi
me

xsd:dateT
ime

A nullable
<us, time
zone>
pair -
since
1/1/2000

udx2::Date
Time

java/time/ZonedDateTime DateTi
me

t_
Duratio
n

xsd:durati
on

A nullable

<months,

us> pair -

since

1/1/2000

udx2::Dura

tion

java/time/Duration Duratio
n

t_
String

xsd:string A nullable udx2::Strin

g

java/lang/String String

UDX Terminology and Concepts 1098

Enum
Type

RDF
Type

Descrip-
tion

C++ Type JVM Type

view into

a string of

UTF8

character

s

t_
LString

xsd:string A nullable

pair of

string

views

udx2::LStri

ng

com/cambridgesemantics/anzogr
aph/udx/LString

LString

t_UDT N/A A nullable
pair of
string
views

udx2::UDT com/cambridgesemantics/anzogr
aph/udx/UDT

UDT

t_URI IRI A nullable
view into a
string of
UTF8
character
s

udx2::Strin

g

com/cambridgesemantics/anzogr
aph/udx/URI

URI

t_Blob N/A A nullable
block of
raw binary
bytes

udx2::Blob com/cambridgesemantics/anzogr
aph/udx/Blob

N/A

UDX Terminology and Concepts 1099

Data Type Handling

The illustration below provides a diagram of Graph Lakehouse's UDX data type handling. The top

row in the diagram shows the built-in primitive types, and the bottom plane shows the corresponding

reference types. The arrows pointing from primitive types to corresponding reference types

represent automatic coercions. Details about data type processing and automatic type coercion

follow the diagram.

Primitive Types

The top row in the diagram depicts non-nullable types that are native to both the C++ and JVM

languages.

If a UDX registers itself as requiring a primitive type as one of its arguments, but it receives a null

value at run time, the system generates an exception and the query is aborted. Similarly, if a UDX

registers itself as returning a primitive type as one of its results, but it actually returns a null value,

the system also generates an exception and the query is aborted.

Note
Passing and returning values of primitive types is generally faster than using the

corresponding reference types, and thus, is preferred whenever possible for best

performance.

Reference Types

The reference types shown in the bottom plane of the diagram represent data values that are

passed by reference. These types are ultimately derived from "Object," have methods, are

instances of classes, and are interrogated at run-time for their type. Reference types are also

UDX Terminology and Concepts 1100

nullable. Each primitive type (boolean, byte, short, int, long, float, double) has a corresponding

reference type that it is mapped to (Boolean, Byte, Short, Integer, Long, Float, Double).

Note
Passing and returning values as reference types is generally slower than using their primitive

counterparts, but using reference types often provide more flexibility.

Data Type Coercion

Graph Lakehouse supports automatic type coercion of certain data types. These data types are

represented by the downward-pointing arrows in the previous diagram showing Graph Lakehouse

data type mapping. Where automatic conversion is supported, a value of one type can be supplied

to a UDX where a value of another type is generally prescribed, and Graph Lakehouse will convert

the data type without a loss of information or precision.

For example, if a UDX expects a Double value as an input argument and the value supplied is an
int, Graph Lakehouse coerces the value as follows:

int→long→float→double→Double

If a UDX requires a long value, but an int is supplied, Graph Lakehouse converts the int from a 32-

bit signed integer to a 64-bit signed integer 3L type and clears out the high 32 bits.

UDX Terminology and Concepts 1101

Developing User-Defined Extensions

The topics in this section provide guidance on developing extensions.

In this section:
UDX Development Process Overview 1103

Reviewing UDX Interface Files 1105

Creating New UDX Library Source Files 1116

Registering a UDX in an Extension Library 1121

Compiling UDX Source Files 1126

Developing User-Defined Extensions 1102

UDX Development Process Overview

This topic provides a summary of the procedure for developing and deploying new user-defined

extensions (UDX) created in either C++ or JVM environments.

1. Familiarize yourself with the UDX interface, the extension point classes, input and output

parameters, data members and methods defined in the udx_api.hpp include file (for C++

UDX development), or imported from the com.cambridgesemantics.anzograph.udx

package (for JVM UDX development). For information about the UDX interface, see

Reviewing UDX Interface Files.

2. Create the C++ .cpp or JVM source files for a user-defined extension library. (Each source

library file may contain one or more UDX functions, aggregates, or service extensions.)

Tip
For C++ environments, the udx_api.hpp include file provides a description of classes ,

data members, and methods available for C++ UDX development. For JVM

environments, Graph Lakehouse provides two JAR files in the <install_

path>/lib/jar directory:

l anzograph-udx-api-2.1.0 – Graph Lakehouse UDX Interface library.

l anzograph-udx-api-2.1.0-javadoc – Full HTML API documentation describing

Graph Lakehouse JVM UDX interface library packages, classes, annotations, data

members and methods.

3. Add the required metadata statements to your UDX library source file so you can register the

new UDXs in your source file as an extension library available in Graph Lakehouse. You may

create one or more separate UDX or extension library files to register and use in Graph

Lakehouse.

4. Compile the UDX library source file into a shared object file for C++ based extension libraries

or a JAR file for JVM-based extension libraries.

5. Place the C++ shared object (.so) or JAR files, and any files or libraries the extensions are

dependent on, in a pre-configured location on the Graph Lakehouse leader node of a server

UDX Development Process Overview 1103

cluster. Each time Graph Lakehouse is started, the system loads the C++ shared object or

JAR files and adds any registered extensions to the Graph Lakehouse registry.

UDX Development Process Overview 1104

Reviewing UDX Interface Files

This topic provides more detailed information on the content of UDX API interface files available for

UDX development in C++.

Note
Documentation on UDX development in JVM environments is in progress and not available at

this time.

Reviewing the C++ UDX Include File

The following sections describe each of the sections within the udx_api.hpp file. This file is

located in the <install_path>/include directory.

l Overview

l Data Types

l Extension Points

l System Information

l Memory Allocation

l Exceptions

l Implementation Details

l Reviewing the C++ UDX Include File

Overview

The beginning portion of the udx_api.hpp file simply provides some versioning information and

description of major changes among different versions of the include file. The top portion of the

include file also provides additional directives to the C++ compiler regarding additional system

library includes, a name space declaration of various function and variable scope, and the metadata

structure that provides various version compatibility information.

Reviewing UDX Interface Files 1105

Data Types

This section of the C++ include header (.hpp) file provides several different things:

l Enumeration of available UDX data types, for example, t_Null = 0, t_boolean = 1, t_

byte = 2, and so on.

l Listing of various aliases mapped to corresponding UDX data types with the using keyword

directive or declaration, for example, using blob = std::int64_t;, using Date

= std::int32_t, and so on.

l Declarations of a public DateTime() class along with data members and several different

function call signatures to store and return various date, time, and timezone information.

l Various public helper functions:

l Duration() – calculate months or time (in microseconds) since January 1, 2000.

l LString() –

l UDT() –

l Blob() –

l An Allocated structure that developers can use to allocate space for objects with memory

managed by Graph Lakehouse

l A Row class that stores and returns information on UDX input arguments and result shapes or

schema. Graph Lakehouse uses rows to marshal values in and out of user code.

l A namespace that provides operations to insert data values and other information, for

example, schemas, rows, datetime values, and blobs, into memory,

Extension Points

This section defines different extension point interfaces that developers can implement to create

different types of extensions in an UDX library file:

l User Defined Function (UDF) looks to the user like a normal function that maps one row of

input values to one row of output values.

Reviewing UDX Interface Files 1106

l User Defined Agggregate (UDA) looks to the user like a normal function that maps many

rows of input values to one row of output values.

l User Defined Service (UDS) looks to the user like a service that maps many rows of input

values to many output values, or like a table that maps zero rows of input values to many

output values.

An Extension struct provides a common base from which all user-defined extensions are derived.

Extension Library Meta-Data

C++ extensions are compiled and linked into extension libraries, which are modules of executable

code that export a meta-data description of their contents. Formally, a C++ extension library is any

Linux shared library that exports an entry point of the form:

//*

//* extern "C" void register_extensions(MetaData &md) {

//* md.json_metadata = R"({

//* "name" : <name>,

//* "language" : "c++",

//* "version" : <version>,

//* "description" : <description>,

//* "author" : <author>,

//* "copyright" : <copyright>,

//* "contents" : [<extension> *]

//* })";

//* }

//*

The values of each attribute in the JSON metadata have the following meaning:

Field Description

name The name of the library; a string that distinguishes it from all other such
libraries currently installed within the system.

language Hard-coded to "C++" for UDX libraries created with C++.

version The version of the library; specified as a string of the form

Reviewing UDX Interface Files 1107

Field Description

"MAJOR.MINOR.PATCH".

description A brief description of the library and the kind of functionality that it provides.
This attribute is optional.

author The author of the library.This attribute is optional.

copyright Any copyright that may pertain to the library. This attribute is optional.

contents

[<extension>

*]

Specifies a meta-data description of each extension defined with the same
source file and exported to Graph Lakehouse from the library.

Extension Meta-Data

The contents attribute of the Graph Lakehouse extension library meta-data fields enumerates

JSON meta-data descriptions of each extension defined within the same extension library source

file. Each type of extension point share a certain number of attributes in common:

Field Description

name The name-space qualified name of the extension as it appears to a user of the
query language.

type The type of the extension point implemented: "function", "aggregate", or
"service". , or "table". (Use of the "table" type is deprecated, since the same
functionality can be achieved using the service extension type.)

signature The name of the exported entry point that returns an "ExtensionFactory" for the
given extension.

description A brief description of the extension itself. This attribute is optional.

Reviewing UDX Interface Files 1108

Note
See Registering a UDX in an Extension Library for more information on specifying entries in a

C++ source file for the extension library and all the UDXs defined within the same library

source file. For examples on creating C++ UDXs of each extension type, see UDX Examples.

UDX Type Structures and Meta-Data

The remaining portions of the Extension Point section of the udx_api.hpp include file provide

template class structures for the construction of every supported UDX type: Function, Aggregate,
Service, and Table (deprecated). Each of the extension type classes also provide methods for
processing input arguments passed to extensions or values returned from those same extensions.

Class Struc-
ture

Description

struct

Function :

Extension

The Function class represents, perhaps, the simplest of the extension points,
and allows developers to extend the set of analytic functions already built into the
query language seen by the end user. A function extension applies some
operation to the given arguments and returns an output row result based on the
function's implementation.

struct

Aggregate :

Extension

The Aggregate class enables developers to extend the set of aggregate

functions that are already built into Graph Lakehouse for use in queries.

Aggregate functions process a given row of values across ...

struct

Service :

Extension

The Service class represents perhaps the most powerful of the extension points
and ...

struct

Table :

Extension

Deprecated.

Reviewing UDX Interface Files 1109

Each of the different extension type classes has additional attributes specified as part of UDX library

meta-data.

Additional Attributes for the Function Extension

In addition to those attributes common to every extension, the following attributes are specified for

extension functions.

Attribute Description

arguments An array of zero or more types that specifies the number and type of arguments
required by any application of the UDF. Determines the shape of the input row
passed as the "a" parameter of the applymethod.

results An array of zero or more types that specifies the number and type of results that
are returned by any application of the UDF. Determines the shape of the output
row passed as the "r" parameter of the applymethod.

variadic A boolean value which indicates, if true, that the final type listed in the arguments
array may be repeated one or more times in an application of the UDF. This
attribute is optional.

When compiling a query including a UDF, for example, the leader verifies that the number and type

of the arguments passed to the UDF are consistent with its domain, as specified by the arguments
and variadic attributes of the meta-data description. When executing a query, each slice creates its

own distinct instance of the UDF for every occurrence in the query by invoking the create method

of the associated ExtensionFactory.

As each row of values streams through a slice, it is passed to the instance by calling its apply

method, and the results are then passed up to the consumer of the stream. The factory, and the

instances that it creates, are destroyed only when the query has eventually finished executing.

Additional Attributes for the Aggregate Extension

In addition to those attributes common to every extension, the Aggregate extension has the

following additional meta-data attributes.

Reviewing UDX Interface Files 1110

Attribute Description

arguments An array of zero or more types that specifies the number and type of

arguments required by any application of the UDF. Determines the shape of

the input row passed as the 'a' parameter of the accumulate method.

results An array of zero or more types that specifies the number and type of results that
are returned by any application of the UDF. Determines the shape of the output
row passed as the 'r' parameter of the resultmethod.

variadic A boolean value which, if true, indicates that the final type listed in the

arguments array may be repeated one or more times in an application of the
UDA. This attribute is optional.

states An array of zero or more types that specifies the number and type of states that

are marshaled across the cluster when merging those intermediate results that

accumulated on the slices during the accumulation phase.

Determines the shape of the output row passed as the "s" parameter of the

save method and determines the shape of the input row passed as the "s"

parameter of the merge method. This attribute is optional.

When compiling a query, the leader verifies that the number and type of the arguments passed to

the UDA are consistent with its domain, as specified by the arguments and variadic attributes of
the meta-data description. A slice of the cluster is designated as the receiver of the final aggregate

result.

When executing a query, each slice creates its own distinct instance of the UDA for every

occurrence in the query by invoking the create method of the associated ExtensionFactory.

l As each row of values streams through a slice, it is passed to the instance by calling its

accumulate method, which responds by updating its internal state as necessary to record

having processed the row in some appropriate way.

Reviewing UDX Interface Files 1111

l When all rows on the slice have been accumulated, the instance is now given a mutable row

(of shape states) into which it serializes any intermediate results it has accumulated, and

instance is then destroyed.

l The slice receiving the result now creates an instance of the UDA and a row (of shape

states), and the system arranges for all intermediate states to be transmitted across the

cluster and 'merged' into the instance by passing each in turn to its merge method.

The factory, and the instances that it creates, are destroyed only when the query has eventually

finished executing.

System Information

Graph Lakehouse also provides a number of utility functions that can be invoked at any time by any

UDX. These functions let you query basic system information useful in providing more exact control

of a UDX's execution.

The following table provides a brief description of these functions.

Function Description

amPlanning() Boolean; returns true if the caller is being invoked during the execution
of a query on the nodes of the cluster.

amExecuting() Returns the identifier of the worker node on which the caller is
executing as an integer in the range 0 to getNodes().

getNode() Returns the total number of worker nodes in the cluster.

getNodes() Returns the identifier of the slice on which the caller is executing;
returns an integer in the range 0 to getSlices().

getSlice() Returns the total number of slices in the cluster.

getSlices() Returns a string of the form "<MAJOR>.<MINOR>,<PATCH>" that
describes the Graph Lakehouse API version supported by this server.

Reviewing UDX Interface Files 1112

Function Description

getHostVersion() Returns the source text of the currently executing query.

getQueryText() Returns any additional data that may have been supplied by the client
along with the text of the query that is currently executing. The client
context string that is returned may take any form whatsoever; the
server does not parse it in any way, but merely makes it available to
extensions unmodified via this access function.

getClientContext() Logs a null-terminated string and an associated integer to the sth_udx
system table . extension The string includes the namespace-qualified
name of the extension that is logging a given message, an integer
indicating the severity level of the event, and the raw text of the
message to be logged. The 'level' ostensibly describes the 'severity' of
the given logging event, but can in fact represent anything; the system
does not interpret its value in any particular way.

logText(...) Logs a null-terminated string and an associated integer to the sth_udx
system table. This variant of the log function formats any additional
details into the given message template printf style before forwarding
the arguments on to the logText function.

vlog(...) Provides another variant of the logging functions.

log(...)

Note
Refer to the udx_api.hpp include file for addtional comments and descriptions of

parameters for each of the listed functions.

Reviewing UDX Interface Files 1113

Memory Allocation

Developers are encouraged to call the following functions to acquire memory for extensions from

the system's free memory, thus allowing the server to monitor an extension's usage of memory,

warn of possible leaks, and generally ensure the smooth running

of the system as a whole.

void *malloc(size_t);

void *calloc(size_t, size_t);

void *realloc(void *, size_t);

void free(void *);

When allocating memory for large objects, or allocating memory for objects that will outlive the

current stack frame (for example, assigning to a data member of an extension), it is recommended

you used one of the following options:

l Use a standard library container that is parameterized on the new udx2::allocator:

struct agg : Aggregate {

std::vector<int,udx2::allocator<int>> m_vec = { ... };

l Use a smart pointer:

struct agg : Aggregate {

udx2::unique_ptr<Object> = udx2::make_unique<Object>(...);

l call udx2::mallo, etc:

Objects with indeterminate lifetime should use one these three techniques, if at all possible. For

other situations, you can continue to use small, short-lived objects as before, for example:

bool foo(const std::string& x) { ... }

bool bar () { std::vector<int> = {... }; ... }

Reviewing UDX Interface Files 1114

Exceptions

Exceptions thrown by extension code are caught by the server, which aborts the currently executing

query and reports the error to the user. This section provides a collection of macros that developers

can use to throw exceptions. It is recommended that developers use these macros, as other

methods may trap exceptions whose error messages are not as meaningful.

Note
Exceptions thrown by extension code are caught by the server, which halts execution of the

query containing an offending UDX and reports an error to the user.

l azg_throw(extension, message, ...) – Formats the given arguments as a user

visible message and throws this as an exception.

l azg_check(expression, extension, message, ...) – Evaluates the given

expression. If false, formats the given arguments as a user visible message and throws this

as an exception.

Note
Refer to the udx_api.hpp include file for a description of parameters for each of the listed

functions.

Implementation Details

This section provides various internal Graph Lakehouse namespace and utility operations required

for UDX creation, class templates, type conversions, data streaming, and so on.

Reviewing UDX Interface Files 1115

Creating New UDX Library Source Files

This topic provides information on creating new extension source files in C++ environments. You

can add new extensions by creating a C++ source library file that define the operations performed

by one or more UDX functions, aggregates, or services. Within the same source library file, you can

create new extensions of different types (UDF, UDA, or UDS), which differ based on the number

and shape of UDX input arguments and returned results.

Note
Documentation on UDX development in JVM environments is in progress and not available at

this time.

Creating New Extension Source Files in C++

1. Create or edit a C++ .cpp source file to define new UDX function, aggregate, or service

implementation details.

2. At the top of the .cpp file, add the following line to include the UDX header file, udx_
api.hpp.The header file is in the <install_path>/include directory and defines the
UDX classes, class data members and methods, utility functions, macros, and other

declarations available for your use in implementing Graph Lakehouse UDX function,

aggregate, or service functionality:

#include "udx_api.hpp"

3. Graph Lakehouse's API entities are defined in the udx2 namespace. Add the following line to
the file to use the udx2 namespace:

using namespace udx2;

4. Next, for a single extension, specify the interface for the type of UDX you want to the

implement: a function, aggregate, or service. Then, use methods provided for the specified

extension type to process input and output parameters for the extension.

Creating New UDX Library Source Files 1116

For example, to add a user-defined function (UDF) extension (which maps a single row of

input values to a single row of output values), add the Function declaration to instantiate a
named object of the Function class type. Then, add the apply() method statement that Graph
Lakehouse calls to invoke the UDF.

struct function_name : Function {

void apply(const Row& a, Row& r);

};

In this example, function_name is the short name that you want to use for the function. In the

apply() method, argument a is the input to the UDF and argument r is the output the UDF
returns. Both arguments are of type Row; argument a is a constant reference, and argument
r is a non-constant reference. In the apply() function, include the appropriate get and set
routines to define the Row type and read or fetch the input values for argument a and return
the values for argument r.

The following table lists the get and set routines available for Graph Lakehouse extensions.

Use the Read Cell and/or Read Cell with Default get routines for argument a. The Read
Cell with Default routines are used to return a default value if the cell is not defined (empty).

Use theWrite Cell set routines for argument r:

Read Cell (arg a)
Read Cell with Default (arg
a)

Write Cell (arg r)

defined(size_t) N/A undefined(size_t)

getBoolean(size_t) getBoolean(size_t, bool) setBoolean(size_t, bool)

getByte(size_t) getByte(size_t, uint8_t) setByte(size_t, byte)

getShort(size_t) getShort(size_t, short) setShort(size_t, short)

getInt(size_t) getInt(size_t, int) setInt(size_t, int)

Creating New UDX Library Source Files 1117

Read Cell (arg a)
Read Cell with Default (arg
a)

Write Cell (arg r)

getLong(size_t) getLong(size_t, long) setLong(size_t, long)

getFloat(size_t) getFloat(size_t, float) setFloat(size_t, float)

getDouble(size_t) getDouble(size_t, double) setDouble(size_t, double)

getDate(size_t) getDate(size_t, Date) setDate(size_t, Date)

getTime(size_t) getTime(size_t, Time) setTime(size_t, Time)

getDateTime(size_
t)

getDateTime(size_t,
DateTime)

setDateTime(size_t,
DateTime)

getDuration(size_t) getDuration(size_t, Duration) setDuration(size_t, Duration)

getString(size_t) getString(size_t, String) setString(size_t, String)

getLString(size_t) getLString(size_t, LString) setLString(size_t, LString)

getUDT(size_t) getUDT(size_t, UDT) setUDT(size_t, UDT)

getURI(size_t) getURI(size_t, URI) setURI(size_t, URI)

getTag(size_t) getTag(size_t, String) N/A

getType(size_t) N/A N/A

N/A N/A clear()

Creating New UDX Library Source Files 1118

Read Cell (arg a)
Read Cell with Default (arg
a)

Write Cell (arg r)

getBlob(size_t) getBlob(size_t, Blob) setBlob(size_t, Blob)

Tip
These routines may also be used in an extension's programming logic that implements

the operation of a particular extension.

5. Implement the programming logic that provides the functionality of the specific extension,

function, aggregate, or service. For example, as shown in the following code snippet for a

concat UDF extension, the apply() function concatenates two strings and returns the
concatenated string:

struct concat : Function {

void apply(const Row& a, Row& r)

{

r.setString(0, string(a.getString(0)) + string(a.getString(1)));

}

};

6. If you want to implement error handling, you can include the following azg_throw macro,

which is similar to the printf() function in C. Create and specify the full URI for the function as
a string, and include the message to display when an error occurs.

azg_throw("function_URI", "error_message");

The function_URI argument is a prefix that you define, followed by the function name. The

URI must be globally unique. Altair recommends that you use a format such as

http://mycompany.com/grouping/etc#function_name. For example:

azg_throw("http://cambridgesemantics.com/udx/function#concat", "Error message

– code %d", m_code);

Creating New UDX Library Source Files 1119

Note
You register the function URI after you complete implementation for all extension

definitions in the library file and then register the entire extension library for all the

extensions in the same source file. (See Registering a UDX in an Extension Library.)

7. Include statements to instantiate extensions by specifying the following extern "C"
extension factory function for each extension defined within the same extension library

source file:

extern "C" ExtensionFactory* udx_functionName() { return new

FactoryFor<functionName>(); }

Where functionName is the short name of the function, not the full URI. For example:

extern "C" ExtensionFactory* udx_concat() { return new FactoryFor<concat>(); }

Once you've finished implementing the operation of all extensions within an extension library file,

you register the extensions. For instructions on how to do that, see Registering a UDX in an

Extension Library.

Tip
For more information on creating specific user-defined extension types in C++, see UDX

Examples.

Creating New UDX Library Source Files 1120

Registering a UDX in an Extension Library

This topic provides information on registering a new user-defined extension (UDX) in C++

environments.

Note
Documentation on UDX development in JVM environments is in progress and not available at

this time.

Registering C++ UDXs

The following instructions show you how to register the UDF by specifying the function's metadata in

JSON format. You can supply the registration information in the same CPP file that you created to

define the function, or you can create a separate CPP file for the registration metadata. You can

also register multiple functions in the same CPP file.

To register a UDF, add the following extern "C" void register_extensions (MetaData&

md) declaration to the CPP file that defines the UDF or a separate CPP file.

Note
If you register UDFs in a separate file, make sure that you also include the UDX header and

namespace in that file.

Open register.cpp in a separate window

extern "C" void register_extensions(MetaData& md)

{

md.json_metadata = R"(

{

"name" : "UDX_lib_name",

"language" : "c++",

"version" : "version",

"description" : "UDX_lib_description",

"author" : "author_or_company",

"copyright" : "copyright_statement",

"contents" : [

{

Registering a UDX in an Extension Library 1121

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/register.cpp

"name" : "function_URI",

"type" : "function",

"signature" : " udx_functionName",

"arguments" : ["arg1_type","arg2_type"],

"results" : "result_type",

"description" : "function_description"

}

]

}

)";

}

The properties at the top of the declaration describe the overall extension library. The properties in

the contents array describe the UDF to register. To describe multiple UDFs in a single CPP file,

include multiple contents arrays, for example:

extern "C" void register_extensions(MetaData& md)

{

md.json_metadata = R"(

{

"name" : "UDX_lib_name",

"language" : "c++",

"version" : "version",

"description" : "UDX_lib_description",

"author" : "author_or_company",

"copyright" : "copyright_statement",

"contents" : [

{

"name" : "function_URI_1",

"type" : "function",

"signature" : " udx_functionName_1",

"arguments" : ["arg1_type","arg2_type"],

"results" : "result_type",

"description" : "function_description"

},

{

"name" : "function_URI_2",

"type" : "function",

"signature" : " udx_functionName_2",

"arguments" : ["arg1_type","arg2_type"],

"results" : "result_type",

"description" : "function_description"

}

Registering a UDX in an Extension Library 1122

]

}

)";

}

The table below defines each property that is specified for each extension in an extension library

file:

Property Description

name Required. Property that specifies the globally unique name to use for this
extension library. The name must be unique within Graph Lakehouse. For
example: "CSI C++ Extension Functions".

language Required. Property that specifies the language for the library. The value must be
"c++" or "jvm". In this case, the value "c++" is specified.

version Required. Property that specifies the version of the library in Semantic
Versioning format:major.minor.patch. The first digit is required and specifies the
major version number. The second digit is optional and specifies the minor
version number, and the third digit is optional and specifies the patch number.
For example: "1.0.0".

description Optional. Property that provides a description of the extension library. For
example: "An extension library implemented in C++".

author Optional. Property that specifies the author or company name. For example:
"abc@company.com".

copyright Optional. Property that provides a copyright statement to use for the library. For
example: "Copyright © Altair Engineering Inc. All rights reserved."

contents Required. Array that registers one or more extensions that are included in this
library. When registering multiple extension in the same library, repeat the
contents array for each extension.

Registering a UDX in an Extension Library 1123

https://semver.org/
https://semver.org/

For each extension, the contents array specifies a number of generic properties pertaining to the

extension, plus some additional properties based on the UDX type (see UDX Examples). The

following table lists the common properties specified in the contents array for extensions:

Property Description

name Required. Property that specifies the globally unique URI used to identify this
extension. The URI must be unique in Graph Lakehouse and is referenced in

SPARQL queries to invoke this extension. Altair recommends that you use a

format such as http://mycompany.com/grouping/etc#function_name.

For example:
"http://cambridgesemantics.com/udx/function#concat"

Note
If you included the error handling azg_throw macro in the extension

definition, make sure that this URI value matches the URI in azg_throw.

type Required. Property that specifies the type of this extension. The value must be
"function", "aggregate", or "service".

signature Required. Property that specifies the globally unique C language identifier for
the extension. The value must be udx_ followed by the extension name, as
specified as the extern "C" factory extension name used to instantiate the
extension. For example, Altair recommends names of the form: "udx_
mycompany_mylibraryname_myextension_name".

arguments Required. Property that lists the JSON type for each of the extension's input
arguments. Specify the JSON type that corresponds to the enum type that you
chose for each of the arguments when you implemented the interface. Refer to
UDX Data Types for a list of the JSON types. For example:
["double","String"].

Registering a UDX in an Extension Library 1124

Property Description

results Required. Property that specifies the JSON type for the extension's return value.
For example: "double".

description Optional. Property that provides a description of the extension. For example: "A
function that concatenates string values."

Once a UDX is defined and registered, follow the instructions in Compiling UDX Source Files to

create a shared object file for loading to Graph Lakehouse.

Registering a UDX in an Extension Library 1125

Compiling UDX Source Files

After creating and registering one or more new extensions, you need to compile your source files

and registration metadata into a single shared object file, or in a JVM environment, build the

extension classes into a JAR file you can load into Graph Lakehouse. This topic provides details of

tools that are available and how you can compile extensions to create the files needed to run the

new extensions.

Note
Documentation on UDX development in JVM environments is in progress and not available at

this time.

Compiling UDX files in C++

Graph Lakehouse provides a azg_extfn_compile utility that you can use to compile a single

CPP file into a shared object. To compile multiple CPP files into a single shared object, you can use

the CMake utility. See the following procedures for information about configuring CMake to compile
extensions included in one or more separate CPP files.

UDX CMake Configuration

In the parent CMakeLists.txt configuration file, specify the following compiler and compilation

flags to use for compiling user-defined extensions:

cmake_minimum_required(VERSION 3.13.2)

if (NOT DEFINED ENV{AZG})

message("missing environment variable AZG:")

message("defaulting to AZG=root_anzograph_install_dir")

set(AZG root_anzograph_install_dir)

else()

set(AZG $ENV{AZG})

endif()

set(CMAKE_CXX_COMPILER ${AZG}/tools/bin/x86_64-pc-linux-gnu-g++-7.2.0)

add_compile_options(-O3 -Wall -m64 -std=c++17)

For example, the following CMakeLists.txt configures CMake in a Docker environment:

Compiling UDX Source Files 1126

cmake_minimum_required(VERSION 3.13.2)

if (NOT DEFINED ENV{AZG})

message("missing environment variable AZG:")

message("defaulting to AZG=install_dir")

set(AZG install_dir)

else()

set(AZG $ENV{AZG})

endif()

set(CMAKE_CXX_COMPILER ${AZG}/tools/bin/x86_64-pc-linux-gnu-g++-7.2.0)

add_compile_options(-O3 -Wall -m64 -std=c++17)

Compiling a UDX to Create a Shared Object File

Run the following command to use the Graph Lakehouse extension compilation utility (azg_

extfn_compile) to compile a single CPP file and generate the shared object (.so) file. The utility

invokes the g++ compiler to compile the C++ file.

<install_path>/bin/azg_extfn_compile /path/file_name

Note
After compiling a C++ UDX file, you need to copy the the shared object file along with any

other files or libraries on which the UDX is dependent, to a common extension directory on

your Graph Lakehouse Server (or leader node in a cluster). When executing the UDX

specified in a query, Graph Lakehouse copies the UDX, along with any dependent files or

libraries, to all the compute nodes or slices in your system for execution on their respective

portions of loaded data.

For example, the following command compiles a divReg.cpp file and generates divReg.so.

./opt/anzograph/bin/azg_extfn_compile /home/user/cpp/divReg.cpp

After generating the shared object files for new extensions, see Loading a UDX to the Database for

instructions on loading shared object files into Graph Lakehouse, to register new extensions and

make them available from within Graph Lakehouse.

Compiling UDX Source Files 1127

Tip
After starting up Graph Lakehouse, you can examine the boot log file to see what extensions

have been scanned and registered.

Compiling UDX Source Files 1128

Loading a UDX to the Database

To load new extensions to Graph Lakehouse, you place the UDX C++ .so files (or JVM JAR files) in

the extension library directory, <install_path>/lib/udx, on the leader node and then restart

Graph Lakehouse. Each time the database starts, it scans the files in the extension directory and

loads the extensions in the registration database.

Loading a UDX to the Database 1129

Using Extensions in SPARQL Queries

Once you've registered an extension library with Graph Lakehouse, you can simply include

extension library UDXs within the syntax syntax of regular SPARQL or other types of query

statements. For example:

select (<http://example/concat>(?a, ?b) as ?concat) where ...

The only requirement for execution of a UDX is that the arguments for input and output parameters

match values provided within the query statement. See UDX Examples for more information on the

signatures and specification of input and output parameters for the different types of user-defined

extensions supported by Graph Lakehouse.

When executing a query containing a user-defined extension, each slice of an Graph Lakehouse

server or cluster deployment creates its own distinct instance of the extension for every occurrence

in the query by invoking the "create" method of the associated "ExtensionFactory". As each row of

values streams through a slice, it is passed to the instance by calling its "apply" method, and the
results are then passed on upward to the consumer of the stream. The factory, and the instances

that it creates, are destroyed only when the query has eventually finished executing.

Using Extensions in SPARQL Queries 1130

UDX Examples

The topics in this section describe some sample extension source files that may help guide you as

you develop your own extensions.

In this section:
User-Defined Function (UDF) Examples 1132

User-Defined Aggregate (UDA) Examples 1138

UDX Examples 1131

User-Defined Function (UDF) Examples

A user-defined function (UDF) looks to the user just like a normal function that maps one row of

input values to one row of output values. The following code sample comprises a complete, minimal,

working example of a UDF extension:

struct AND : Function {

void apply(const Row &a, Row &r) override {

r.setBoolean(0, a.getBoolean(0) && a.getBoolean(1));

}

};

*

* signature:

*

extern "C" ExtensionFactory *udx_AND() { return new FactoryFor<AND>(); }

*

* meta-data:

*

{

"name" : "http://example/and",

"signature" : "udx_AND",

"type" : "function",

"arguments" : ["boolean", "boolean"],

"results" : "boolean",

"variadic" : false,

"description" : "Returns the logical conjunction of two booleans"

}

*

This example also includes meta-data information in the same file as the AND function extension

definition, to register the function in Graph Lakehouse. In addition to those attributes common to

every extension, the following attributes are specified for user-defined function extensions.

Attribute Description

arguments An array of zero or more UDX data types that specifies the number and type of
arguments required by any application of the UDF. Determines the shape of the
input row passed as the "a" parameter of the applymethod.

User-Defined Function (UDF) Examples 1132

Attribute Description

results An array of zero or more UDX data types that specifies the number and type of
results that are returned by any application of the UDF. Determines the shape of
the output row passed as the "r" parameter of the applymethod.

variadic A boolean value which indicates, if true, that the final type listed in the arguments
array may be repeated one or more times in an application of the UDF. This
attribute is optional.

Tip
See Registering a UDX in an Extension Library for more information on registration

information and different methods of registering functions in Graph Lakehouse. Refer to each

function's argument or result data types using their Graph Lakehouse registry or UDX data

type names. (See UDX Data Types.)

Implementing the Apply() Method

The previous example defines a function named "udx_AND". The apply() method specifies input
and output row arguments "a" and "r", and then performs a boolean AND operation of two boolean

values, returning a Boolean value true (1) if both row arguments are true.

The arguments to the function, "a", are passed as a row whose schema is specified by the

"arguments" meta-data attribute. If the UDF is optionally marked as being ‘variadic : true’, then the
"variadic" meta-data may also receive additional values with type "a.shape().last()" at the end of
the given row. The output parameter, "r", specifies a row to assign the results to, passed as a row

whose shape is specified by the "results" meta-data attribute.

The implementation of the function extension also uses the setBoolean and getBoolean routines
to process the values of the input and output arguments and perform the operation of the function.

The following table lists the get and set routines available for Graph Lakehouse extensions. Use
the Read Cell and/or Read Cell with Default get routines for argument a. The Read Cell with
Default routines are used to return a default value if the cell is not defined (empty). Use theWrite
Cell set routines for argument r:

User-Defined Function (UDF) Examples 1133

Read Cell (arg a) Read Cell with Default (arg a) Write Cell (arg r)

defined(size_t) N/A undefined(size_t)

getBoolean(size_t) getBoolean(size_t, bool) setBoolean(size_t, bool)

getByte(size_t) getByte(size_t, uint8_t) setByte(size_t, byte)

getShort(size_t) getShort(size_t, short) setShort(size_t, short)

getInt(size_t) getInt(size_t, int) setInt(size_t, int)

getLong(size_t) getLong(size_t, long) setLong(size_t, long)

getFloat(size_t) getFloat(size_t, float) setFloat(size_t, float)

getDouble(size_t) getDouble(size_t, double) setDouble(size_t, double)

getDate(size_t) getDate(size_t, Date) setDate(size_t, Date)

getTime(size_t) getTime(size_t, Time) setTime(size_t, Time)

getDateTime(size_t) getDateTime(size_t, DateTime) setDateTime(size_t, DateTime)

getDuration(size_t) getDuration(size_t, Duration) setDuration(size_t, Duration)

getString(size_t) getString(size_t, String) setString(size_t, String)

getLString(size_t) getLString(size_t, LString) setLString(size_t, LString)

getUDT(size_t) getUDT(size_t, UDT) setUDT(size_t, UDT)

User-Defined Function (UDF) Examples 1134

Read Cell (arg a) Read Cell with Default (arg a) Write Cell (arg r)

getURI(size_t) getURI(size_t, URI) setURI(size_t, URI)

getTag(size_t) getTag(size_t, String) N/A

getType(size_t) N/A N/A

N/A N/A clear()

getBlob(size_t) getBlob(size_t, Blob) setBlob(size_t, Blob)

Compilation and Execution of Function Extensions

When compiling a query that includes a function extension (UDF), the leader verifies that the

number and type of the arguments passed to the UDF are consistent with its domain, as specified

by the "arguments" and "variadic" attributes of the meta-data description. When executing a query,

each slice creates its own distinct instance of the UDF for every occurrence in the query by invoking

the create method of the associated ExtensionFactory. As each row of values streams through a

slice, it is passed to the instance by calling its apply method, and the results are then passed on
upward to the consumer of the stream. The factory, and the instances that it creates, are destroyed

only when the query has eventually finished execution.

Additional UDF Examples

The following example file, div.cpp, defines a function named divide.

Open div.cpp in a separate window

#include "udx_api.hpp" // For extensions API

using namespace std; // Everything in standard namespace

using namespace udx2; // Everything in udx namespace

struct divide : Function

{

void apply(const Row& a,Row& r)

{

User-Defined Function (UDF) Examples 1135

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/div.cpp

if (a.defined(0) && a.defined(1))

if (auto d = a.getLong(1))

{

r.setDouble(0,a.getLong(0) / d);

}

}

};

extern "C" ExtensionFactory* udx_divide() { return new FactoryFor<divide>(); }

The following example file, udf.cpp, below defines three UDFs: a concat function that concatenates
two strings, a usd_to_eur function that converts USD values to EUR, and a sortstr function that
sorts words into a single string.

Open udf.cpp in a separate window

#include "udx_api.hpp" // For extensions API

using namespace std; // Everything in std

using namespace udx2; // Everything in udx

// create a concat function that concatenates two string values

struct concat : Function

{

void apply(const Row& a,Row& r)

{

r.setString(0, string(a.getString(0)) + string(a.getString(1)));

}

};

extern "C" ExtensionFactory* udx_concat() { return new FactoryFor<concat>(); }

// create a usd_to_euro function that converts USD values to EUR

struct usd_to_euro : Function

{

void apply(const Row& a,Row& r)

{

auto exchange_rate = 0.81;

auto [udt,tag] = a.getUDT(0);

if (tag=="$" && !udt.empty())

{

istringstream i{string(udt)};

ostringstream o;o.precision(2);o.setf(ios::fixed);

double d;

User-Defined Function (UDF) Examples 1136

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/udf.cpp

i >> d;

o << d * exchange_rate ;

r.setUDT(0,{o.str(),"€"});

}

}

};

extern "C" ExtensionFactory* udx_usd_to_euro() { return new FactoryFor<usd_to_euro>();}

// create a sort string function that sorts the words into a string

struct sortstr : Function

{

void apply(const Row& a,Row& r)

{

ostringstream o;

istringstream i(string(a.getString(0)));

istream_iterator<string> b(i);

vector<string> tokens(b,istream_iterator<string>());

sort(begin(tokens),end(tokens));

copy(begin(tokens),end(tokens),ostream_iterator<string>(o," "));

r.setString(0,o.str().c_str());

}

};

extern "C" ExtensionFactory* udx_sortstr() { return new FactoryFor<sortstr>(); }

User-Defined Function (UDF) Examples 1137

User-Defined Aggregate (UDA) Examples

User Defined Aggregate (UDA) extensions allow developers to extend the set of aggregate

functions that are already built into Graph Lakehouse. A UDA maps multiple rows of input values to

a single row of output values. For example, the following code snippet comprises a complete,

minimal, working example of a UDA:

*

* implementation:

*

struct ALL : Aggregate {

bool all = true;

void accumulate(const Row &a) override { all &= a.getBoolean(0); }

void save (Row &s) override { s.setBoolean(0, all); }

void merge (const Row &s) override { all &= s.getBoolean(0); }

void result (Row &r) override { r.setBoolean(0, all); }

};

*

* signature:

*

extern "C" ExtensionFactory *udx_ALL() { return new FactoryFor<ALL>(); }

*

* meta-data:

*

{

"name" : "http://example/all",

"signature" : "udx_ALL",

"type" : "aggregate",

"arguments" : "boolean",

"states" : "boolean",

"results" : "boolean",

"description" : "Returns the logical conjunction of a list of booleans"

}

*

The implementation of this example UDA extension uses the setBoolean and getBoolean routines

to process the values of the input and output arguments and perform the operation of the function.

After compiling and registering the UDA in an extension library file, you can use the extension

anywhere in a SPARQL query where the syntax allows. For example:

select (<http://example/all>(?a) as ?all) where ...

User-Defined Aggregate (UDA) Examples 1138

This example also includes meta-data information in the same file as the udx_ALL function

extension, to register the function in Graph Lakehouse. In addition to the attributes common to

every extension, aggregate extensions specify the following additional meta-data attributes.

Attribute Description

arguments An array of zero or more types that specifies the number and type of arguments
required by any application of the UDA. Determines the shape of the input row
passed as the "a" parameter of the accumulatemethod.

results An array of zero or more types that specifies the number and type of results that
are returned by any application of the UDA. Determines the shape of the output
row passed as the "r" parameter of the resultmethod.

sorted A boolean value which, if true, indicates that the algorithm being implemented by
the aggregate is sensitive to the order in which values are supplied to the
accumulate() method. If the aggregate is computed in a subquery that has an
ORDER by clause, the compiler normally discards it. If you specify sorted as true,
the ORDER BY clause is preserved.

variadic A boolean value which, if true, indicates that the final type listed in the arguments
array may be repeated one or more times in an application of the UDA. This
attribute is optional.

states An array of zero or more types that specifies the number and type of states that
are marshaled across the cluster when merging those intermediate results that
accumulated on the slices during the accumulation phase.

Determines the shape of the output row passed as the "s" parameter of the
save method and determines the shape of the input row passed as the "s"
parameter of themerge method. This attribute is optional.

User-Defined Aggregate (UDA) Examples 1139

When compiling a query containing an aggregate extension, the Graph Lakehouse server or the

leader node of a cluster verifies that the number and type of the arguments passed to the UDA are

consistent with its domain, as specified by the arguments and variadic attributes of the meta-data
description.

Aggregation Methods

Since Graph Lakehouse takes advantage of parallel processing, Graph Lakehouse performs

aggregation in multiple steps. Each of the data slices operate on groups of values that are local to

that particular slice and produce one result for each group. The results of those computations are

stored in variables called aggregation states, and the aggregation state values are used to calculate

the final result. Each UDA implements the following aggregation methods: accumulate(), save

(), merge(), and result(). The UDA implements the save() method to transmit these partially

aggregate local results or states to the leader, where they are "merged" in to a fresh instance of the

UDA that will compute the final result.

Method Description

accumulate
(const Row
&a)

Passes a row of values whose schema is specified by the "arguments" meta-
data attribute. UDAs marked "variadic" may also receive additional values with
type "a.shape().last()" at the end of the given row.

save(Row &s) Assigns the accumulated intermediate results to the given row, which will then
be transmitted across the cluster to the target slice and merged in to the recipient
instance of the UDA..

merge(const
Row &s)

Merges the intermediate results accumulated by another instance over on a
remote slice with the internal state. The intermediate results of the remote slice
instance are passed as a row whose shape is specified by the "states" meta-data
attribute.

result(Row &r) Assigns the results of the aggregate to the given row, whose shape is specified
by the "results" meta-data attribute.

User-Defined Aggregate (UDA) Examples 1140

When executing a query, each slice creates its own distinct instance of the UDA for every

occurrence in the query by invoking the create method of the associated ExtensionFactory.

l As each row of values streams through a slice, it is passed to the instance by calling its

accumulate method, which responds by updating its internal state as necessary to record

having processed the row in some appropriate way.

l When all rows on the slice have been accumulated, the instance is now given a mutable row

(of shape states) into which it serializes any intermediate results it has accumulated, and

the instance is then destroyed.

l The slice receiving the result now creates an instance of the UDA and a row (of shape

states), and the system arranges for all intermediate states to be transmitted across the

cluster and "merged" into the instance by passing each in turn to its merge method.

The factory, and the instances that it creates, are destroyed only when the query has eventually

finished execution.

The Accumulate() Method

The accumulate() method void accumulate(const Row& r) accumulates values from the

UDA's input arguments into the aggregation states. In the function, r is the input received by the
UDA, and its type is Row. Include the appropriate get routines to define the UDX Data Types. The

following table lists the available get routines. The Read Cell with Default routines are used to
return a default value if the cell is not defined (empty).

Read Cell Read Cell with Default

defined(size_t) N/A

getBoolean(size_t) getBoolean(size_t, bool)

getByte(size_t) getByte(size_t, uint8_t)

getShort(size_t) getShort(size_t, short)

User-Defined Aggregate (UDA) Examples 1141

Read Cell Read Cell with Default

getInt(size_t) getInt(size_t, int)

getLong(size_t) getLong(size_t, long)

getFloat(size_t) getFloat(size_t, float)

getDouble(size_t) getDouble(size_t, double)

getDate(size_t) getDate(size_t, Date)

getTime(size_t) getTime(size_t, Time)

getDateTime(size_t) getDateTime(size_t, DateTime)

getDuration(size_t) getDuration(size_t, Duration)

getString(size_t) getString(size_t, String)

getLString(size_t) getLString(size_t, LString)

getUDT(size_t) getUDT(size_t, UDT)

getURI(size_t) getURI(size_t, URI)

getTag(size_t) getTag(size_t, String)

getType(size_t) N/A

getBlob(size_t) getBlob(size_t, Blob)

User-Defined Aggregate (UDA) Examples 1142

For example, the following accumulate() definition for arithmetic mean fetches the input long

variable using getLong() and adds it into the summation. It also increments the count on each

received input:

void accumulate(const Row& r) {

m_sum += r.getLong(0);

m_cnt += 1;

}

The Save() Method

The save() method (void save(Row& r) { }) saves each of the internal aggregation states into

one of the UDX data types. In the function, r is the Row in which the accumulated result is saved so

that it can be restored in themerge() function. Include the appropriate get or set routines to save
the states from the accumulate() function. The following table lists the get and set routines
available.

Save Internal State
Restore Internal
State

Restore Internal State with Default
Value

setBoolean(size_t, bool) getBoolean(size_t) getBoolean(size_t, bool)

setShort(size_t, short) getShort(size_t) getShort(size_t, short)

setInt(size_t, int) getInt(size_t) getInt(size_t, int)

setLong(size_t, long) getLong(size_t) getLong(size_t, long)

setFloat(size_t, float) getFloat(size_t) getFloat(size_t, float)

setDouble(size_t, double) getDouble(size_t) getDouble(size_t, double)

setDate(size_t, Date) getDate(size_t) getDate(size_t, Date)

User-Defined Aggregate (UDA) Examples 1143

Save Internal State
Restore Internal
State

Restore Internal State with Default
Value

setTime(size_t, Time) getTime(size_t) getTime(size_t, Time)

setDateTime(size_t,
DateTime)

getDateTime(size_t) getDateTime(size_t, DateTime)

setDuration(size_t,
Duration)

getDuration(size_t) getDuration(size_t, Duration)

setString(size_t, String) getString(size_t) getString(size_t, String)

setLString(size_t, LString) getLString(size_t) getLString(size_t, LString)

setUDT(size_t, UDT) getUDT(size_t) getUDT(size_t, UDT)

setURI(size_t, URI) getURI(size_t) getURI(size_t, URI)

setBlob(size_t, Blob) getBlob(size_t) getBlob(size_t, Blob)

For example, the following save() definition for the arithmetic mean accumulate() example above
uses set routines to save the summation as a Long value into first cell of the row and total count as a

Long value in the second cell of the row:

void save(Row& r) {

r.setLong(0,m_sum)

.setLong(1,m_cnt);

}

User-Defined Aggregate (UDA) Examples 1144

Note
If the data structure of the internal aggregation state to save is more complex (such as a map

or vector) than the fixed data types in the routines above, serialize the type in the save() step.
It can then be de-serialized in the merge() step to get the original data. See the

discEntropy.cpp example below for a sample UDA that employs the map data structure.

The Merge() Method

The merge() method (void merge(const Row& r) { }) merges all of the internal

aggregation states from all of the data slices with the leader slice. In the function, r is the row with

the previously computed result, which can be retrieved in the same sequence they are saved in

For example, in the followingmerge() definition for the arithmetic mean example above, the leader
gets the summation of other slices using the received input of the first cell of the row and total count

as the second cell of the row:

void merge(const Row& r) {

m_sum += r.getLong(0);

m_cnt += r.getLong(1);

}

The Result() Method

The result() method (void result(Row& r) { }) returns the final computation of the

aggregation states. In the function, "r" is the row where the computed result is returned by setting

the values for the cells with the appropriate set routines:

l undefined(size_t)

l setBoolean(size_t, bool)

l setByte(size_t, byte)

l setShort(size_t, short)

l setInt(size_t, int)

l setLong(size_t, long)

l setFloat(size_t, float)

User-Defined Aggregate (UDA) Examples 1145

l setDouble(size_t, double)

l setDate(size_t, Date)

l setTime(size_t, Time)

l setDateTime(size_t, DateTime)

l setDuration(size_t, Duration)

l setString(size_t, String)

l setLString(size_t, LString)

l setUDT(size_t, UDT)

l setURI(size_t, URI)

l setBlob(size_t, Blob)

l clear()

For example:

void result(Row& r) {

if (m_cnt)

r.setDouble(0,double(m_sum)/m_cnt);

}

Error Handling

In case of an error, an extension can signal an exception by including the azg_throw macro, which

is similar to the printf() function in C. Create and specify as a string the full URI for the

aggregate, and include the message to display when an error occurs.

azg_throw("aggregate_URI", "error_message");

Where aggregate_URI is a prefix that you define, followed by the aggregate name. The URI must be

globally unique. Altair recommends that you use a format such as

http://mycompany.com/grouping/etc#aggregate_name. For example:

azg_throw("http://cambridgesemantics.com/udx/aggregate#mean", "Error message – code

%d", m_code);

User-Defined Aggregate (UDA) Examples 1146

Instantiating Extensions

Instantiate the extension by specifying the following extern "C" factory functions:

extern "C" ExtensionFactory* udx_aggregateName() { return new FactoryFor<aggregateName>

(); }

Where aggregateName is the short name of the function, not the full URI. For example:

extern "C" ExtensionFactory* udx_mean() { return new FactoryFor<mean>(); }

Once the aggregate is defined, see Registering a UDX in an Extension Library and Compiling UDX

Source Files.

Additional Aggregate Examples

mean.cpp

The following example file, mean.cpp, defines an aggregate extension named average.

Open mean.cpp in a separate window

#include "udx_api.hpp"

using namespace std;

using namespace udx2;

struct average : Aggregate {

long m_sum = 0;

long m_cnt = 0;

void accumulate(const Row& r) {

m_sum += r.getLong(0);

m_cnt += 1;

}

void save(Row& r) {

r.setLong(0,m_sum)

.setLong(1,m_cnt);

}

void merge(const Row& r) {

m_sum += r.getLong(0);

m_cnt += r.getLong(1);

User-Defined Aggregate (UDA) Examples 1147

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/mean.cpp

}

void result(Row& r) {

if (m_cnt)

r.setDouble(0,double(m_sum)/m_cnt);

}

};

extern "C" ExtensionFactory* udx_average() { return new FactoryFor<average>(); }

discEntropy.cpp

The following example UDA definition, discEntropy.cpp, computes discrete entropy and uses map

as an internal aggregation state.

Open discEntropy.cpp in a separate window

#include <cmath>

#include "udx_api.hpp"

#include <sstream>

#include <iostream>

#include <map>

using namespace udx2;

struct DiscEntropy : Aggregate {

long m_cnt = 0; // Total events

std::map<std::string, long> m_map;

void accumulate(const Row& r) {

// NOTE: Supply input as string even for numbers using SPARQL expression

if(!r.getString(0).empty()) {

m_map[std::string(r.getString(0).begin(), r.getString(0).end())]++;

m_cnt += 1;

}

}

void save(Row& r) {

if(m_cnt != 0) {

std::ostringstream out;

for(const auto& [key, val] : m_map)

out << key.size() << '~' << key << val << '~';

r.setLong(0, m_cnt)

.setString(1, out.str());

User-Defined Aggregate (UDA) Examples 1148

https://docs.cambridgesemantics.com/anzograph/v3.1/userdoc/attachments/discEntropy.cpp

}

}

void merge(const Row& r) {

if(r.defined(0)) {

std::istringstream in(r.getString(1).data());

std::string key;

long val;

int len;

char delimit;

while(in.good()) {

key.clear();

val = len = 0;

in >> len >> delimit;

if(in && len) {

std::vector<char> tmp(len);

in.read(tmp.data(), len);

key.assign(tmp.data(), len);

in >> val >> delimit;

m_map[key] += val;

}

}

m_cnt += r.getLong(0);

}

}

void result(Row& r) {

if(m_cnt == 0)

azg_throw("http://example/aggregates#discentropy",": insufficient data");

// Formula: Entropy = -Sum[p(x) * log(p(x))] for all classes of x events.

double entropy = 0;

double prob = 0;

for(const auto& elem : m_map) {

prob = double(elem.second) / m_cnt;

entropy += prob * std::log2(prob);

}

r.setDouble(0, (entropy >= 0.0) ? entropy : -1 * entropy);

}

};

extern "C" ExtensionFactory* udx_csi_statistics_discentropy() { return new

FactoryFor<DiscEntropy>(); }

User-Defined Aggregate (UDA) Examples 1149

FAQ & Troubleshooting

This section includes answers to frequently asked questions, an error message reference,

information on retrieving Graph Lakehouse diagnostic files, and how to get support.

In this section:
FAQ 1151

Error Message Reference 1160

Retrieving Diagnostic Files 1162

Getting Support 1168

FAQ & Troubleshooting 1150

FAQ

This topic provides answers to frequently asked questions and includes references to more detailed

information. The questions are categorized by subject:

l Container Images FAQ

l Graph Lakehouse FAQ

l SPARQL FAQ

Container Images FAQ

This section includes answers for questions related to Graph Lakehouse container images.

l Why are there three Graph Lakehouse container images?

Why are there three Graph Lakehouse container images?

To offer versatility for different types of environments and deployment preferences, Altair provides

three Graph Lakehouse container images. The list below describes each image and its purpose:

l anzograph (all-in-one image): The all-in-one image
(https://hub.docker.com/r/cambridgesemantics/anzograph) includes the front end (user

interface) as well the back end (database) in one image.

l anzograph-frontend (user interface): The front end image
(https://hub.docker.com/r/cambridgesemantics/anzograph-frontend) includes the user

interface only. Multiple users can deploy the front end locally and use it to access a central

Graph Lakehouse database cluster.

l anzograph-db (back end/database): The back end image
(https://hub.docker.com/r/cambridgesemantics/anzograph-db) includes the database only. If

you have existing client applications to use with Graph Lakehouse and do not need the front

end, you can deploy the database by itself.

FAQ 1151

https://hub.docker.com/r/cambridgesemantics/anzograph
https://hub.docker.com/r/cambridgesemantics/anzograph-frontend
https://hub.docker.com/r/cambridgesemantics/anzograph-db

Graph Lakehouse FAQ

This section includes answers for questions related to Graph Lakehouse usage.

l How do I determine what size cluster to deploy?

l Are there best practices around performance benchmarking with Graph Lakehouse?

l How do I deploy Graph Lakehouse SPARQL endpoints?

l How do I use the SPARQL and RDF Graph Store endpoints?

l How do I enable SPARQL HTTP protocol?

l How do I reset the admin password?

l How do I access the Graph Lakehouse file system with Docker?

l How do I copy load files from the host to the Graph Lakehouse file system in Docker?

l How do I customize a Helm-managed Graph Lakehouse deployment?

l How do I enable database persistence?

l What RDF load file types does Graph Lakehouse support?

l How do I set up my load files to get the best load performance?

l How do I get a list of all Graph Lakehouse functions?

How do I determine what size cluster to deploy?

For guidance on determining the number of instances to include in your cluster and choosing the

most suitable instance type, see the best practice Sizing Guidelines for In-Memory Storage.

Are there best practices around performance benchmarking with Graph Lake-
house?

For best practices and in-depth information about benchmarking with Graph Lakehouse, see the

AnzoGraph DB Benchmarking Guide.

FAQ 1152

https://blog.cambridgesemantics.com/anzograph-db-benchmarking-guide

How do I deploy Graph Lakehouse SPARQL endpoints?

Graph Lakehouse supports the standard W3C SPARQL 1.1 Protocol (SPARQL endpoint) and

SPARQL 1.1 Graph Store HTTP Protocol (RDF Graph Store endpoint). The SPARQL endpoint and

Graph Store endpoint are both enabled by default. And both endpoints can be accessed through the

front end (user interface) or the back end (database).

l If you have the front end client deployed, the endpoints are enabled and can be accessed by

applications that have access to the front end server. User authentication is required to

access endpoints through the front end.

l Back end endpoints are also enabled by default but are controlled by the enable_sparql_

protocol configuration setting. If SPARQL protocol is disabled for your deployment, the

database endpoints will not be accessible. See How do I enable SPARQL HTTP protocol? for

instructions on enabling SPARQL protocol. The back end endpoints do not support user

authentication at this time.

For more information about the endpoints, see Access the SPARQL and RDF Endpoints.

How do I use the SPARQL and RDF Graph Store endpoints?

Graph Lakehouse endpoints conform to the W3C SPARQL 1.1 standards and can be accessed like

other standard SPARQL endpoints. For usage information and details about the Graph Lakehouse

endpoints, see Access the SPARQL and RDF Endpoints.

For W3C specifications on SPARQL endpoints, see SPARQL 1.1 Protocol. For RDF graph store

specifications, see SPARQL 1.1 Graph Store HTTP Protocol.

How do I enable SPARQL HTTP protocol?

If HTTP protocol is disabled for your deployment and you want to enable it so that you can use the

Graph Lakehouse CLI or post queries to the SPARQL HTTP port (7070 by default), follow the

instructions below.

1. Stop Graph Lakehouse. You can stop the database from the Admin user interface, or see

Start and Stop Graph Lakehouse for information about alternate methods.

FAQ 1153

https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/

2. Open the Graph Lakehouse settings file /install_path/config/settings.conf in an editor.

How do I access the Graph Lakehouse file system with Docker? For example:

vi /opt/anzograph/config/settings.conf

3. Find the enable_sparql_protocol setting. If the setting is listed, change the value from
"false" to true. If the setting is not listed, add a new line to the end of the file and enter the

following value:

enable_sparql_protocol=true

4. Save and close the file, and then restart Graph Lakehouse.

Once Graph Lakehouse starts, SPARQL HTTP protocol is enabled on the sparql_protocol_port

(7070 by default) and you can use the CLI (AZGI) or send requests through the back end (database)

SPARQL endpoints. For more information about Graph Lakehouse endpoints, see Access the

SPARQL and RDF Endpoints.

How do I reset the admin password?

To reset the Graph Lakehouse admin password, SSH to the Graph Lakehouse host server (the

leader node if this is a cluster) and run the following command. This command runs the azgpasswd

utility in the anzograph/bin directory and updates the password (passwd) file in the
anzograph/config directory:

./<install_path>/bin/azgpasswd /<install_path>/config/passwd -u admin -p <password>

For example, the following command resets the password to "Passw0rd1":

./opt/csi/anzograph/bin/azgpasswd /opt/csi/anzograph/config/passwd -u admin -p

Passw0rd1

Important
Do not use certain special characters like $ or * in passwords. Those characters have special

meaning for bash.

FAQ 1154

How do I access the Graph Lakehouse file system with Docker?

Run the following Docker command to access the Graph Lakehouse file system, the

/opt/anzograph directory:

sudo docker exec -it <container_name> /bin/bash

Where <container_name> is the name of the Graph Lakehouse container whose file system you

want to access. For example:

sudo docker exec -it anzograph /bin/bash

How do I copy load files from the host to the Graph Lakehouse file system in
Docker?

1. Run the following Docker command to access the Graph Lakehouse file system, the

/opt/anzograph directory:

sudo docker exec -it <container_name> /bin/bash

Where <container_name> is the name of the Graph Lakehouse container whose file system

you want to access. For example:

sudo docker exec -it anzograph /bin/bash

2. Determine where on the file system you would like to place the load files and create a new

directory if necessary. If you plan to load a directory of files, remember to include the file type

in the directory name. See RDF Load File Requirements for more information. For example:

mkdir /opt/anzograph/load-files.ttl

3. Type exit to exit the container.

4. Run the following Docker command to copy files from the host server to a location in the

Graph Lakehouse container.

sudo docker cp /<path>/<filename> <container_name>:/<path>/<directory>

For example:

FAQ 1155

sudo docker cp /home/user/sales.ttl anzograph:/opt/anzograph/load-files.ttl/

Or this command copies a directory to the container:

sudo docker cp -r /<path>/<directory> <container_name>:/<path>

For example:

sudo docker cp -r /home/user/load-files.ttl anzograph:/opt/anzograph/

How do I customize a Helm-managed Graph Lakehouse deployment?

To customize a Helm-managed deployment, modify the Graph Lakehouse Helm chart,

values.yaml, and then deploy Graph Lakehouse using that chart.

l The values.yaml file is in the HELM_HOME directory. To view the location of HELM_HOME,

you can run helm home.

l To download the latest version of the Helm chart from csi-helm/anzograph, you can run helm

repo update.

l You can edit values.yaml directly or make a copy and edit the copy. When you run the helm

install command to deploy Graph Lakehouse, specify the name of the Helm chart to use

for that deployment.

l For details about the Helm chart options, view the readme, Readme.md, in the HELM_
HOME directory.

For instructions on deploying Graph Lakehouse with Helm, see Deploy Graph Lakehouse with

Helm.

How do I enable database persistence?

For most installations Graph Lakehouse is configured by default to save the data in memory to disk

after every transaction. Each time Graph Lakehouse is restarted, the persisted data is automatically

loaded back into memory. To check whether the save to disk option is enabled, open the settings

FAQ 1156

file, install_path/config/settings.conf, and find the enable_persistence option. If enable_
persistence=true, data persistence is enabled. If enable_persistence=false, persistence

is disabled. For instructions on changing settings, see Change System Settings.

Important Considerations

l In general, each Graph Lakehouse server needs access to about twice as much disk space

as RAM on the server. By default, Graph Lakehouse saves data to the install_

path/persistence directory on the local file system. You can also configure Graph

Lakehouse to save data to a different location by changing the value of the persistence_

directory setting in settings.conf.

l When persistence is enabled, transactional workloads that perform many concurrent write

operations may experience a performance degradation due to the overhead of writing the

data from each transaction to disk.

What RDF load file types does Graph Lakehouse support?

l Turtle (.ttl file type): Terse RDF Triple Language that writes an RDF graph in compact form.

l N-Triple (.n3 and .nt file types): A subset of Turtle known as simple triples.

l N-Quad (.nq and .quads file types): N-Triples with a blank node or graph designation.

l TriG (.trig file type): An extension of Turtle that supports representing a complete RDF data

set.

l JSON-LD (.jsonld file type): A method of encoding linked data using JSON. JSON-LD files

are supported for loading via the IO services. JSON-LD is not supported by SPARQL LOAD

queries.

For more information, see Load RDF Data from Files.

How do I set up my load files to get the best load performance?

When you have multiple files, Graph Lakehouse loads the files in parallel, using all available cores

on all servers in the cluster. While you can load files stored on the leader node's local file system, for

optimal performance, it is important to use a shared file system to ensure that all servers in the

FAQ 1157

cluster have access to the files. In a Docker or Kubernetes container environment, the storage

system should also be shared with the container file system.

For more information and details about load file requirements, see RDF Load File Requirements.

How do I get a list of all Graph Lakehouse functions?

You can run the following query to return a list of supported SPARQL functions. The query returns

all of the function names as well as the supported argument and return types for each function:

SELECT ?extension_name ?extension_arguments ?extension_results

WHERE { TABLE 'stc_functions'}

ORDER BY ?extension_name

SPARQL FAQ

This section includes answers for questions related to the SPARQL query language.

l What extensions to the SPARQL standard does Graph Lakehouse provide?

l Where can I find more information about SPARQL?

What extensions to the SPARQL standard does Graph Lakehouse provide?

Graph Lakehouse implements the standard SPARQL forms and functions described in the W3C

SPARQL 1.1 Query Language specification. In addition to supporting the standard functions, Graph

Lakehouse also provides several SQL-like and Microsoft Excel-like functions as well as support for

more advanced operations like window aggregates, advanced grouping sets, and graph algorithms.

In addition to the built-in standard and advanced functions, Graph Lakehouse includes extension

libraries that provide several data science, geospatial, Apache Arrow, and various utility functions.

For information, see SPARQL Query Language Reference.

Where can I find more information about SPARQL?

For basic information about SPARQL, the semantic web, or RDF, see the Altair Semantic

University. In addition, the Semantic Web for the Working Ontologist focuses on SPARQL and RDF

usage using Internet examples.

FAQ 1158

https://www.w3.org/TR/sparql11-query/
https://www.cambridgesemantics.com/blog/semantic-university/
https://www.cambridgesemantics.com/blog/semantic-university/
https://www.amazon.com/Semantic-Web-Working-Ontologist-Second/dp/0123859654

To view the W3C formal specification and definitive reference, see the SPARQL 1.1 Query

Language specification.

For additional information about best practices and tips, see SPARQL Best Practices and SPARQL

Tips and Tricks.

FAQ 1159

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

Error Message Reference

This section includes the possible causes and solutions for Graph Lakehouse error messages. Click

a message in the list below to view details about that error:

l Cannot execute as user 'root'. To override this security protection, set 'enable_root_

user=true': Invalid user id

l std::exception - locale::facet::_S_create_c_locale name not valid

l stg: Cannot allocate memory - heap is exhausted

l Unsupported functionality: loading files with this extension - <URL>

l Invalid Certificate

l Fatal Error. Caught Signal 15

Cannot execute as user 'root'. To override this security protection, set 'enable_
root_user=true': Invalid user id

This message indicates that you tried to start Graph Lakehouse as the root user and root access is

disabled. You can try the command again as a non-root user, or you can enable root access by

adding enable_root_user=true to the Graph Lakehouse settings file. For instructions, see

Change System Settings.

std::exception - locale::facet::_S_create_c_locale name not valid

This message indicates that your operating system does not include the glibc-langpack

dependency and it needs to be installed. To resolve the issue, follow the steps below:

1. Run the following command to install the dependency:

dnf install glibc-langpack-en

2. Set the locale for your server. For example, running the following command sets it to en_US:

localectl set-locale LANG=en_US.UTF-8

Error Message Reference 1160

3. Restart the azgmgrd and anzograph services.

stg: Cannot allocate memory - heap is exhausted

This message indicates that all of the memory that is available to Graph Lakehouse is in use and

there is not enough left to run queries. The solution is to free memory by restarting Graph

Lakehouse. Then either adjust your workload to reduce the amount of data that is loaded or

increase the amount of RAM on the host server(s).

Unsupported functionality: loading files with this extension - <URL>

This message indicates that the load file directory listed in the error message does not include the

load file type extension in its name. For example, running a query that loads files from the URL

s3://csi-sdl-data-tickit/tickit results in this error. Since the tickit directory includes

.ttl.gz files, renaming tickit to tickit.ttl.gz resolves the error. For more information about

load requirements, see RDF Load File Requirements.

Invalid Certificate

This message indicates that you replaced the default Graph Lakehouse certificates with your own

trusted certificates and the certificates are invalid. Certificates can be invalid because they expired

or they were generated or signed incorrectly. For information about replacing certificates, see

Replace the Default Self-Signed Certificates with Trusted Certificates.

Fatal Error. Caught Signal 15

This error indicates that a process external to Graph Lakehouse stopped the Graph Lakehouse

processes, such as if the host machine was shut down while Graph Lakehouse was running. Restart

Graph Lakehouse to proceed with normal usage.

Error Message Reference 1161

Retrieving Diagnostic Files

When Altair Support requests Graph Lakehouse diagnostic files for troubleshooting an issue, you

can quickly retrieve the files from either the Diagnostics tab in the Admin Console or by using the

system management CLI. This topic describes the diagnostic files and provides instructions for

retrieving the files from the user interface and the command line.

l Diagnostic File Overview

l Retrieving Files from the Admin Console

l Retrieving Files from the Command Line

Diagnostic File Overview

There are two types of diagnostic files:

l Xray: Xrays are generated on-demand. If you encounter an error and the database remains
running, you generate an Xray to produce the diagnostic files.

l Crash Dump: If you encounter an error that crashes the database, Graph Lakehouse
automatically generates a crash file that contains diagnostic information about the crash.

Xrays and crash dumps harvest the diagnostic data that is stored in Graph Lakehouse's system

tables. They include information such as:

l A low level, de-identified log of the requests that were sent to the database.

l Statistics like query operation step execution times, number of rows processed, and amount

of memory used.

l Detailed but de-identified trace information for errors that were encountered.

l Configuration information such as the number of nodes in the cluster and Graph Lakehouse

system settings values.

Retrieving Diagnostic Files 1162

Xrays and crash dumps are designed to be anonymous and can be safely shared with Altair

Support. They do NOT capture user information or any of the data that is loaded into memory by a

user, nor do they expose details that could be used to reveal the nature of the data being queried.

They are valuable tools that enable Altair to diagnose and fix issues without access or any other

visibility into a customer’s data or database. They can also be used to report on overall and detailed

system performance, resulting in improved query performance for future releases of Graph

Lakehouse.

Retrieving Files from the Admin Console

Follow the instructions below to download an xray or crash dump from the user interface.

1. Log in to Admin Console and click the Diagnostics tab. The console displays the available
options. For example:

2. If you want to retrieve an xray, click the Download Xray snapshot link. Graph Lakehouse
creates the xray and produces a tarball with an .xray extension. The console downloads the

.xray tarball to your computer.

Note
The files in the tarball are compressed. Do not compress the .xray file before sending it

to Altair.

3. If you want to retrieve a crash dump, click the Refresh button to refresh the list of available
crash dump .xray files. Click the file name that you want to download. The console

downloads the .xray file to your computer.

Retrieving Diagnostic Files 1163

Note
The files in the tarball are compressed. Do not compress the .xray file before sending it

to Altair.

Retrieving Files from the Command Line

Follow the instructions below retrieve diagnostic files using the system management CLI, azgctl.

The CLI is in the <install_path>/bin directory.

l Taking an X-Ray

l Generating a Crash Dump

Taking an X-Ray

Run the following command on the leader server to take an x-ray on a running database. The result

is a tarball that includes historical system records from the specified time period. All flags for

specifying a time period are optional. If you omit the options, the resulting x-ray will include the last

24 hours of historical system data.

Note
The system manager interprets time specifications using the system’s local time and converts

the timestamps to UTC when starting the x-ray.

azgctl -xray /path/name.xray [-f <time>] [-t <time>] [-d <num_days>]

[-h <num_hours>] [-m <num_minutes>]

Option Description

/path/name The path on the file system where you want to save the tarball and the name of
the tarball. All x-rays must be named with the .xray extension.

-f <time> The -f <time> (or --from <time>) option can be used to specify the time to
start the system data capture, i.e., omit all of the records from before the
specified time. Time must be specified in the following format: YYYY-MM-DD[:HH

Retrieving Diagnostic Files 1164

Option Description

[:MM]]. For example, -f 2024-01-10:15:00 sets the start time to 3:00 p.m.
(local system time) on January 10, 2024.

-t <time> The -t <time> (or --to <time>) option can be used to specify the time to
end the system data capture, i.e., omit all of the records after the specified time.
Time must be specified in the following format: YYYY-MM-DD[:HH[:MM]]. For
example, -t 2024-01-09:19:30 sets the end time to 7:30 p.m. (local system
time) on January 9, 2024.

-d <num_
days>

The -d <num_days> (or --days <num_days>) option can be used to specify
the number of days to include in the x-ray. The value must be a positive integer.

l When combined with -t <time> or -f <time>, the number of days is relative

to the from or to value. For example, -f 2024-01-10 -d 2 means

two days starting from 1/10/24 (i.e., 1/10/24 – 1/12/24). And -t 2024-

01-10 -d 2 is two days before 1/10/24 (i.e., 1/8/24 – 1/10/24).

l When included without -f or -t, the number of days is relative to the

current local system time. For example, -d 2 captures the last 2 days of

data starting from now().

-h <num_
hours>

The -h <num_hours> (or --hours <num_hours>) option can be used to
specify the number of hours to include in the x-ray. The value must be a positive
integer.

l When combined with -t <time> or -f <time>, the number of hours is relative

to the from or to value. For example, -f 2024-01-10:12:00 -h 5

means the 5 hours after 12:00 p.m. on 1/10/24. And -t 2024-01-

10:12:00 -h 5 means the 5 hours before 12:00 p.m. on 1/10/24.

l When included without -f or -t, the number of hours is relative to the

current local system time. For example, -h 3 captures the last 3 hours of

data starting from now().

Retrieving Diagnostic Files 1165

Option Description

-m <num_
minutes>

The -m <num_minutes> (or --minutes <num_minutes>) option can be
used to specify the number of minutes to include in the x-ray. The value must be
a positive integer.

l When combined with -t <time> or -f <time>, the number of minutes is

relative to the from or to value. For example, -f 2024-01-10:12:00

-m 30 means the 30 minutes after 12:00 p.m. on 1/10/24. And -t 2024-

01-10:12:00 -m 30 means the 30 minutes before 12:00 p.m. on

1/10/24.

l When included without -f or -t, the number of minutes is relative to the

current local system time. For example, -m 30 captures the last 30

minutes of data starting from now().

Examples

The following example generates an x-ray that includes the last 24 hours of system data. A tarball

named 24hr_errors.xray is written to the /tmp directory.

/opt/altair/anzograph/bin/azgctl -xray /tmp/24hr_errors.xray

The example below captures the last 12 hours worth of data. A tarball named last12hours.xray

is written to the /tmp directory.

/opt/altair/anzograph/bin/azgctl -xray /tmp/last12hours.xray -h 12

The example below captures the last two days of data from before 5:00 p.m. on 1/18/24. A tarball

named 1-16_to_1-18.xray is written to the /opt/shared/xrays directory.

/opt/altair/anzograph/bin/azgctl -xray /opt/shared/xrays/1-16_to_1-18.xray -t 2024-01-

18:17:00 -d 2

Generating a Crash Dump

If you encounter an issue that stops the database, Graph Lakehouse automatically generates

diagnostic files. Follow the instructions below to retrieve the files after a crash.

Retrieving Diagnostic Files 1166

Note
The database does not need to be running to collect the crash dump.

1. Run the following command on the leader server to view a list of the available crash dumps.

azgctl -crashlist

For example:

/opt/altair/anzograph/bin/azgctl -crashlist

The results show a list of available crash dumps by timestamp. For example:

Crash ID Time

520460982 2023-12-28 20:30:35

520457655 2023-12-28 19:01:25

2. Run the following command to retrieve the appropriate crash files. This command creates a

tarball that includes the diagnostic files:

azgctl -crashfetch [crash_id] /path/name.xray

Include the crash_id when you want to retrieve a specific crash dump that is listed in the

crash list. Omit the crash ID to retrieve the latest files. All crash dump tarballs must include

the .xray extension.

Examples

The following command captures the most recent crash files. The tarball is named latest_

crash.xray and it is saved to the /tmp directory.

/opt/altair/anzograph/bin/azgctl -crashfetch /tmp/latest_crash.xray

The example below captures the crash dump for ID 520457655:

/opt/altair/anzograph/bin/azgctl -crashfetch 520457655 /tmp/crash_520457655.xray

Tip
You can run azgctl -crashtoss to remove all crash dumps from the server.

Retrieving Diagnostic Files 1167

Getting Support

If you have comments or questions about Graph Lakehouse or run into an issue that you need help

resolving, you can get help from the Graph Lakehouse user community or from Altair Support. Altair

provides the following options for getting Graph Lakehouse technical support:

l Send an email to dasupport@altair.com. Emails are automatically submitted to the Graph

Lakehouse Service Desk and received by the Altair Data Analytics Support team.

l Get help from Altair Community.

Tip
For answers to frequently asked questions, see the FAQ. For instructions on getting

diagnostic files for support, see Retrieving Diagnostic Files.

Getting Support 1168

https://altair.com/customer-support
https://community.altair.com/

	About This Doc
	Best Practice
	Graph Lakehouse Features and Benefits
	Graph Lakehouse Architecture
	Planning and Deployment Guidelines
	Server and Cluster Requirements
	Sizing Guidelines for In-Memory Storage

	Securing a Graph Lakehouse Environment
	Container Image Deployments
	Container Engine Requirements
	Deploy the Graph Lakehouse Container Image

	Kubernetes Deployments
	Install the Kubernetes Command Line Client
	Configure Access to a Kubernetes Cluster
	Install Helm
	Deploy Graph Lakehouse with Helm

	Enterprise Linux 9 Deployments
	Pre-Installation Requirements
	Install Graph Lakehouse
	Post-Installation Configuration
	Uninstalling and Updating Graph Lakehouse

	IBM Cloud Pak Deployments

	Get Started
	Quickstart with the Query Console
	Quickstart with the CLI
	Licensing Methods
	Install or Upgrade a License
	Learn SPARQL
	SPARQL Query Basics
	SELECT
	CONSTRUCT
	ASK
	DESCRIBE
	PREFIX Clause
	FROM Clause
	WHERE Clause

	SPARQL Best Practices
	SPARQL Tips and Tricks
	Managing Your Data
	Exploring Your Data
	Understanding Your Data as a Graph

	Sample Data and Tutorials
	Working with SPARQL and the Tickit Data
	Working with Cypher and the Movie Data

	Load & Manage Data
	Load RDF Data from Files
	RDF Load File Requirements
	Data Type Handling
	Load RDF Files with the IO Load Service
	Load Local RDF Files with SPARQL LOAD

	Load or Virtualize Non-RDF Sources with SPARQL Queries
	Introduction to the Graph Data Interface
	GDI Concepts and Basic Usage
	Getting Started with GDI Queries
	Generating a Knowledge Graph
	Reading Data Source Metadata
	Pagination Options
	Binding and Hierarchy Concepts
	Incremental Load Concepts

	Options for Data Types, Data Connections, and Models
	Data Type Formatting Options
	Model Normalization Options
	Data Linking Options

	Advanced Usage by Data Source Type
	Query a Database Source
	Query an HTTP Source
	Query an Elasticsearch Source
	Query a File Source

	GDI Property Reference
	Universal Properties
	DbSource Properties
	FileSource Properties
	ElasticSource Properties

	Use a Query Context
	Create a Labeled Property Graph (RDF-star)
	Defining Properties in Turtle Load Files
	Defining Properties in INSERT Queries
	Querying Property Graphs
	Return Edges and Vertexes as JSON Objects

	Infer New Data (RDFS+ Inferencing)
	RDFS-Plus Rules

	Validate Data with SHACL (Preview)
	Introduction to SHACL
	Constraint Component Reference
	Create a Shapes Graph
	Validate a Data Graph

	Copy Graphs to Files
	Schedule Automated Data Updates

	Access & Analyze Data
	Use the Query & Admin Console
	Use the Graph Lakehouse CLI
	Use Third-Party Visualization Tools
	Access the SPARQL and RDF Endpoints
	Access Data with OData Protocol
	Create a Data on Demand Endpoint
	Access a Data on Demand Endpoint
	OData Reference

	Create and Save Views
	Create and Save a View for Reuse
	Create a View Inline for One-Time Use
	WITH Syntax

	Examples

	Save Queries for Reuse
	Create and Save a Query for Reuse
	Create a Query Inline for One-Time Use
	WITH Syntax

	Examples

	SPARQL Query Language Reference
	Built-in Functions
	Aggregate Functions
	Casting Functions
	Date and Time Functions
	Graph Algorithms
	Hash Functions
	Informational or Testing Functions
	Logical Functions
	Math Functions
	Property Paths
	String Functions
	Update Functions
	Window Aggregate and Ranking Functions
	Advanced Grouping Sets

	Extension Libraries
	Apache Arrow Library
	Data Science Library
	Geospatial Library
	Matrix Utilities Library
	Sketch Library
	Utilities Library

	Cypher Query Language Reference
	Cypher Language Overview
	Cypher Patterns
	Cypher Types, Lists, and Maps
	Comparability, Equality, Orderability, and Equivalence
	Cypher Expressions, Variables, and Parameters
	Cypher Operators
	Cypher Clauses
	Cypher Functions

	Admin
	Start and Stop Graph Lakehouse
	Deploy the Frontend Container
	Authentication and Access Control
	Access Control Basics and Terminology
	Configure Graph Lakehouse for LDAP Authentication
	Create and Manage Roles from the Console
	Monitor Access Control Activity

	Manage the Server Configuration
	System Settings Reference
	Change System Settings
	Manage File Access Policies
	Ignore Missing Graphs and Unbound Variables in Queries
	Change the Default FROM Clause Behavior
	Relocate Graph Lakehouse Directories
	Manage Automatic Database Restart Options

	Develop
	UDX Terminology and Concepts
	Developing User-Defined Extensions
	UDX Development Process Overview
	Reviewing UDX Interface Files
	Creating New UDX Library Source Files
	Registering a UDX in an Extension Library
	Compiling UDX Source Files

	Loading a UDX to the Database
	Using Extensions in SPARQL Queries
	UDX Examples
	User-Defined Function (UDF) Examples
	User-Defined Aggregate (UDA) Examples

	FAQ & Troubleshooting
	FAQ
	Error Message Reference
	Retrieving Diagnostic Files
	Getting Support

